Effectiveness, Challenges, and Environmental Impacts of New Food Strategies with Plant and Animal Protein Products
Abstract
:1. Introduction
2. Materials and Methods
3. Sustainability and Protein Products
Effectiveness and Impacts of Vegetable and Animal Protein Production
4. Final Considerations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Assembly, G. Resolution Adopted by the General Assembly on 19 September 2016. A/RES/71/1, 3 October 2016 (The New York Declaration), Tech. Rep. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 15 June 2024).
- Campi, M.; Dueñas, M.; Fagiolo, G. Specialization in food production affects global food security and food systems sustainability. World Dev. 2021, 141, 105411. [Google Scholar] [CrossRef]
- Elkington, J.; Rowlands, I.H. Cannibals with forks: The triple bottom line of 21st century business. Altern. J. 1999, 25, 42. [Google Scholar] [CrossRef]
- Khan, I.S.; Ahmad, M.O.; Majava, J. Industry 4.0 and sustainable development: A systematic mapping of triple bottom line, Circular Economy and Sustainable Business Models perspectives. J. Clean. Prod. 2021, 297, 126655. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Nájera Espinosa, S.; Hadida, G.; Jelmar Sietsma, A.; Alae-Carew, C.; Turner, G.; Green, R.; Pasto-rino, S.; Picetti, R.; Scheelbeek, P. Mapping the evidence of novel plant-based foods: A systematic review of nutritional, health, and environmental impacts in high-income countries. Nutr. Rev. 2024, nuae031. [Google Scholar] [CrossRef] [PubMed]
- Mylan, J.; Andrews, J.; Maye, D. The big business of sustainable food production and consumption: Exploring the transition to alternative proteins. Proc. Natl. Acad. Sci. USA 2023, 120, e2207782120. [Google Scholar] [CrossRef]
- Depra, M.C.; Dias, R.R.; Sartori, R.B.; Menezes, C.R.; Zepka, L.Q.; Jacob-Lopes, E. Nexus on animal proteins and the climate change: The plant-based proteins are part of the solution? Food Bioprod. Process. 2022, 133, 119–131. [Google Scholar] [CrossRef]
- Zhang, T.; Dou, W.; Zhang, X.; Zhao, Y.; Zhang, Y.; Jiang, L.; Sui, X. The development history and recent updates on soy protein-based meat alternatives. Trends Food Sci. Technol. 2021, 109, 702–710. [Google Scholar] [CrossRef]
- Michel, F.; Hartmann, C.; Siegrist, M. Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Qual. Prefer. 2021, 87, 104063. [Google Scholar] [CrossRef]
- New Nutrition Business. Key Trends in Food, Nutrition Health 2020; New Nutrition Business: London, UK, 2020. [Google Scholar]
- Sanchez-Sabate, R.; Sabaté, J. Consumer attitudes towards environmental concerns of meat consumption: A systematic review. Int. J. Environ. Res. Public Health 2020, 16, 1220. [Google Scholar] [CrossRef]
- Fresán, U.; Sabaté, J. Vegetarian diets: Planetary health and its alignment with human health. Adv. Nutr. 2019, 10, S380–S388. [Google Scholar] [CrossRef] [PubMed]
- Fogel, R. The expansion of agribusiness and the agrarian restructuring. Estud. Rural. 2019, 9, 18. [Google Scholar] [CrossRef]
- Morawicki, R.O.; González, D.J.D. Focus: Nutrition and food science: Food sustainability in the context of human behavior. Yale J. Biol. Med. 2018, 91, 191. [Google Scholar] [PubMed]
- Ismail, B.P.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Anim. Front. 2020, 10, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Grandview Research. Protein Ingredients Market Size, Share and Trends Analysis Report by Product (Plant Protein, Animal/Dairy Protein), by Application (Food & Beverages, Personal Care, and Cosmetics), and Segment Forecasts, 2020–2027. 2020. Available online: https://www.grandviewresearch.com/industry-analysis/protein-ingredients-market (accessed on 15 June 2024).
- Alexander, P.; Brown, C.; Dias, C.; Moran, D.; Rounsevell, M.D. Sustainable proteins production. In Proteins: Sustainable Source, Processing, and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–39. [Google Scholar]
- Musicus, A.A.; Wang, D.D.; Janiszewski, M.; Eshel, G.; Blondin, S.A.; Willett, W.; Stampfer, M.J. Health and environmental impacts of plant-rich dietary patterns: A US prospective cohort study. Lancet Planet. Health 2022, 6, e892–e900. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Zuin, V.G.; Araripe, E.; Zanotti, K.; Stahl, A.M.; Gomes, C.J. Alternative Products Selling Sustainability? A Brazilian Case Study on Materials and Processes to Produce Plant-Based Hamburger Patties. Sustain. Chem. 2022, 3, 415–429. [Google Scholar] [CrossRef]
- Petrat-Melin, B.; Dam, S. Textural and Consumer-Aided Characterisation and Acceptability of a Hybrid Meat and Plant-Based Burger Patty. Foods 2023, 12, 2246. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Food-Based Dietary Guidelines. 2022. Available online: http://www.fao.org/nutrition/education/food-dietary-guidelines/home/en/ (accessed on 17 June 2024).
- Feng, S.; Lakshmanan, P.; Zhang, Y.; Zhang, T.; Liang, T.; Zhang, W.; Chen, X.; Wang, X. A comprehensive continental-scale analysis of carbon footprint of food production: Comparing continents around the world. J. Clean. Prod. 2023, 426, 138939. [Google Scholar]
- Tian, P.; Li, D.; Lu, H.; Feng, S.; Nie, Q. Trends, distribution, and impact factors of carbon footprints of main grains production in China. J. Clean. Prod. 2021, 278, 123347. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 2022, 19, 2639–2656. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Yong, H.I.; Kim, M.; Choi, Y.-S.; Jo, C. Status of meat alternatives and their potential role in the future meat market—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Azzollini, D.; Wibisaphira, T.; Lakemond, C.M.M.; Fogliano, V. Toward the design of insect-based meat analogue: The role of calcium and temperature in coagulation behavior of Alphitobius diaperinus proteins. LWT 2019, 100, 75–82. [Google Scholar] [CrossRef]
- Smetana, S.; Larki, N.A.; Pernutz, C.; Franke, K.; Bindrich, U.; Toepfl, S.; Heinz, V. Structure design of insect-based meat analogs with high-moisture extrusion. J. Food Eng. 2018, 229, 83–85. [Google Scholar] [CrossRef]
- Berggren, Å.; Jansson, A.; Low, M. Approaching Ecological Sustainability in the Emerging Insects-as-Food Industry. Trends Ecol. Evol. 2019, 34, 132–138. [Google Scholar] [CrossRef]
- De Gier, S.; Kitty Verhoeckx, V. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Ramachandraiah, K. Potential Development of Sustainable 3D-Printed Meat Analogues: A Review. Sustainability 2021, 13, 938. [Google Scholar] [CrossRef]
- Van Der Weele, C.; Feindt, P.; Van der Goot, A.J.; Van Mierlo, B.; Van Boekel, M. Meat alternatives: An integrative comparison. Trends Food Sci. Technol. 2019, 88, 505–512. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, S.H.; Kim, H.W.; Park, H.J. Application of extrusion-based 3D food printing to regulate marbling patterns of restructured beef steak. Meat Sci. 2023, 202, 109203. [Google Scholar] [CrossRef]
- Smith, D.J.; Helmy, M.; Lindley, N.D.; Selvarajoo, K. The transformation of our food system using cellular agriculture: What lies ahead and who will lead it? Trends Food Sci. Technol. 2022, 127, 368–376. [Google Scholar] [CrossRef]
- Curtain, F.; Grafenauer, S. Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef]
- Zhang, K.; Zang, M.; Wang, S.; Zhang, Z.; Li, D.; Li, X. Development of meat analogs: Focus on the current status and challenges of regulatory legislation. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1006–1029. [Google Scholar] [CrossRef] [PubMed]
- Hoehnel, A.; Zannini, E.; Arendt, E.K. Targeted formulation of plant-based protein-foods: Supporting the food system’s transformation in the context of human health, environmental sustainability, and consumer trends. Trends Food Sci. Technol. 2022, 128, 238–252. [Google Scholar] [CrossRef]
- Ntatsi, G.; Gutiérrez-Cortines, M.E.; Karapanos, I.; Barros, A.; Weiss, J.; Balliu, A.; dos Santos Rosa, E.A.; Savvas, D. The quality of leguminous vegetables as influenced by preharvest factors. Sci. Hortic. 2018, 232, 191–205. [Google Scholar] [CrossRef]
- Parajuli, R.; Thoma, G.; Matlock, M.D. Sustentabilidade ambiental das cadeias de abastecimento de produção de frutas e vegetais face às alterações climáticas: Uma revisão. Ciência Do Meio Ambiente Total 2019, 650, 2863–2879. [Google Scholar]
- Li, M.; Jia, N.; Lenzen, M.; Malik, A.; Wei, L.; Jin, Y.; Raubenheimer, D. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 2022, 3, 445–453. [Google Scholar] [CrossRef]
- Cammarano, D.; Ronga, D.; di Mola, I.; Mori, M.; Parisi, M. Impact of climate change on water and nitrogen use efficiencies of processing tomato cultivated in Italy. Agric. Water Manag. 2020, 241, 106336. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Keoleian, G.A.; Heller, M.C. Beyond Meat’s beyond Burger Life Cycle Assessment: A Detailed Comparison between a Plant-Based and an Animal-Based Protein Source; University of Michigan: Ann Arbor, MI, USA, 2018. [Google Scholar]
- Heusala, H.; Sinkko, T.; Mogensen, L.; Knudsen, M.T. Carbon footprint and land use of food products containing oat protein concentrate. J. Clean. Prod. 2020, 276, 122938. [Google Scholar] [CrossRef]
- Fresán, U.; Mejia, M.A.; Craig, W.J.; Jaceldo-Siegl, K.; Sabaté, J. Meat analogs from different protein sources: A comparison of their sustainability and nutritional content. Sustainability 2019, 11, 3231. [Google Scholar] [CrossRef]
- Detzel, A.; Krüger, M.; Busch, M.; Blanco-Gutiérrez, I.; Varela, C.; Manners, R.; Bez, J.; Zannini, E. Life cycle assessment of animal-based foods and plant-based protein-rich alternatives: An environmental perspective. J. Sci. Food Agric. 2022, 102, 5098–5110. [Google Scholar] [CrossRef] [PubMed]
- Smetana, S.; Ristic, D.; Pleissner, D.; Tuomisto, H.L.; Parniakov, O.; Heinz, V. Meat substitutes: Resource demands and environmental footprints. Resour. Conserv. Recycl. 2023, 190, 106831. [Google Scholar] [CrossRef]
- Mesquita, C.; Carvalho, M. The carbon footprint of common vegetarian and non-vegetarian meals in Portugal: An estimate, comparison, and analysis. Int. J. Life Cycle Assess. 2023, 1–15. [Google Scholar] [CrossRef]
- Heusala, H.; Sinkko, T.; Sözer, N.; Hytönen, E.; Mogensen, L.; Knudsen, M.T. Carbon footprint and land use of oat and faba bean protein concentrates using a life cycle assessment approach. J. Clean. Prod. 2020, 242, 118376. [Google Scholar] [CrossRef]
- Saerens, W.; Smetana, S.; Van Campenhout, L.; Lammers, V.; Heinz, V. Life cycle assessment of burger patties produced with extruded meat substitutes. J. Clean. Prod. 2021, 306, 127177. [Google Scholar] [CrossRef]
- Upcraft, T.; Tu, W.C.; Johnson, R.; Finnigan, T.; Van Hung, N.; Hallett, J.; Guo, M. Protein from renewable resources: Mycoprotein production from agricultural residues. Green Chem. 2021, 23, 5150–5165. [Google Scholar] [CrossRef]
- Vauterin, A.; Steiner, B.; Sillman, J.; Kahiluoto, H. The potential of insect protein to reduce food-based carbon footprints in Europe: The case of broiler meat production. J. Clean. Prod. 2021, 320, 128799. [Google Scholar] [CrossRef]
- Sinke, P.; Swartz, E.; Sanctorum, H.; Van der Giesen, C.; Odegard, I. Ex-ante life cycle assessment of commercial-scale cultivated meat production in 2030. Int. J. Life Cycle Assess. 2023, 28, 234–254. [Google Scholar] [CrossRef]
- Santo, R.E.; Kim, B.F.; Goldman, S.E.; Dutkiewicz, J.; Biehl, E.M.B.; Bloem, M.W.; Neff, R.A.; Nachman, K.E. Considering plant-based meat substitutes and cell-based meats: A public health and food systems perspective. Front. Sustain. Food Syst. 2020, 4, 134. [Google Scholar] [CrossRef]
- Leisner, C.P. Review: Climate change impacts on food security-focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef]
- Béné, C.; Oosterveer, P.; Lamotte, L.; Brouwer, I.D.; de Haan, S.; Prager, S.D.; Talsma, E.F.; Khoury, C.K. When food systems meet sustainability -Current narratives and implications for actions. World Dev. 2019, 113, 116–130. [Google Scholar] [CrossRef]
- Nascimento, A.S.; Tabai, K.C. Sustentabilidade e consumo de proteínas vegetais: Orientações proteicas nos guias alimentares. Rev. Bras. De Agroecol. 2023, 18, 347–362. [Google Scholar] [CrossRef]
- Aiking, H.; de Boer, J. The next protein transition. Trends Food Sci. Technol. 2020, 105, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Jiang, F.; Liu, Y.; Yu, X.; Song, X.; Wu, Z.; Cammarano, D. Environmental changes impact on vegetables physiology and nutrition—Gaps between vegetable and cereal crops. Sci. Total Environ. 2024, 933, 173180. [Google Scholar] [CrossRef] [PubMed]
- Skunca, D.; Hedi, R.; Rob, B. Rubisco protein production-LC A approach. MEST J. 2021, 9, 175–183. [Google Scholar] [CrossRef]
- Manzoor, A.; Naveed, M.S.; Ali, R.M.A.; Naseer, M.A.; UL-Hussan, M.; Saqib, M.; Hussain, S.; Farooq, M. Vermicompost: A potential organic fertilizer for sustainable vegetable cultivation. Sci. Hortic. 2024, 336, 113443. [Google Scholar] [CrossRef]
- Tisocco, S.; Beausang, C.; Zhan, X.; Crosson, P. Integration of anaerobic co-digestion of grass silage and cattle slurry within a livestock farming system in Ireland: Quantification of greenhouse gas emission reduction and nutrient flow. Resour. Conserv. Recycl. 2024, 206, 107650. [Google Scholar] [CrossRef]
- Kavanagh, I.; Fenton, O.; Healy, M.G.; Burchill, W.; Lanigan, G.J.; Krol, D.J. Mitigating ammonia and greenhouse gas emissions from stored cattle slurry using agricultural waste, commercially available products, and a chemical acidifier. J. Clean. Prod. 2021, 294, 126251. [Google Scholar] [CrossRef]
- Bai, M.; Impraim, R.; Coates, T.; Flesch, T.; Trouvé, R.; van Grinsven, H.; Cao, Y.; Hill, J.; Chen, D. Lignite effects on NH3, N2O, CO2 and CH4 emissions during composting of manure. J. Environ. Manag. 2020, 271, 110960. [Google Scholar] [CrossRef]
- Anderson, K.; Moore, P.A.; Martin, J.; Ashworth, A.J. Evaluation of a Novel Poultry Litter Amendment on Greenhouse Gas Emissions. Atmosphere 2021, 12, 563. [Google Scholar] [CrossRef]
- Han, Z.; Sun, D.; Wang, H.; Li, R.; Bao, Z.; Qi, F. Effects of ambient temperature and aeration frequency on emissions of ammonia and greenhouse gases from a sewage sludge aerobic composting plant. Bioresour. Technol. 2018, 270, 457–466. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Pandey, A.; Awasthi, M.K. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef]
- Zeng, J.; Yin, H.; Shen, X.; Liu, N.; Ge, J.; Han, L.; Huang, G. Effect of aeration interval on oxygen consumption and GHG emission during pig manure composting. Bioresour. Technol. 2018, 250, 214–220. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability of the blue water footprint of crops. Adv. Water Resour. 2020, 143, 103679. [Google Scholar] [CrossRef]
- Guimarães, N.S.; Reis, M.G.; de Lima Costa, B.V.; Zandonadi, R.P.; Carrascosa, C.; Teixeira-Lemos, E.; Costa, C.A.; Alturki, H.A.; Raposo, A. Environmental Footprints in Food Services: A Scoping Review. Nutrients 2024, 16, 2106. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The Water Footprint of Global Food Production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
Protein Origin | Product | Environmental Impact | Author, Year, and Country |
---|---|---|---|
Conventional meats | Beef | 7–118 kg CO2 eq./kg | Keoleian and Heller [44], USA |
113–166 kg CO2 eq./kg−1 | Heusala [45], Finland | ||
Eggs | 2.7 kg CO2 eq./kg−1 | Fresán [46], USA | |
Chicken | 7.7–11.3 kg CO2 eq./kg−1 | Detzel [47], Germany | |
Dairy | 4.38–4.95 kg CO2 eq./kg−1 | Smetana [48], Germany | |
Farmed fish | ±60 kg CO2 eq./kg−1 ptn | ||
Pork | 9.1 kg CO2 eq./kg | Mesquita and Carvalho [49], Portugal | |
Fish | 10.2 kg CO2 eq./kg | ||
Analogues to meat | Products made from wheat | 0.21 kg CO2 eq./100 g | Fresán [46], USA |
Soy | 0.21 kg CO2 eq./100 g | ||
Fava protein | 0.23–0.58 kg CO2-eq./kg | Heusala [50], Finland | |
Plant-based protein | 2.22–35 kg CO2 eq./kg−1ptn | Detzel [47], Germany | |
Legumes (soybeans, peas and lupins) | 0.2–0.6 kg CO2 eq./kg−1 | Heusala [50], Finland Smetana [48], Germany | |
Protein potato | 2.2–2.6 kg CO2 eq./kg−1 | Smetana [48], Germany | |
Bean | 0.7–3.3 kg CO2 eq. /kg−1 | ||
Meat burgers | Beef | 26.6 kg CO2 eq./kg | Saerens [51], Germany Smetana [48], Germany Mesquita and Carvalho [49], Portugal |
Chicken | 6.05 kg CO2 eq./kg | ||
Pig | 5.83 kg CO2 eq./kg | ||
Fish | 8.5 kg CO2 eq./kg | ||
Plant-based burgers | Pea-based from the supermarket | 0.17 kg CO2 eq./kg | Saerens [51], Germany Smetana [48], Germany |
Made with soy from supermarket | 0.19 kg CO2 eq./kg | ||
Made from textured soy protein | 0.87 kg CO2 eq./kg | ||
Soy-based pilot product | 0.06–0.1 kg CO2 eq./kg | ||
Pumpkin seed-based pilot product | 0.08–0.1 kg CO2 eq. | ||
Edible insects | Protein from crude edible insect biomass | 3.9–29 kg CO2 eq./kg−1 | Upcraft [52], United Kingdom Vauterin [53], Finland |
Cultured meat | Cultivated meat in the global average energy scenario | 14 kg CO2-eq./kg of meat | Sinke [54], Holland Santo [55], USA |
56 kg de CO2 eq./kg−1 protein |
Waste | CO2 Gas Emissions | References |
---|---|---|
Cattle manure | 5–10 g dia−1 kg−1 of dry matter | Bai [65], Australia |
10.1–50.5 g/m−2 h−1 | Anderson [66], USA | |
Sewage sludge | 91.23–226.16 g dry/kg | Han [67], China |
Chicken manure | 29.75–51.84 g/day | Chen [68], China |
Pig manure | 208.10 g/kg of dry matter | Zeng [69], China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercês, Z.d.C.d.; Salvadori, N.M.; Evangelista, S.M.; Cochlar, T.B.; Strasburg, V.J.; da Silva, V.L.; Oliveira, V.R.d. Effectiveness, Challenges, and Environmental Impacts of New Food Strategies with Plant and Animal Protein Products. Foods 2024, 13, 3217. https://doi.org/10.3390/foods13203217
Mercês ZdCd, Salvadori NM, Evangelista SM, Cochlar TB, Strasburg VJ, da Silva VL, Oliveira VRd. Effectiveness, Challenges, and Environmental Impacts of New Food Strategies with Plant and Animal Protein Products. Foods. 2024; 13(20):3217. https://doi.org/10.3390/foods13203217
Chicago/Turabian StyleMercês, Ziane da Conceição das, Natalia Maldaner Salvadori, Sabrina Melo Evangelista, Tatiana Barbieri Cochlar, Virgílio José Strasburg, Vanuska Lima da Silva, and Viviani Ruffo de Oliveira. 2024. "Effectiveness, Challenges, and Environmental Impacts of New Food Strategies with Plant and Animal Protein Products" Foods 13, no. 20: 3217. https://doi.org/10.3390/foods13203217
APA StyleMercês, Z. d. C. d., Salvadori, N. M., Evangelista, S. M., Cochlar, T. B., Strasburg, V. J., da Silva, V. L., & Oliveira, V. R. d. (2024). Effectiveness, Challenges, and Environmental Impacts of New Food Strategies with Plant and Animal Protein Products. Foods, 13(20), 3217. https://doi.org/10.3390/foods13203217