Potential Antidiabetic Activity of Apis mellifera Propolis Extraction Obtained with Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Ultrasound-Assisted Extraction
2.3. Determination of Bioactive Compounds
Determination of Total Phenolic Content
- CAG = gallic acid concentration standard curve (mg/mL)
- V = sample volume (mL)
- DF = sample dilution factor
- CQ = quercetin concentration standard curve (mg/mL)
- V = sample volume (mL)
- DF = sample dilution factor
2.4. Determination of Antioxidant Activity
2.4.1. ABTS•+ Free Radical Inhibition Activity
- AG = gallic acid concentration standard curve (mg/mL)
- V = sample volume (mL)
- DF = sample dilution factor
2.4.2. DPPH• Free Radical Inhibition Activity
- CAA or AG = standard curve gallic acid concentration (mg/mL)
- V = sample volume (mL)
- DF = sample dilution factor
2.5. Enzyme Inhibition Assays
2.5.1. In Vitro ɑ-Amylase Assay
2.5.2. In Vitro ɑ-Glucosidase Assay
2.6. In Vitro Digestion
2.7. Analysis of Results
3. Results and Discussions
3.1. Extract Yield Percentage
3.2. Bioactive Compounds during Digestion
3.2.1. Determination of Antioxidant Activity during Digestion
3.2.2. Determination of Antidiabetic Activity during Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [PubMed]
- Balica, G.; Vostinaru, O.; Stefanescu, C.; Mogosan, C.; Iaru, I.; Cristina, A.; Pop, C.E. Potential Role of Propolis in the Prevention and Treatment of Metabolic Diseases. Plants 2021, 10, 883. [Google Scholar] [CrossRef] [PubMed]
- Zullkiflee, N.; Taha, H.; Usman, A. Propolis: Its Role and Efficacy in Human Health and Diseases. Molecules 2022, 27, 6120. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M. Biological Properties and Therapeutic Applications of Propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Henao Rojas, A.; Forero Vargas, L.M.; Sánchez Guirales, S.A. Búsqueda de Compuestos Anticancerígenos en Propóleos Antioqueños por Medio de Fluidos Supercríticos. 2020. Available online: https://repository.ces.edu.co/bitstream/handle/10946/4981/1075679299%20-%202020.pdf?sequence=1 (accessed on 19 January 2024).
- Przeor, M. Some common medicinal plants with antidiabetic activity, known and available in Europe (A Mini-Review). Pharmaceuticals 2022, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Kumari, S.; Jobby, R.; Desai, N.; Ali, A. Dietary Phytonutrients in the Prevention of Diabetes-related Complications. Curr. Diabetes Rev. 2020, 16, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, S.B.; Krishna Mohan, G.; Sandhya Rani, M. Phytochemicals for Diabetes Management. Pharm. Crops 2014, 5, 11–28. [Google Scholar] [CrossRef]
- Wu, N.-N.; Li, H.-H.; Tan, B.; Zhang, M.; Xiao, Z.-G.; Tian, X.-H.; Zhai, X.-T.; Liu, M.; Liu, Y.-X.; Wang, L.-P.; et al. Free and bound phenolic profiles of the bran from different rice varieties and their antioxidant activity and inhibitory effects on ɑ-amylose and ɑ-glucosidase. J. Cereal Sci. 2018, 82, 206–212. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Zhang, B.; Huang, Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Crit. Rev. Food Sci. Nutr. 2020, 60, 695–708. [Google Scholar] [CrossRef]
- Kinariwala, D.; Panchal, G.; Sakure, A.; Hati, S. Exploring the Potentiality of Lactobacillus Cultures on the Production of Milk-Derived Bioactive Peptides with Antidiabetic Activity. Int. J. Pept. Res. Ther. 2020, 26, 1613–1627. [Google Scholar] [CrossRef]
- Li, C.; Yu, W.; Wu, P.; Chen, X.D. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci. Technol. 2020, 96, 114–126. [Google Scholar] [CrossRef]
- Mella, C.; Quilaqueo, M.; Zúñiga, R.N.; Troncoso, E. Impact of the Simulated Gastric Digestion Methodology on the In Vitro Intestinal Proteolysis and Lipolysis of Emulsion Gels. Foods 2021, 10, 321. [Google Scholar] [CrossRef]
- Stewart, R.J.; Morton, H.; Coad, J.; Pedley, K.C. In vitro digestion for assessing micronutrient bioavailability: The importance of digestion duration. Int. J. Food Sci. Nutr. 2019, 70, 71–77. [Google Scholar] [CrossRef]
- Stojanović, S.T.; Najman, S.J.; Popov, B.B.; Najman, S.S. Propolis: Chemical composition, biological and pharmacological activity–A review. Acta Medica Median. 2020, 59, 1–11. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A wonder bees product and its pharmacological potentials. Adv. Pharmacol. Pharm. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef] [PubMed]
- Gajger, I.T.; Pavlović, I.; Bojić, M.; Kosalec, I.; Srečec, S.; Vlainić, T.; Vlainić, J. Components responsible for antimicrobial activity of propolis from continental and Mediterranean regions in Croatian. Czech J. Food Sci. 2017, 35, 376–385. [Google Scholar] [CrossRef]
- Bankova, V.; Trusheva, B.; Popova, M. Propolis extraction methods: A review. J. Apic. Res. 2021, 60, 734–743. [Google Scholar] [CrossRef]
- Šuran, J.; Cepanec, I.; Mašek, T.; Radić, B.; Radić, S.; Tlak Gajger, I.; Vlainić, J. Propolis extract and its bioactive compounds—From traditional to modern extraction technologies. Molecules 2021, 26, 2930. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 13. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Derewiaka, D.; Gniewosz, M. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J. Food Sci. Technol. 2019, 56, 5386–5395. [Google Scholar] [CrossRef]
- Bayram, N.E.; Gerçek, Y.C.; Bayram, S.; Toğar, B. Effects of processing methods and extraction solvents on the chemical content and bioactive properties of propolis. J. Food Meas. Charact. 2020, 14, 905–916. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, S.; Zeng, L.; Deng, Z.; Zhang, B.; Li, H. The phenolic compounds, metabolites, and antioxidant activity of propolis extracted by ultrasound-assisted method. J. Food Sci. 2019, 84, 3850–3865. [Google Scholar] [CrossRef]
- Cavalaro, R.I.; da Cruz, R.G.; Dupont, S.; de Moura, J.M.L.N.; de Souza Vieira, T.M.F. In vitro and in vivo antioxidant properties of bioactive compounds from green propolis obtained by ultrasound-assisted extraction. Food Chem. X 2019, 4, 100054. [Google Scholar] [CrossRef]
- Reis, J.H.D.O.; Barreto, G.D.A.; Cerqueira, J.C.; Anjos, J.P.D.; Andrade, L.N.; Padilha, F.F.; Druzian, J.I.; Machado, B.A.S. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction. PLoS ONE 2019, 14, e0219063. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, H.K. Assessment of propolis treated by different extraction methods. Braz. Arch. Biol. Technol. 2022, 65, 1–11. [Google Scholar] [CrossRef]
- Azuola, R.; Vargas-Aguilar, P. Extracción de sustancias asistida por ultrasonido (EUA). Tecnol. Marcha 2007, 20, 1. [Google Scholar]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef]
- Ramón, C.; Gil-Garzón, M.A. Effect of the Operating Parameters of the Ultrasound-Assisted Extraction on the Obtention of Grape Polyphenols: A Review. TecnoLógicas 2021, 24, 263–277. [Google Scholar]
- Ampofo, J.; Ngadi, M. Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrason. Sonochem. 2022, 84, 105955. [Google Scholar] [CrossRef]
- Oroian, M.; Dranca, F.; Ursachi, F. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. J. Food Sci. Technol. 2020, 57, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.P.; Bankova, V.S.; Bogdanov, S.; Tsvetkova, I.; Naydenski, C.; Marcazzan, G.L.; Sabatini, A.-G. Chemical characteristics of poplar type propolis of different geographic origin. Apidologie 2007, 38, 306. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 152–178. [Google Scholar]
- Espinosa-Muñoz, V.; RoldáN-cruz, C.A.; Hernández-Fuentes, A.D.; Quintero-Lira, A.; Almaraz-Buendía, I.; Campos-Montiel, R.G. Ultrasonic-assisted extraction of phenols, flavonoids, and biocompounds with inhibitory effect against Salmonella typhimurium and Staphylococcus aureus from Cactus pear. J. Food Process Eng. 2017, 40, e12358. [Google Scholar] [CrossRef]
- Pimentel-González, D.; Jiménez-Alvarado, R.; Hernández-Fuentes, A.; Figueira, A.; Suarez-Vargas, A.; Campos-Montiel, R. Potentiation of bioactive compounds and antioxidant activity in artisanal honeys using specific heat treatments. J. Food Biochem. 2016, 40, 47–52. [Google Scholar] [CrossRef]
- AbirAbirami, A.; Nagarani, G.; Siddhuraju, P. In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci. Hum. Wellness 2014, 3, 16–25. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Hernández-Ledesma, B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. J. Funct. Foods 2017, 35, 531–539. [Google Scholar] [CrossRef]
- Nyambe-Silavwe, H.; Villa-Rodriguez, J.A.; Ifie, I.; Holmes, M.; Aydin, E.; Jensen, J.M.; Williamson, G. Inhibition of human α-amylase by dietary polyphenols. J. Funct. Foods 2015, 19, 723–732. [Google Scholar] [CrossRef]
- Gondi, M.; Prasada, R. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats. J. Food Sci. Technol 2015, 52, 7883–7893. [Google Scholar] [CrossRef]
- Tran, C.T.; Brooks, P.R.; Bryen, T.J.; Williams, S.; Berry, J.; Tavian, F.; Tran, T.D. Quality assessment and chemical diversity of Australian propolis from Apis mellifera bees. Sci. Rep. 2022, 12, 13574. [Google Scholar] [CrossRef]
- Rodríguez, P.B.; Canales Martínez, M.M.; Penieres, C.J.; Cruz, S.A. Composición química, propiedades antioxidantes y actividad antimicrobiana de propóleos mexicanos. Acta Univ. 2020, 30, 1–29. [Google Scholar] [CrossRef]
- Chen, G.-L.; Hu, K.; Zhong, N.-J.; Guo, J.; Gong, Y.-S.; Deng, X.-T.; Huang, Y.-S.; Chu, D.-K.; Gao, Y.-Q. Antioxidant capacities and total polyphenol content of nine commercially available tea juices measured by an in vitro digestion model. Eur. Food Res. Technol. 2013, 236, 303–310. [Google Scholar] [CrossRef]
- Golmahi, Z.; Hossein, E. Ultrasound-assisted extraction of phenolics and antioxidants from propolis for stabilization of sunflower oil. Revista de Ciencias Agrícolas 2021, 38, 4–19. [Google Scholar] [CrossRef]
- Zainal, W.; Azian, N.; Albar, S.; Rusli, A. Effects of extraction method, solvent and time on the bioactive compounds and antioxidant activity of Tetrigona apicalis Malaysian propolis. J. Apic. Res. 2022, 61, 264–270. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Mejia, J.A.; Rodrigues, D.M.; Alves, G.R.; de Freitas Pinheiro, A.M.; Tanimoto, M.H.; Ambrósio, S.R. Brazilian Brown Propolis: An Overview About Its Chemical Composition, Botanical Sources, Quality Control, and Pharmacological Properties. Rev. Bras. Farmacogn. 2023, 33, 288–299. [Google Scholar] [CrossRef]
- Teixeira, T.D.; Machado, B.A.; Barreto, G.D.; Dos Anjos, J.P.; Leal, I.L.; Nascimento, R.Q.; Umsza-Guez, M.A. Extraction of Antioxidant Compounds from Brazilian Green Propolis Using Ultrasound-Assisted Associated with Low-and High-Pressure Extraction Methods. Molecules 2023, 28, 2338. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.; Munaim, M.S.A.; Veloo Kutty , R. Optimization of total phenolic compounds extracted from propolis by ultrasound-assisted extraction. Chem. Eng. Commun. 2021, 208, 564–572. [Google Scholar] [CrossRef]
- Aboulghazi, A.; Bakour, M.; Fadil, M.; Lyoussi, B. Simultaneous optimization of extraction yield, phenolic compounds and antioxidant activity of Moroccan propolis extracts: Improvement of ultrasound-assisted technique using response surface methodology. Processes 2022, 10, 297. [Google Scholar] [CrossRef]
- Barrientos-Lezcano, J.C.; Gallo-Machado, J.; Marin-Palacio, L.D.; Builes, S. Extraction kinetics and physicochemical characteristics of Colombian propolis. J. Food Process Eng. 2023, 46, e14272. [Google Scholar] [CrossRef]
- Aboulghazi, A.; Touzani, S.; Fadil, M.; Lyoussi, B. Physicochemical characterization and in vitro evaluation of the antioxidant and anticandidal activities of Moroccan propolis. Vet. World 2022, 15, 341. [Google Scholar] [CrossRef]
- Sun, J.; Mu, Y.; Shi, J.; Zhao, Y.; Xu, B. Super/subcritical fluid extraction combined with ultrasound-assisted ethanol extraction in propolis development. J. Apic. Res. 2022, 61, 255–263. [Google Scholar] [CrossRef]
- Ding, Q.; Sheikh, A.R.; Gu, X.; Li, J.; Xia, K.; Sun, N.; Wu, R.A.; Luo, L.; Zhang, Y.; Ma, H. Chinese Propolis: Ultrasound-assisted enhanced ethanolic extraction, volatile components analysis, antioxidant and antibacterial activity comparison. Food Sci. Nutr. 2021, 9, 313–330. [Google Scholar] [CrossRef] [PubMed]
- González-Montiel, L.; Figueira, A.C.; Medina-Pérez, G.; Fernández-Luqueño, F.; Aguirre-Álvarez, G.; Pérez-Soto, E.; Pérez-Ríos, S.; Campos-Montiel, R.G. Bioactive Compounds, Antioxidant and Antimicrobial Activity of Propolis Extracts during In Vitro Digestion. Appl. Sci. 2022, 12, 7892. [Google Scholar] [CrossRef]
- Massarioli, A.P.; de Oliveira Sartori, A.G.; Juliano, F.F.; do Amaral, J.E.P.G.; Dos Santos, R.C.; de Lima, L.M.; de Alencar, S.M. Simulated gastrointestinal digestion/Caco-2 cell model to predict bioaccessibility and intestinal permeability of p-coumaric acid and p-coumaroyl derivatives in peanut. Food Chem. 2023, 400, 134033. [Google Scholar] [CrossRef] [PubMed]
- de Souza, B.V.C.; de Morais Sousa, M.; Sattler, J.A.G.; Santana, A.C.S.G.V.; de Carvalho, R.B.F.; Neto, J.D.S.L.; Borges, F.d.M.; Numa, T.A.N.; Riberiro, A.B.; Nunes, L.C.C. Nanoencapsulation and bioaccessibility of polyphenols of aqueous extracts from Bauhinia forficata link. Food Chem. Mol. Sci. 2022, 5, 100144. [Google Scholar] [CrossRef] [PubMed]
- Ozdal, T.; Ceylan, F.D.; Eroglu, N.; Kaplan, M.; Olgun, E.O.; Capanoglu, E. Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis. Food Res. Int. 2019, 122, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Bayram, N.E.; Gerçek, Y.C.; Öz, G.C. Screening for antioxidant capacity, pollen types and phytochemical profile by GC/MS and UHPLC from propolis. Progr. Nutr. 2020, 22, e2020011. [Google Scholar]
- Cunha, G.F.; Soares, J.C.; Sousa, T.L.D.; Egea, M.B.; Alencar, S.M.D.; Belisario, C.M.; Plácido, G.R. Cassava-starch-based films supplemented with propolis extract: Physical, chemical, and microstructure characterization. Biointerface Res. Appl. Chem. 2021, 11, 12149–12158. [Google Scholar]
- Peng, S.; Zhu, M.; Li, S.; Ma, X.; Hu, F. Ultrasound-assisted extraction of polyphenols from Chinese propolis. Front. Sustain. Food Syst. 2023, 7, 1131959. [Google Scholar] [CrossRef]
- Altuntaş, Ü.; Güzel, İ.; Özçelik, B. Phenolic Constituents, Antioxidant and Antimicrobial Activity and Clustering Analysis of Propolis Samples Based on PCA from Different Regions of Anatolia. Molecules 2023, 28, 1121. [Google Scholar] [CrossRef] [PubMed]
- Widelski, J.; Gaweł-Bęben, K.; Czech, K.; Paluch, E.; Bortkiewicz, O.; Kozachok, S.; Mroczek, T.; Okińczyc, P. Extracts from European propolises as potent tyrosinase inhibitors. Molecules 2022, 28, 55. [Google Scholar] [CrossRef]
- Miłek, M.; Ciszkowicz, E.; Tomczyk, M.; Sidor, E.; Zaguła, G.; Lecka-Szlachta, K.; Pasternakiewicz, A.; Dżugan, M. The study of chemical profile and antioxidant properties of poplar-type polish propolis considering local flora diversity in relation to antibacterial and anticancer activities in human breast cancer cells. Molecules 2022, 27, 725. [Google Scholar] [CrossRef] [PubMed]
- de Lima, A.B.S.; Batista, A.S.; Santos, M.R.C.; da Rocha, R.D.S.; da Silva, M.V.; Ferrão, S.P.B.; Silva de Almeida, V.V.; Santos, L.S. Spectroscopy NIR and MIR toward predicting simultaneous phenolic contents and antioxidant in red propolis by multivariate analysis. Food Chem. 2022, 367, 130744. [Google Scholar] [CrossRef]
- Saliba, A.S.M.C.; Sartori, A.G.d.O.; Batista, P.S.; Amaral, J.E.P.G.D.; da Silva, N.O.; Ikegaki, M.; Rosalen, P.L.; de Alencar, S.M. Simulated gastrointestinal digestion/Caco-2 cell transport: Effects on biological activities and toxicity of a Brazilian propolis. Food Chem. 2023, 403, 134330. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Karagecili, H.; Yılmaz, M.A.; Ertürk, A.; Kiziltas, H.; Güven, L.; Alwasel, S.H.; Gulcin, I. Comprehensive metabolite profiling of Berdav propolis using LC-MS/MS: Determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects. Molecules 2023, 28, 1739. [Google Scholar] [CrossRef]
- Ugwor, E.I.; James, A.S.; Amuzat, A.I.; Ezenandu, E.O.; Ugbaja, V.C.; Ugbaja, R.N. Network pharmacology-based elucidation of bioactive compounds in propolis and putative underlying mechanisms against type-2 diabetes mellitus. Pharmacol. Res. Mod. Chin. Med. 2022, 5, 100183. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Antunes, M.D.; Faleiro, M.L.; Miguel, M.G. Anti-acetylcholinesterase, antidiabetic, anti-inflammatory, antityrosinase and antixanthine oxidase activities of Moroccan propolis. Int. J. Food Sci. Technol. 2016, 51, 1762–1773. [Google Scholar] [CrossRef]
- Keskin, M. Chemical characterization of arabic gum-chitosan-propolis beads and determination of α-amylase inhibition effect. Prog. Nutr. 2020, 22, 562–567. [Google Scholar]
- Uddin, S.; Brooks, P.R.; Tran, T.D. Chemical characterization, α-Glucosidase, α-amylase and lipase inhibitory properties of the Australian honey bee propolis. Foods 2022, 11, 1964. [Google Scholar] [CrossRef]
- Taleb, R.E.A.; Djebli, N.; Chenini, H.; Sahin, H.; Kolayli, S. In vivo and in vitro anti-diabetic activity of ethanolic propolis extract. J. Food Biochem. 2020, 44, e13267. [Google Scholar]
- Peláez-Acero, A.; Garrido-Islas, D.B.; Campos-Montiel, R.G.; González-Montiel, L.; Medina-Pérez, G.; Luna-Rodríguez, L.; González-Lemus, U.; Cenobio-Galindo, A.d.J. The application of ultrasound in honey: Antioxidant activity, inhibitory effect on α-amylase and α-glucosidase, and in vitro digestibility assessment. Molecules 2022, 27, 5825. [Google Scholar] [CrossRef] [PubMed]
- Medina-Pérez, G.; Zaldívar-Ortega, A.K.; Cenobio-Galindo, A.d.J.; Afanador-Barajas, L.N.; Vieyra-Alberto, R.; Estefes-Duarte, J.A.; Campos-Montiel, R.G. Antidiabetic activity of cactus acid fruit extracts: Simulated intestinal conditions of the inhibitory effects on α-amylase and α-glucosidase. Appl. Sci. 2019, 9, 4066. [Google Scholar] [CrossRef]
- Medina-Pérez, G.; Estefes-Duarte, J.A.; Afanador-Barajas, L.N.; Fernández-Luqueño, F.; Zepeda-Velázquez, A.P.; Franco-Fernández, M.J.; Peláez-Acero, A.; Campos-Montiel, R.G. Encapsulation preserves antioxidant and antidiabetic activities of cactus acid fruit bioactive compounds under simulated digestion conditions. Molecules 2020, 25, 5736. [Google Scholar] [CrossRef]
- Shobana, S.; Sreerama, Y.; Malleshi, N. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem. 2009, 115, 1268–1273. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Dong, J. Inhibitory properties of aqueous ethanol extracts of propolis on alpha-glucosidase. Evid. Based Complement. Altern. Med. 2015, 2015, 587383. [Google Scholar] [CrossRef]
- Laaroussi, H.; Ferreira-Santos, P.; Genisheva, Z.; Bakour, M.; Ousaaid, D.; Teixeira, J.A.; Lyoussi, B. Unraveling the chemical composition, antioxidant, α-amylase and α-glucosidase inhibition of Moroccan propolis. Food Biosci. 2021, 42, 101160. [Google Scholar] [CrossRef]
Propolis Samples | % Extraction Yield |
---|---|
Eloxochitlan (PE) | 68 ± 0.28 b |
Teotitlan (PT) | 42 ± 0.25 d |
San Pedro (PSP) | 69 ± 0.35 a |
San Jeronimo (PSJ) | 49 ± 0.26 c |
TPC (mg GAE/100 g) | TFC (mg QE/100 g) | |||||
---|---|---|---|---|---|---|
Extract | Gastric Phase | Intestinal Phase | Extract | Gastric Phase | Intestinal Phase | |
PE | 15,362.4 ± 225 a | 6022.0 ± 171 a | 3284.8 ± 148 a | 4395.5 ± 62 c | 383.6 ± 39 c | 1524.3 ± 60 c |
PT | 12,360.8 ± 158 b | 4464.9 ± 265 bc | 2594.5 ± 357 b | 8084.6 ± 19 a | 1481.1 ± 55 a | 2146.5 ± 37 a |
PSP | 11,520.3 ± 247 c | 3658.2 ± 485 c | 1713.8 ± 4 c | 3721.7 ± 73 d | 131.2 ± 23 d | 807.0 ± 51 d |
PSJ | 11,820.5 ± 455 bc | 4521.2 ± 265 b | 2439.0 ± 214 bc | 5881.6 ± 27 b | 588.4 ± 53 b | 1958.0 ± 33 b |
ABTS•+ (mg ET/100 g) | DPPH• (mg ET/100 g) | |||||
---|---|---|---|---|---|---|
Extract | Gastric Phase | Intestinal Phase | Extract | Gastric Phase | Intestinal Phase | |
PE | 33,307.1 ± 567 a | 4867.0 ± 136 b | 4068.7 ± 360 a | 3242.3 ± 69 b | 839.2 ± 39 ab | 1454.7 ± 22 a |
PT | 13,984.4 ± 436 d | 1546.5 ± 104 c | 1587.1 ± 86 b | 3611.4 ± 17 a | 764.2 ± 8 b | 907.7 ± 33 d |
PSP | 25,483.4 ± 601 b | 1592.0 ± 68 c | 1471 ± 132 b | 2250.1 ± 43 c | 928.6 ± 54 a | 1052.2 ± 66 c |
PSJ | 17,041.1 ± 327 c | 6004.6 ± 208 a | 3924.5 ± 259 a | 2296.3 ± 59 c | 940.2 ± 39 a | 1246.1 ± 28 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Martínez, J.A.; Zepeda-Bastida, A.; Morales-Rodríguez, I.; Fernández-Luqueño, F.; Campos-Montiel, R.; Hereira-Pacheco, S.E.; Medina-Pérez, G. Potential Antidiabetic Activity of Apis mellifera Propolis Extraction Obtained with Ultrasound. Foods 2024, 13, 348. https://doi.org/10.3390/foods13020348
Hernández-Martínez JA, Zepeda-Bastida A, Morales-Rodríguez I, Fernández-Luqueño F, Campos-Montiel R, Hereira-Pacheco SE, Medina-Pérez G. Potential Antidiabetic Activity of Apis mellifera Propolis Extraction Obtained with Ultrasound. Foods. 2024; 13(2):348. https://doi.org/10.3390/foods13020348
Chicago/Turabian StyleHernández-Martínez, Javier A., Armando Zepeda-Bastida, Irma Morales-Rodríguez, Fabián Fernández-Luqueño, Rafael Campos-Montiel, Stephanie E. Hereira-Pacheco, and Gabriela Medina-Pérez. 2024. "Potential Antidiabetic Activity of Apis mellifera Propolis Extraction Obtained with Ultrasound" Foods 13, no. 2: 348. https://doi.org/10.3390/foods13020348
APA StyleHernández-Martínez, J. A., Zepeda-Bastida, A., Morales-Rodríguez, I., Fernández-Luqueño, F., Campos-Montiel, R., Hereira-Pacheco, S. E., & Medina-Pérez, G. (2024). Potential Antidiabetic Activity of Apis mellifera Propolis Extraction Obtained with Ultrasound. Foods, 13(2), 348. https://doi.org/10.3390/foods13020348