Non-Targeted Metabolomics Reveals the Effects of Different Rolling Methods on Black Tea Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Tea Samples Preparation
2.3. Sensory Evaluation of Black Tea
2.4. Determination of Physicochemical Indicators of Tea
2.5. Determination of Volatile Components of Tea
2.6. Determination of Non-Volatile Components of Tea
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effects of Rolling Time on the Sensory Quality of Black Tea
3.2. Effect of Rolling Time on Physicochemical Composition of Black Tea
3.3. Effects of Rolling Time on Volatile Components of Black Tea
3.4. Effects of Different Rolling Times on the Non-Volatile Components of Black Tea
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.B.; Xiong, T.; Chen, J.H.; Ye, F.; Cao, J.J.; Chen, Y.R.; Zhao, Z.W.; Luo, T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J. Mol. Evol. 2023, 91, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, Y.; Zhu, Z. Understanding of Formation and Change of Chiral Aroma Compounds from Tea Leaf to Tea Cup Provides Essential Information for Tea Quality Improvement. Food Res. Int. 2023, 167, 112703. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-M.; Qiao, F.-B.; Huang, J.-K. Black Tea Markets Worldwide: Are They Integrated? J. Integr. Agric. 2022, 21, 552–565. [Google Scholar] [CrossRef]
- Kang, S.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.P.; Zhang, Y.; Dai, W.D.; Guo, L.; Tan, J.F.; Peng, Q.H.; et al. Identification and Quantification of Key Odorants in the World’s Four Most Famous Black Teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef]
- Teshome, K. Effect of Tea Processing Methods on Biochemical Composition and Sensory Quality of Black Tea (Camellia sinensis (L.) O. Kuntze): A Review. J. Hortic. For. 2019, 11, 84–95. [Google Scholar] [CrossRef]
- Ozdemir, F.; Tontul, I.; Balci-Torun, F.; Topuz, A. Effect of Rolling Methods and Storage on Volatile Constituents of Turkish Black Tea. Flavor Fragr. J. 2017, 32, 362–375. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, X.; Huang, H.; Bao, X.C.; Zheng, H.F.; Liu, Z.H. Impacts of Different Rolling Processes upon Extracting Characteristics of Containing Ingredients and Their Bitter and Astringent Taste in Summer Tea. Chin. Tea Process. 2016, 6, 21–27. [Google Scholar] [CrossRef]
- Wu, S.; Yu, Q.; Shen, S.; Shan, X.; Hua, J.; Zhu, J.; Qiu, J.; Deng, Y.; Zhou, Q.; Jiang, Y.; et al. Non-Targeted Metabolomics and Electronic Tongue Analysis Reveal the Effect of Rolling Time on the Sensory Quality and Nonvolatile Metabolites of Congou Black Tea. LWT 2022, 169, 113971. [Google Scholar] [CrossRef]
- Fernando, V.; Roberts, G.R. The Effect of Process Parameters on Seasonal Development of Flavor in Black Tea. J. Sci. Food Agric. 1984, 35, 71–76. [Google Scholar] [CrossRef]
- Liang, S.; Granato, D.; Zou, C.; Gao, Y.; Zhu, Y.; Zhang, L.; Yin, J.F.; Zhou, W.; Xu, Y.Q. Processing Technologies for Manufacturing Tea Beverages: From Traditional to Advanced Hybrid Processes. Trends Food Sci. Technol. 2021, 118, 431–446. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wang, W.; Wang, F.; Liu, Q.; Yan, L. Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves. Sensors 2023, 23, 571. [Google Scholar] [CrossRef]
- Chen, L.I.; Zeyi, A.I.; Zhi, Y.U.; Yuqiong, C.; Dejiang, N.I. Research on Main Physical Properties of Tea Leaves in High-Quality Green Tea Processing. J. Tea Sci. 2019, 39, 705–714. [Google Scholar]
- Abhiram, G.; Jinthushayi, S.; Withanage, N.S. Optimization of Feeding Rate and Pressure of Orthodox Roller in Black Tea Production. AGRIEAST J. Agric. Sci. 2018, 12, 16. [Google Scholar] [CrossRef]
- Zhu, H.K.; He, H.F.; Ye, Y.; Dong, C.W.; Gui, A.H.; Gao, M.Z.; Chen, L. Influence of Rolling Temperature on Physicochemical Quality of Congou Black Tea. Mod. Food Sci. Technol. 2017, 33, 168–175. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, S.; Yu, Q.; Shan, X.; Chen, L.; Deng, Y.; Hua, J.; Zhu, J.; Zhou, Q.; Jiang, Y.; et al. The Influence of Rolling Pressure on the Changes in Non-Volatile Compounds and Sensory Quality of Congou Black Tea: The Combination of Metabolomics, E-Tongue, and Chromatic Differences Analyses. Food Chem. X 2023, 20, 100989. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Qi, F.; Dong, C. The Pressure Control System for Tea Rolling Based on Fuzzy Control. In Proceedings of the 2019 Chinese Intelligent Automation Conference, Zhenjiang, China, 20–22 September 2019; Deng, Z., Ed.; Springer: Singapore, 2020; pp. 416–425. [Google Scholar]
- Chen, S.; Liu, H.; Zhao, X.; Li, X.; Shan, W.; Wang, X.; Wang, S.; Yu, W.; Yang, Z.; Yu, X. Non-Targeted Metabolomics Analysis Reveals Dynamic Changes of Volatile and Non-Volatile Metabolites during Oolong Tea Manufacture. Food Res. Int. 2020, 128, 108778. [Google Scholar] [CrossRef]
- Dai, W.; Qi, D.; Yang, T.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Xie, D.; Tan, J.; et al. Nontargeted Analysis Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.; Chen, Q. Determination of Tea Polyphenols in Green Tea by Homemade Color Sensitive Sensor Combined with Multivariate Analysis. Food Chem. 2020, 319, 126584. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Wen, S.; Sun, L.; Chen, R.; Zhang, Z.; Cao, J.; Lai, Z.; Li, Z.; Lai, X.; et al. Metabolomics Reveals the Effects of Different Storage Times on the Acidity Quality and Metabolites of Large-Leaf Black Tea. Food Chem. 2023, 426, 136601. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Xu, N.; Yu, Y.; Brake, J.; Xu, R.; Wu, X. Dynamic Evolution and Correlation between Microorganisms and Metabolites during Manufacturing Process and Storage of Pu-Erh Tea. LWT 2022, 158, 113128. [Google Scholar] [CrossRef]
- He, S.; Deng, X.; Han, Y.; Gong, Z.; Wang, J.; Tao, X.; Tong, H.; Chen, Y. Metabolites and Metagenomic Analysis Reveals the Quality of Pu-Erh “Tea Head”. Food Chem. 2023, 429, 136992. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; He, C.; Zhou, J.; Chen, Y.; Yu, Z.; Wang, P.; Ni, D. Nonvolatile Metabolism in Postharvest Tea (Camellia sinensis L.) Leaves: Effects of Different Withering Treatments on Nonvolatile Metabolites, Gene Expression Levels, and Enzyme Activity. Food Chem. 2020, 327, 126992. [Google Scholar] [CrossRef]
- Tan, S.; Evans, R.; Singh, B. Herbicidal Inhibitors of Amino Acid Biosynthesis and Herbicide-Tolerant Crops. Amino Acids 2006, 30, 195–204. [Google Scholar] [CrossRef]
- Łuczaj, W.; Skrzydlewska, E. Antioxidative Properties of Black Tea. Prev. Med. 2005, 40, 910–918. [Google Scholar] [CrossRef]
- Chiang, S.H.; Yang, K.M.; Wang, S.Y.; Chen, C.W. Enzymatic Treatment in Black Tea Manufacturing Processing: Impact on Bioactive Compounds, Quality, and Bioactivities of Black Tea. LWT 2022, 163, 113560. [Google Scholar] [CrossRef]
- Ma, L.; Gao, M.; Zhang, L.; Qiao, Y.; Li, J.; Du, L.; Zhang, H.; Wang, H. Characterization of the Key Aroma-Active Compounds in High-Grade Dianhong Tea Using GC-MS and GC-O Combined with Sensory-Directed Flavor Analysis. Food Chem. 2022, 378, 132058. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Wen, J.; An, K.; Wu, J.; Yu, Y.; Zou, B.; Guo, M. A Comparative Study of Aromatic Characterization of Yingde Black Tea Infusions in Different Steeping Temperatures. LWT 2021, 143, 110860. [Google Scholar] [CrossRef]
- Sari, F.; Velioglu, Y.S. Changes in Theanine and Caffeine Contents of Black Tea with Different Rolling Methods and Processing Stages. Eur. Food Res. Technol. 2013, 237, 229–236. [Google Scholar] [CrossRef]
- Imran, A.; Arshad, M.U.; Arshad, M.S.; Imran, M.; Saeed, F.; Sohaib, M. Lipid Peroxidation Diminishing Perspective of Isolated Theaflavins and Thearubigins from Black Tea in Arginine Induced Renal Malfunctional Rats. Lipids Health Dis. 2018, 17, 157. [Google Scholar] [CrossRef]
- Miao, F.; Wang, J.; Zhu, H. Effects of Exogenous Cellulase on the Quality of Black Tea of JiangHua-KuCha. Sci. Technol. Food Ind. 2021, 42, 38–46. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Yin, J.F.; Chen, J.X.; Wang, F.; Du, Q.Z.; Jiang, Y.W.; Xu, Y.Q. Improving the Sweet Aftertaste of Green Tea Infusion with Tannase. Food Chem. 2016, 192, 470–476. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Corke, H.; Zhu, H. Dynamic Changes in Flavonoids Content during Congou Black Tea Processing. LWT 2022, 170, 114073. [Google Scholar] [CrossRef]
- Chen, L.; Liu, F.; Yang, Y.; Tu, Z.; Lin, J.; Ye, Y.; Xu, P. Oxygen-Enriched Fermentation Improves the Taste of Black Tea by Reducing the Bitter and Astringent Metabolites. Food Res. Int. 2021, 148, 110613. [Google Scholar] [CrossRef]
- Yu, F.; Chen, C.; Chen, S.; Wang, K.; Huang, H.; Wu, Y.; He, P.; Tu, Y.; Li, B. Dynamic Changes and Mechanisms of Organic Acids during Black Tea Manufacturing Process. Food Control 2021, 132, 108535. [Google Scholar] [CrossRef]
- Yue, C.; Wang, Z.; Peng, H.; Li, W.; Yang, P. UPLC–QTOF/MS-Based Non-Targeted Metabolomics Coupled with the Quality Component, QDA, to Reveal the Taste and Metabolite Characteristics of Six Types of Congou Black Tea. LWT 2023, 185, 115197. [Google Scholar] [CrossRef]
- Wang, D.; Yoshimura, T.; Kubota, K.; Kobayashi, A. Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 1. Qualitative and Quantitative Analyses of Glycosides with Aglycons as Aroma Compounds. J. Agric. Food Chem. 2000, 48, 5411–5418. [Google Scholar] [CrossRef]
- Gui, J.; Fu, X.; Zhou, Y.; Katsuno, T.; Mei, X.; Deng, R.; Xu, X.; Zhang, L.; Dong, F.; Watanabe, N.; et al. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds during the Oolong Tea Manufacturing Process? J. Agric. Food Chem. 2015, 63, 6905–6914. [Google Scholar] [CrossRef]
- Anson, L. The Bitter-Sweet Taste of Amino Acids. Nature 2002, 416, 136. [Google Scholar] [CrossRef]
- Ouyang, Q.; Yang, Y.; Wu, J.; Chen, Q.; Guo, Z.; Li, H. Measurement of Total Free Amino Acids Content in Black Tea Using Electronic Tongue Technology Coupled with Chemometrics. LWT 2020, 118, 108768. [Google Scholar] [CrossRef]
- Yu, P.; Huang, H.; Zhao, X.; Zhong, N.; Zheng, H. Dynamic Variation of Amino Acid Content during Black Tea Processing: A Review. Food Rev. Int. 2022, 39, 3970–3983. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, Y.; Gui, J.; Fu, X.; Mei, X.; Zhen, Y.; Ye, T.; Du, B.; Dong, F.; Watanabe, N.; et al. Formation of Volatile Tea Constituent Indole during the Oolong Tea Manufacturing Process. J. Agric. Food Chem. 2016, 64, 5011–5019. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, Y.; Liu, Y.; Liu, Y.; Dong, C.; Lin, Z.; Teng, J. Black Tea Aroma Formation during the Fermentation Period. Food Chem. 2022, 374, 131640. [Google Scholar] [CrossRef]
- Abudureheman, B.; Yu, X.; Fang, D.; Zhang, H. Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules 2022, 27, 942. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular Definition of Black Tea Taste by Means of Quantitative Studies, Taste Reconstitution, and Omission Experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- Narukawa, M.; Kimata, H.; Noga, C.; Watanabe, T. Taste Characterisation of Green Tea Catechins. Int. J. Food Sci. Technol. 2010, 45, 1579–1585. [Google Scholar] [CrossRef]
- Sharma, K.; Bari, S.S.; Singh, H.P. Biotransformation of Tea Catechins into Theaflavins with Immobilized Polyphenol Oxidase. J. Mol. Catal. B Enzym. 2009, 56, 253–258. [Google Scholar] [CrossRef]
- Li, Y.; He, C.; Yu, X.; Zhou, J.; Ran, W.; Chen, Y.; Ni, D. Effects of Red-Light Withering on the Taste of Black Tea as Revealed by Non-Targeted Metabolomics and Transcriptomics Analysis. LWT 2021, 147, 111620. [Google Scholar] [CrossRef]
Sample | Appearance (25%) | Liquor Color (10%) | Aroma (25%) | Taste (30%) | Infused Leaf (10%) | Total Score |
---|---|---|---|---|---|---|
RT0 | The tea strips are in natural form, yellow-green and dark in color, with many brown flakes, and not well blended, and the buds are covered with white hairs | Red, yellow, bright | Mixed, green, dull | Bitter, slightly green | Still tender, yellowish-green, mixed flowers, not well blended | 69.63 ± 0.3 f |
65.33 ± 0.57 f | 76.67 ± 0.57 e | 67.67 ± 0.57 e | 73.5 ± 0.5 g | 67.5 ± 0.5 e | ||
RT20 | Coarser, still well balanced, brownish withered, more hairy | Orange-red, bright | Mixed, green, slightl dull | Slightly astringent and greenish | Still tender, yellowish-red, mixed flowers, not well-mixed | 76.14 ± 0.21 e |
75.17 ± 0.28 e | 84.67 ± 0.57 d | 71.67 ± 0.57 d | 78.53 ± 0.5 f | 74.5 ± 0.5 d | ||
RT40 | Still tightly knotted, still well-balanced, brownish color, slightly withered, more hairs | Still red, Bright | Slightly mixed, slightly green, slightly dull | Slightly greenish | Still tender, yellowish-red, mixed flowers, not well-mixed | 79.5 ± 0.31 d |
77.33 ± 0.57 d | 88.5 ± 0.5 c | 76 ± 0 c | 81.5 ± 0.5 e | 78.67 ± 0.57 c | ||
RT60 | Tightly knotted, still well-balanced, with many brown flakes, brownish color, with hairs | Red and bright | Sweet, floral | Mellow, still fresh | Still tender, still red, bright, still toned | 85.82 ± 0.14 c |
81.17 ± 0.28 c | 90.83 ± 0.28 b | 88.17 ± 0.28 ab | 86.17 ± 0.28 c | 85.5 ± 0.5 b | ||
RT80 | Tightly knotted, still well-balanced, brownish color, with hairs | Red, thicker, brighter | Sweet, floral | Strong and fresh | Still tender, still red, bright, still toned | 87.32 ± 0.18 a |
82.67 ± 0.28 b | 92.83 ± 0.28 a | 89 ± 0.5 a | 88.33 ± 0.28 a | 86.17 ± 0.28 ab | ||
RT100 | Tightly knotted, still rounded, relatively even, still dark and moist, slightly hairy | Red, thicker, brighter | Sweet, floral | Strong, fresh | Still tender, still red, bright, still toned | 87.32 ± 0.05 a |
84.67 ± 0.28 a | 92.83 ± 0.28 a | 88.33 ± 0.57 a | 87.17 ± 0.28 b | 86.4 ± 0.36 a | ||
RT120 | Tightly knotted, rounded, well balanced, still dark and moist, slightly hairy | Thick, bright red | Sweet, floral | Rich liquor | Still tender, still red, bright, still toned | 86.41 ± 0.21 b |
84.83 ± 0.28 a | 92.83 ± 0.28 a | 87.33 ± 0.57 b | 85 ± 0.5 d | 85.83 ± 0.28 ab |
Sample | Tea Polyphenol | Free Amino Acids | Soluble Sugar | Theaflavin | Thearubigin | Theabrownin |
---|---|---|---|---|---|---|
RT0 | 13.28 ± 0.15 a | 4.13 ± 0.03 a | 3.02 ± 0.04 b | 0.29 ± 0.016 e | 3.97 ± 0.11 d | 5.7 ± 0.06 g |
RT20 | 11.81 ± 0.17 b | 3.81 ± 0.06 bc | 3.12 ± 0.06 a | 0.42 ± 0.025 b | 4.14 ± 0.07 bc | 7.36 ± 0.09 f |
RT40 | 11.6 ± 0.24 bc | 3.81 ± 0.05 bc | 3.01 ± 0.03 b | 0.41 ± 0.015 bc | 4.2 ± 0.09 ab | 7.77 ± 0.1 e |
RT60 | 11.26 ± 0.25 cd | 3.83 ± 0.05 b | 3.01 ± 0.04 b | 0.42 ± 0.007 b | 4.19 ± 0.1 ab | 7.94 ± 0.19 d |
RT80 | 11.01 ± 0.17 d | 3.77 ± 0.04 c | 3.02 ± 0.07 b | 0.46 ± 0.006 a | 4.28 ± 0.08 a | 8.42 ± 0.07 c |
RT100 | 10.57 ± 0.25 e | 3.55 ± 0.03 d | 3.09 ± 0.02 a | 0.38 ± 0.01 d | 3.98 ± 0.06 d | 8.56 ± 0.08 b |
RT120 | 10.53 ± 0.62 e | 3.56 ± 0.03 d | 3.08 ± 0.06 a | 0.4 ± 0.018 cd | 4.04 ± 0.13 cd | 8.78 ± 0.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Pathak, S.; Tang, H.; Zhang, D.; Chen, Y.; Ntezimana, B.; Ni, D.; Yu, Z. Non-Targeted Metabolomics Reveals the Effects of Different Rolling Methods on Black Tea Quality. Foods 2024, 13, 325. https://doi.org/10.3390/foods13020325
Yang S, Pathak S, Tang H, Zhang D, Chen Y, Ntezimana B, Ni D, Yu Z. Non-Targeted Metabolomics Reveals the Effects of Different Rolling Methods on Black Tea Quality. Foods. 2024; 13(2):325. https://doi.org/10.3390/foods13020325
Chicago/Turabian StyleYang, Shuya, Sujan Pathak, Haiyan Tang, De Zhang, Yuqiong Chen, Bernard Ntezimana, Dejiang Ni, and Zhi Yu. 2024. "Non-Targeted Metabolomics Reveals the Effects of Different Rolling Methods on Black Tea Quality" Foods 13, no. 2: 325. https://doi.org/10.3390/foods13020325
APA StyleYang, S., Pathak, S., Tang, H., Zhang, D., Chen, Y., Ntezimana, B., Ni, D., & Yu, Z. (2024). Non-Targeted Metabolomics Reveals the Effects of Different Rolling Methods on Black Tea Quality. Foods, 13(2), 325. https://doi.org/10.3390/foods13020325