Comprehensive Effects of Potassium Lactate, Calcium Ascorbate and Magnesium Chloride as Alternative Salts on Physicochemical Properties, Sensory Characteristics and Volatile Compounds in Low-Sodium Marinated Beef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Marinated Beef Preparation
2.3. Sodium Content
2.4. Sensory Evaluation
2.5. Water Activity Analysis
2.6. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.7. Myofibril Fragmentation Index (MFI)
2.8. Protein Solubility
2.9. Extraction of Sarcoplasmic and Myofibrillar Proteins and SDS-PAGE
2.10. Scanning Electron Microscopy (SEM)
2.11. Analysis of Volatile Compounds by Gas Chromatography–Ion mobility Spectrometry Technology (GC-IMS)
2.12. Statistical Analysis
3. Results and Discussion
3.1. Sodium Content
3.2. Sensory Analysis
3.3. Water Activity
3.4. LF-NMR
3.5. MFI
3.6. Protein Solubility
3.7. SDS-PAGE
3.8. SEM
3.9. Volatile Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inguglia, E.S.; Zhang, Z.H.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Wu, L.; Wu, T.; Wu, J.; Chang, R.; Lan, X.; Wei, K.; Jia, X. Effects of cations on the “salt in” of myofibrillar proteins. Food Hydrocoll. 2016, 58, 179–183. [Google Scholar] [CrossRef]
- Armenteros, M.; Toldra, F.; Aristoy, M.; Ventanas, J.; Estevez, M. Effect of the partial replacement of sodium chloride by other salts on the formation of volatile compounds during ripening of dry-cured ham. J. Agric. Food Chem. 2012, 60, 7607–7615. [Google Scholar] [CrossRef] [PubMed]
- Chabanet, C.; Tarrega, A.; Septier, C.; Siret, F.; Salles, C. Fat and salt contents affect the in-mouth temporal sodium release and saltiness perception of chicken sausages. Meat Sci. 2013, 94, 253–261. [Google Scholar] [CrossRef]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Björkroth, J. Microbiological ecology of marinated meat products. Meat Sci. 2005, 70, 477–480. [Google Scholar] [CrossRef]
- SB/T 10379-2012; Quick-Frozen Prepared Food. Ministry of Commerce, People Republic of China: Beijing, China, 2012.
- Radwinska, J.; Zarczynska, K. Effects of minberal deficiency on the health of young ruminants. J. Elem. 2014, 19, 915–928. [Google Scholar]
- Rios-Mera, J.D.; Saldana, E.; Cruzado-Bravo, M.L.M.; Patinho, I.; Selani, M.M.; Valentin, D.; Contreras-Castillo, C.J. Reducing the sodium content without modifying the quality of beef burgers by adding micronized salt. Food Res. Int. 2019, 121, 288–295. [Google Scholar] [CrossRef]
- Bhana, N.; Utter, J.; Eyles, H. Knowledge, attitudes and behaviors related to dietary salt intake in high-income countries: A systematic review. Curr. Nutr. Rep. 2018, 7, 183–197. [Google Scholar] [CrossRef]
- Fellendorf, S.; Kerry, J.P.; Hamill, R.M.; O’Sullivan, M.G. Impact on the physicochemical and sensory properties of salt reduced corned beef formulated with and without the use of salt replacers. LWT-Food Sci. Technol. 2018, 92, 584–592. [Google Scholar] [CrossRef]
- Bonakdaran, S.; Bagheripoor Fazel, N.; Salehifar, E. Effects of calcium and magnesium salts on quality attributes and mineral content of a beef model system. LWT-Food Sci. Technol. 2020, 128, 109419. [Google Scholar] [CrossRef]
- Vidal, V.A.S.; Santana, J.B.; Paglarini, C.S.; Da Silva, M.A.A.P.; Freitas, M.Q.; Esmerino, E.A.; Cruz, A.G.; Pollonio, M.A.R. Adding lysine and yeast extract improves sensory properties of low sodium salted meat. Meat Sci. 2020, 159, 107911. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.R.; Kim, J.S.; Jeong, J.Y.; Kim, Y.H.; Han, J.G.; Jeong, J.Y.; Choi, J.H. Emerging natural mineral salts as alternative curing agents for processed meat products. Foods 2021, 10, 633. [Google Scholar] [CrossRef]
- Astruc, T.; Labas, R.; Vendeuvre, J.L.; Martin, J.L.; Taylor, R.G. Beef sausage structure affected by sodium chloride and potassium lactate. Meat Sci. 2008, 80, 1092–1099. [Google Scholar] [CrossRef]
- Liao, R.; Wang, Y.; Xia, Q.; Zhou, C.; Geng, F.; Pan, D.; Cao, J. Effects of potassium lactate on sensory attributes, bacterial community succession and biogenic amines formation in Rugao ham. Food Sci. Hum. Wellness 2024, 13, 198–210. [Google Scholar] [CrossRef]
- Quilo, S.A.; Pohlman, F.W.; Brown, A.H.; Crandall, P.G.; Dias-Morse, P.N.; Baublits, R.T.; Aparicio, J.L. Effects of potassium lactate, sodium metasilicate, peroxyacetic acid, and acidified sodium chlorite on physical, chemical, and sensory properties of ground beef patties. Meat Sci. 2009, 82, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Horita, C.N.; Messias, V.C.; Morgano, M.A.; Hayakawa, F.M.; Pollonio, M.A.R. Textural, microstructural and sensory properties of reduced sodium frankfurter sausages containing mechanically deboned poultry meat and blends of chloride salts. Food Res. Int. 2014, 66, 29–35. [Google Scholar] [CrossRef]
- Zheng, J.; Han, Y.; Ge, G.; Zhao, M.; Sun, W. Partial substitution of NaCl with chloride salt mixtures: Impact on oxidative characteristics of meat myofibrillar protein and their rheological properties. Food Hydrocoll. 2019, 96, 36–42. [Google Scholar] [CrossRef]
- Ge, G.; Han, Y.; Zheng, J.; Zhao, M.; Sun, W. Physicochemical characteristics and gel-forming properties of myofibrillar protein in an oxidative system affected by partial substitution of NaCl with KCl, MgCl2 or CaCl2. Food Chem. 2020, 309, 125614. [Google Scholar] [CrossRef]
- Choi, Y.M.; Jung, K.C.; Jo, H.M.; Nam, K.W.; Choe, J.H.; Rhee, M.S.; Kim, B.C. Combined effects of potassium lactate and calcium ascorbate as sodium chloride substitutes on the physicochemical and sensory characteristics of low-sodium frankfurter sausage. Meat Sci. 2014, 96, 21–25. [Google Scholar] [CrossRef]
- Gimeno, O.; Astiasarán, I.; Bello, J. Calcium ascorbate as a potential partial substitute for NaCl in dry fermented sausages: Effect on colour, texture and hygienic quality at different concentrations. Meat Sci. 2001, 57, 23–29. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.H.; Zhang, Y.Y.; Li, S.; Dong, X.; Qin, L. Effect of sodium salt on meat products and reduction sodium strategies—A review. Meat Sci. 2023, 205, 109296. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, Z.J.; Chao, Y.Z.; Wu, Z.Q.; Zhou, M.X.; Xiao, S.T.; Zeng, J.; Zhe, J. Evaluation by electronic tongue and headspace-GC-IMS analyses of the flavor compounds in dry-cured pork with different salt content. Food Res. Int. 2020, 137, 109456. [Google Scholar] [CrossRef]
- Wen, R.; Hu, Y.; Zhang, L.; Wang, Y.; Chen, Q.; Kong, B. Effect of NaCl substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage. Meat Sci. 2019, 156, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Triki, M.; Khemakhem, I.; Trigui, I.; Ben Salah, R.; Jaballi, S.; Ruiz-Capillas, C.; Ayadi, M.A.; Attia, H.; Besbes, S. Free-sodium salts mixture and AlgySalt use as NaCl substitutes in fresh and cooked meat products intended for the hypertensive population. Meat Sci. 2017, 133, 194–203. [Google Scholar] [CrossRef]
- O’flynn, C.C.; Cruz-Romero, M.C.; Troy, D.J.; Mullen, A.M.; Kerry, J.P. The application of high-pressure treatment in the reduction of phosphate levels in breakfast sausages. Meat Sci. 2014, 96, 633–639. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, W.; Kang, D.; Zhou, G. Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. Int. J. Food Sci. Technol. 2018, 53, 828–836. [Google Scholar] [CrossRef]
- Kang, D.; Wang, A.; Zhou, G.; Zhang, W.; Xu, S.; Guo, G. Power ultrasonic on mass transport of beef: Effects of ultrasound intensity and NaCl concentration. Innov. Food Sci. Emerg. Technol. 2016, 35, 36–44. [Google Scholar] [CrossRef]
- Brannan, R.G. Effect of grape seed extract on physicochemical properties of ground, salted, chicken thigh meat during refrigerated storage at different relative humidity levels. J. Food Sci. 2008, 73, C36–C40. [Google Scholar] [CrossRef]
- Speroni, F.; Szerman, N.; Vaudagna, S.R. High hydrostatic pressure processing of beef patties: Effects of pressure level and sodium tripolyphosphate and sodium chloride concentrations on thermal and aggregative properties of proteins. Innov. Food Sci. Emerg. Technol. 2014, 23, 10–17. [Google Scholar] [CrossRef]
- Dos Santos, B.A.; Campagnol, P.C.B.; Cavalcanti, R.N.; Pacheco, M.T.B.; Nett, F.M.; Motta, E.M.P.; Celeguini, R.M.S.; Wagner, R.; Pollonio, M.A.R. Impact of sodium chloride replacement by salt substitutes on the proteolysis and rheological properties of dry fermented sausages. J. Food Eng. 2015, 151, 16–24. [Google Scholar] [CrossRef]
- Palka, K.; Daun, H. Changes in texture, cooking losses, and myofibrillar structure of bovine M. semitendinosus during heating. Meat Sci. 1999, 51, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, R.; Sun, G.; Fang, H.; Ma, D.; Yi, S. Effects of high pressure level and holding time on properties of duck muscle gels containing 1% curdlan. Innov. Food Sci. Emerg. Technol. 2010, 11, 538–542. [Google Scholar] [CrossRef]
- Li, L.; Zhao, X.; Xia, X.; Kong, B.; Liu, B. Effect of salt on quality and water distribution characteristics of ready-to-eat restructured beef products. Food Sci. 2017, 38, 143–148. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zhou, G.; Ren, X.; Bao, Y.; Zhu, Y.; Zeng, X.; Peng, Z. Lipolytic degradation, water and flavor properties of low sodium dry cured beef. Int. J. Food Prop. 2019, 22, 1322–1339. [Google Scholar] [CrossRef]
- Shao, J.; Deng, Y.; Jia, N.; Li, R.; Cao, J.; Liu, D.; Li, J. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition. Food Chem. 2016, 200, 308–314. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Deng, S.; Xu, W.; Liu, Y.; Geng, Z.; Sun, C.; Bian, H.; Liu, F. Postmortem changes in actomyosin dissociation, myofibril fragmentation and endogenous enzyme activities of grass carp (Ctenopharyngodon idellus) muscle. Food Chem. 2016, 197, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.D.; Bowker, B.C.; Gerrard, D.E. Sarcomere length influences mu-calpain-mediated proteolysis of bovine myofibrils. J. Anim. Sci. 2009, 87, 2096–2103. [Google Scholar] [CrossRef]
- Zhou, R.; Ni, Q.; Lin, W.; Zheng, J. The dependency of the myofibrils solubility on the ion concentration. J. Chin. Inst. Food Sci. Technol. 2015, 15, 32–39. [Google Scholar] [CrossRef]
- Andreetta-Gorelkina, I.V.; Greiff, K.; Rustad, T.; Aursand, I.G. Reduction of salt in haddock mince: Effect of different salts on the solubility of proteins. J. Aquat. Food Prod. Technol. 2016, 25, 518–530. [Google Scholar] [CrossRef]
- Pojedinec, S.L.; Slider, S.D.; Kenney, P.B.; Head, M.K.; Jittinandana, S.; Henning, W.R. Carcass maturity and dicationic salts affect preblended, low-fat, low-sodium restructured beef. Meat Sci. 2011, 88, 122–127. [Google Scholar] [CrossRef] [PubMed]
- U-Chupaj, J.; Malila, Y.; Gozzi, G.; Vannini, L.; Dellarosa, N.; Laghi, L.; Petracci, M.; Benjakul, S.; Visessanguan, W. Influence of non-phosphate and low-sodium salt marination in combination with tumbling process on properties of chicken breast meat affected by white striping abnormality. J. Food Sci. 2021, 86, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Mignino, L.A.; Paredi, M.E. Physico-chemical and functional properties of myofibrillar proteins from different species of molluscs. LWT-Food Sci. Technol. 2006, 39, 35–42. [Google Scholar] [CrossRef]
- Pighin, D.G.; Sancho, A.M.; Gonzalez, C.B. Effect of salt addition on the thermal behavior of proteins of bovine meat from Argentina. Meat Sci. 2008, 79, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Krasulya, O.; Tsirulnichenko, L.; Potoroko, I.; Bogush, V.; Novikova, Z.; Sergeev, A.; Kuznetsova, T.; Anandan, S. The study of changes in raw meat salting using acoustically activated brine. Ultrason. Sonochem. 2019, 50, 224–229. [Google Scholar] [CrossRef]
- Lomascolo, A.; Asther, M.; Navarro, D.; Antona, C.; Delattre, M.; Lesage-Meessen, L. Shifting the biotransformation pathways of L-phenylalanine into benzaldehyde by Trametes suaveolens CBS 334.85 using HP20 resin. Lett. Appl. Microbiol. 2001, 32, 262–267. [Google Scholar] [CrossRef]
- Armenteros, M.; Aristoy, M.; Manuel Barat, J.; Toldra, F. Biochemical and sensory properties of dry-cured loins as affected by partial replacement of sodium by potassium, calcium, and magnesium. J. Agric. Food Chem. 2009, 57, 9699–9705. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Lorenzo, J.M.; Dominguez, R.; Pateiro, M.; Munekata, P.E.S.; Campagnol, P.C.B.; Franco, D. Effect of NaCl partial replacement by chloride salts on physicochemical characteristics, volatile compounds and sensorial properties of dry-cured deer cecina. Foods 2021, 10, 669. [Google Scholar] [CrossRef]
- Feng, L.; Deng, S.; Huang, M.; Xu, X.; Zhou, G. Effect of palatase on lipid hydrolysis, lipid oxidation and sensory attributes of Chinese sausage. Food Sci. 2015, 36, 51–58. [Google Scholar] [CrossRef]
- Gaspardo, B.; Procida, G.; Toso, B.; Stefanon, B. Determination of volatile compounds in San Daniele ham using headspace GC-MS. Meat Sci. 2008, 80, 204–209. [Google Scholar] [CrossRef]
- Ripollés, S.; Bastianello Campagnol, P.C.; Armenteros, M.; Aristoy, M.; Toldra, F. Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on lipolysis and lipid oxidation in dry-cured ham. Meat Sci. 2011, 89, 58–64. [Google Scholar] [CrossRef] [PubMed]
Groups | Sodium Chloride/% | Potassium Lactate/% | Calcium Ascorbate/% | Magnesium Chloride/% |
---|---|---|---|---|
C1 | 100 | - | - | - |
C2 | 60 | - | - | - |
F1 | 60 | 20 | 10 | 10 |
F2 | 60 | 20 | 15 | 5 |
Groups | Color | Hardness | Juiciness | Saltiness | Off Flavor | Overall Flavor | Overall Acceptability |
---|---|---|---|---|---|---|---|
C1 | 3.25 a | 2.75 a | 4.25 b | 3.50 a | 1.25 a | 4.25 a | 5.00 b |
C2 | 3.50 a | 2.88 a | 2.75 a | 3.50 a | 2.00 a | 3.75 a | 3.75 a |
F1 | 3.88 a | 3.75 a | 2.75 a | 3.50 a | 1.50 a | 4.00 a | 4.50 ab |
F2 | 2.75 a | 3.25 a | 2.75 a | 2.75 a | 1.00 a | 3.50 a | 3.75 a |
SEM | 0.36 | 0.83 | 0.35 | 0.64 | 0.40 | 0.32 | 0.41 |
p-value | 0.055 | 0.634 | 0.002 | 0.574 | 0.126 | 0.168 | 0.025 |
Groups | Aw | T2/ms | P2/% | ||||
---|---|---|---|---|---|---|---|
T2b | T21 | T22 | P2b | P21 | P22 | ||
C1 | 0.931 a | 0.45 a | 69.09 b | - | 2.25 a | 97.75 b | - |
C2 | 0.938 bc | 1.26 b | 57.42 a | 689.65 ab | 2.27 ab | 96.55 a | 1.18 a |
F1 | 0.936 b | 0.51 a | 54.79 a | 637.17 a | 2.23 a | 96.79 a | 0.98 a |
F2 | 0.940 c | 0.93 b | 53.56 a | 733.22 b | 2.44 b | 96.80 a | 0.76 a |
SEM | 0.001 | 0.09 | 1.71 | 26.40 | 0.05 | 0.14 | 0.10 |
p-value | 0.001 | 0.001 | 0.000 | 0.112 | 0.084 | 0.000 | 0.118 |
Groups | Muscle Fiber Diameter/μm |
---|---|
C1 | 37.73 d |
C2 | 35.53 a |
F1 | 37.38 c |
F2 | 36.30 b |
SEM | 0.23 |
p-value | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Ma, X.; Huang, Y.; Lin, B.; Zhang, L.; Miao, S.; Zheng, B.; Deng, K. Comprehensive Effects of Potassium Lactate, Calcium Ascorbate and Magnesium Chloride as Alternative Salts on Physicochemical Properties, Sensory Characteristics and Volatile Compounds in Low-Sodium Marinated Beef. Foods 2024, 13, 291. https://doi.org/10.3390/foods13020291
Yang S, Ma X, Huang Y, Lin B, Zhang L, Miao S, Zheng B, Deng K. Comprehensive Effects of Potassium Lactate, Calcium Ascorbate and Magnesium Chloride as Alternative Salts on Physicochemical Properties, Sensory Characteristics and Volatile Compounds in Low-Sodium Marinated Beef. Foods. 2024; 13(2):291. https://doi.org/10.3390/foods13020291
Chicago/Turabian StyleYang, Shujie, Xiaoli Ma, Yanfeng Huang, Boyue Lin, Longtao Zhang, Song Miao, Baodong Zheng, and Kaibo Deng. 2024. "Comprehensive Effects of Potassium Lactate, Calcium Ascorbate and Magnesium Chloride as Alternative Salts on Physicochemical Properties, Sensory Characteristics and Volatile Compounds in Low-Sodium Marinated Beef" Foods 13, no. 2: 291. https://doi.org/10.3390/foods13020291
APA StyleYang, S., Ma, X., Huang, Y., Lin, B., Zhang, L., Miao, S., Zheng, B., & Deng, K. (2024). Comprehensive Effects of Potassium Lactate, Calcium Ascorbate and Magnesium Chloride as Alternative Salts on Physicochemical Properties, Sensory Characteristics and Volatile Compounds in Low-Sodium Marinated Beef. Foods, 13(2), 291. https://doi.org/10.3390/foods13020291