Microbiological Quality Assessment of Some Commercially Available Breads
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rapaics, R. A Kenyér és Táplálékot Szolgáltató Növényeink Története (History of our Bread and Food Crops); Királyi Magyar Természettudományi Társulat: Budapest, Hungary, 1934; pp. 140–187. [Google Scholar]
- Jeney–Tóth, A. A kenyér (és a kásák) kultúrtörténete (The Cultural History of Bread (and Porridges)). 2012. Available online: http://kistukor.koinonia.ro/cikk/ujraertett-mult/a-kenyer-es-a-kasak-kulturtortenete/ (accessed on 16 September 2024).
- Das, R.S.; Tiwari, B.K.; Garcia-Vaquero, M. The Fundamentals of Bread Making: The Science of Bread. In Traditional European Breads; Garcia-Vaquero, M., Pastor, K., Orhun, G.E., McElhatton, A., Rocha, J.M.F., Eds.; Springer: Cham, Switzerland, 2023; pp. 1–41. [Google Scholar] [CrossRef]
- Deák, T. Élelmiszer Mikrobiológia (Food Microbiology); Mezőgazda Kiadó: Budapest, Hungary, 2006; pp. 235–237. [Google Scholar]
- Cook, F.K.; Johnson, B.L. Microbiological Spoilage of Cereal Products. In Compendium of the Microbiological Spoilage of Foods and Beverages; Sperber, W.H., Doyle, M.P., Eds.; Springer Science + Business Media: London, UK, 2009; pp. 225–234. [Google Scholar]
- Saranraj, P.; Sivasakthivelan, P. Microorganisms involved in spoilage of bread and its control measures. In Bread and Its Fortification: Nutrition and Health Benefits; Rosell, C.M., Bajerska, J., El Sheikha, A.F., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 132–149. [Google Scholar]
- Rahman, M.; Islam, R.; Hasan, S.; Zzaman, W.; Rana, M.R.; Ahmed, S.; Roy, M.; Sayem, A.; Matin, A.; Raposo, A.; et al. A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Nowak, A.; Koziróg, A. Rope and Mould Spoilage in Breadmaking—Risk Analysis. In Sourdough Microbiota and Starter Cultures for Industry; Ceresino, E.B., Juodeikiene, G., Miescher Schwenninger, S., Ferreira da Rocha, J.M., Eds.; Springer: Cham, Switzerland, 2024; pp. 395–425. [Google Scholar] [CrossRef]
- Chou, K.; Liu, J.; Lu, X.; Hsiao, H.I. Quantitative microbial spoilage risk assessment of Aspergillus niger in white bread reveal that retail storage temperature and mold contamination during factory cooling are the main factors to influence spoilage. Food Microb. 2024, 119, 104443. [Google Scholar] [CrossRef]
- Abdelhameed, S.M.; Khalifa, B.A. Mycobiota contaminating some market cake samples with reference to their toxin and enzyme. BMC Microbiol. 2024, 24, 209. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Plessas, S.; Saxami, G.; Alexopoulos, A.; Galanis, A.; Bezirtzoglou, E. Study of kefir grains application in sourdough bread regarding rope spoilage caused by Bacillus spp. Food Chem. 2014, 143, 17–21. [Google Scholar] [CrossRef]
- Valerio, F.; De Bellis, P.; Di Biase, M.; Lonigro, S.L.; Giussani, B.; Visconti, A.; Lavermicocca, P.; Sisto, A. Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int. J. Food Microbiol. 2012, 156, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Vermelho, A.B.; Moreira, J.V.; Junior, A.N.; da Silva, C.R.; da Silva Cardoso, V.; Akamine, I.T. Microbial Preservation and Contamination Control in the Baking Industry. Fermentation 2024, 10, 231. [Google Scholar] [CrossRef]
- Pereira, A.P.M.; Stradiotto, G.C.; Freire, L.; Alvarenga, V.O.; Crucello, A.; Morassi, L.L.P.; Sant’Ana, A.S. Occurrence and enumeration of ropeproducing spore forming bacteria in flour and their spoilage potential in different bread formulations. LWT 2020, 133, e110108. [Google Scholar] [CrossRef]
- Ray, B.; Bhunia, A. Fundamental Food Microbiology; CRC Press: Boca Raton, FL, USA, 2014; p. 265. [Google Scholar]
- Pacher, N.; Burtscher, J.; Johler, S.; Etter, D.; Bender, D.; Fieseler, L.; Domig, K.J. Ropiness in Bread-A Re-Emerging Spoilage Phenomenon. Foods 2022, 11, 3021. [Google Scholar] [CrossRef]
- Ben-Fadhel, Y.; Aragones, M.; Martinez, C.; Salmieri, S.; Allahdad, Z.; Lacroix, M. Food grade nanoemulsion development to control food spoilage microorganisms on bread surface. J. Food Technol. 2023, 60, 742–751. [Google Scholar] [CrossRef]
- Pacher, N.; Burtscher, J.; Bender, D.; Fieseler, L.; Domig, K.J. Aerobic spore-forming bacteria associated with ropy bread: Identification, characterization and spoilage potential assessment. Int. J. Food Microbiol. 2024, 418, 110730. [Google Scholar] [CrossRef]
- Valerio, F.; Di Biase, M.; Caputo, L.; Creanza, T.M.; Ancona, N.; Visconti, A.; Lavermicocca, P. Effect of Lactobacillus brevis-based bioingredient and bran on microbiological, physico-chemical and textural quality of yeast-leavened bread during storage. Innov. Food Sci. Emerg. Technol. 2014, 25, 2–8. [Google Scholar] [CrossRef]
- Moghaddam, M.F.T.; Jalali, H.; Nafchi, A.M.; Nouri, L. Evaluating the effects of lactic acid bacteria and olive leaf extract on the quality of gluten-free bread. Gene Rep. 2020, 21, 100771. [Google Scholar] [CrossRef]
- Nielsen, P.V.; Rios, R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol. 2000, 60, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, Y.; Zhang, T.; Qiu, W.; Chen, X.; Wang, G. Microencapsulated cinnamon essential oil extends bread shelf life and alters microbial diversity. Food Biosci. 2024, 62, 05078. [Google Scholar] [CrossRef]
- Dos Reis Gasparetto, B.; Chelala Moreira, R.; Priscilla França de Melo, R.; de Souza Lopes, A.; de Oliveira Rocha, L.; Maria Pastore, G.; Lemos Bicas, J.; Martinez, J.; Joy Steel, C. Effect of supercritical CO2 fractionation of Tahiti lemon (Citrus latifolia Tanaka) essential oil on its antifungal activity against predominant molds from pan bread. Food Res. Int. 2022, 162, 111900. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, J.; Mao, Z.; Mah, J.; Jiao, S.; Wang, S. Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. J. Food Eng. 2011, 104, 492–498. [Google Scholar] [CrossRef]
- Kavková, M. Protection of Packed Bread Against Fungal Contaminants. Nutr. Food Sci. Int. J. 2019, 9, 555759. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sharma, N.; Sharma, V.; Alam, T.; Sahu, J.K.; Hamid, H. Assessing the consumer acceptance and storability of chitosan and beeswax coated cellulose packaging for whole wheat bread. Food Cont. 2022, 133, 108682. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Xing, Q.; Xu, J.; Li, L. Quality and microbial diversity of homemade bread packaged in cinnamaldehyde loaded poly(lactic acid)/konjac glucomannan/wheat gluten bilayer film during storage. Food Chem. 2023, 402, 134259. [Google Scholar] [CrossRef]
- György, É.; Laslo, É.; Antal, M.; András, C.D. Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Food Sci. Nutr. 2021, 9, 4550–4560. [Google Scholar] [CrossRef]
- Caro, I.; Portales, S.; Gómez, M. Microbial characterization of discarded breads. LWT 2023, 173, 114291. [Google Scholar] [CrossRef]
- Chromas. Available online: https://technelysium.com.au/wp/chromas/ (accessed on 10 October 2023).
- Mega Software. Available online: https://www.megasoftware.net/ (accessed on 10 October 2023).
- EzTaxon. Available online: https://www.ezbiocloud.net/ (accessed on 10 October 2023).
- Ares, G. Cluster analysis: Application in food science and technology. In Mathematical and Statistical Methods in Food Science and Technology; Granato, D., Ares, G., Eds.; John Wiley & Sons: West Sussex, UK, 2013; pp. 103–121. [Google Scholar]
- Nurlaila, I.; Irawati, W.; Purwandari, K.; Pardamean, B. K-means clustering model to discriminate copper-resistant bacteria as bioremediation agents. Procedia Comput. Sci. 2021, 179, 804–812. [Google Scholar] [CrossRef]
- Ali, M.A.; Hashish, M.H.; Fekry, M.M. Microbiological quality of some packed and unpacked bread products in Alexandria, Egypt. J. Egypt. Public Health Assoc. 2023, 98, 16. [Google Scholar] [CrossRef] [PubMed]
- Katsi, P.; Kosma, I.S.; Michailidou, S.; Argiriou, A.; Badeka, A.V.; Kontominas, M.G. Characterization of Artisanal Spontaneous Sourdough Wheat Bread from Central Greece: Evaluation of Physico-Chemical, Microbiological, and Sensory Properties in Relation to Conventional Yeast Leavened Wheat Bread. Foods 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.E.; Shittu, T.A.; Onabanjo, O.O.; Adesina, A.D.; Soares, A.G.; Okolie, P.I.; Kupoluyi, A.O.; Ojo, O.A.; Obadina, A.O. Effect of packaging materials and storage conditions on the microbial quality of pearl millet sourdough bread. J. Food Sci. Technol. 2021, 58, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, C.; Nazareth, T.D.M.; Dopazo, V.; Meca, G.; Luz, C. Enhancing bread quality and extending shelf life using dried sourdough. LWT 2024, 203, 116379. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Miškeje, M.; Gabríny, L.; Ivanišová, E.; Kačániová, M. Physico-chemical, antioxidant and microbiological characteristics of bread supplemented with 1% grape seed micropowder. J. Food Nutr. Res. 2021, 60, 9–17. [Google Scholar]
- Ercolini, D.; Pontonio, E.; De Filippis, F.; Minervini, F.; La Storia, A.; Gobbetti, M.; Di Cagno, R. Microbial ecology dynamics during rye and wheat sourdough preparation. Appl. Environ. Microbiol. 2013, 79, 7827–7836. [Google Scholar] [CrossRef]
- Rumjuankiat, K.; Keawsompong, S.; Nitisinprasert, S. Bacterial contaminants from frozen puff pastry production process and their growth inhibition by antimicrobial substances from lactic acid bacteria. Food Sci. Nutr. 2016, 5, 454–465. [Google Scholar] [CrossRef]
- Hoque, M.N.; Faisal, G.M.; Das, Z.C.; Sakif, T.I.; Al Mahtab, M.; Hossain, M.A.; Islam, T. Genomic features and pathophysiological impact of a multidrug-resistant Staphylococcus warneri variant in murine mastitis. Microbes Infect. 2024, 26, 105285. [Google Scholar] [CrossRef]
- Kamilari, E.; Efthymiou, M.; Anagnostopoulos, D.A.; Tsaltas, D. Cyprus Sausages’ Bacterial Community Identification Through Metataxonomic Sequencing: Evaluation of the Impact of Different DNA Extraction Protocols on the Sausages’ Microbial Diversity Representation. Front Microbiol. 2021, 17, 662957. [Google Scholar] [CrossRef] [PubMed]
- Ranilla, M.J.; Andrés, S.; Gini, C.; Biscarini, F.; Saro, C.; Martín, A.; Mateos, I.; López, S.; Giráldez, F.J.; Abdennebi-Najar, L.; et al. Effects of Thymbra capitate essential oil on in vitro fermentation end-products and ruminal bacterial communities. Sci Rep. 2023, 13, 4153. [Google Scholar] [CrossRef] [PubMed]
- Zinno, P.; Guantario, B.; Perozzi, G.; Pastore, G.; Devirgiliis, C. Impact of NaCl reduction on lactic acid bacteria during fermentation of Nocellara del Belice table olives. Food Microbiol. 2017, 63, 239–247. [Google Scholar] [CrossRef] [PubMed]
Region/Origin | Bread Crumb | Bread Crust | |
---|---|---|---|
Bread Type | CFU/g | ||
Multigrain bread 1 pp | Harghita county | 122.33 ± 39.55 abc | 164.00 ± 100.59 ab |
Multigrain bread 2 pp | Harghita county | 10.00 ± 0.00 a | 44.67 ± 39.37 a |
Multigrain bread 3 wp | Harghita county | 21.00 ± 13.45 a | 25.00 ± 13.08 a |
Multigrain bread 4 wp | Harghita county | 12.00 ± 3.46 a | 31.33 ± 26.86 a |
Multigrain bread 5 wp | Harghita county | 26.33 ± 7.51 a | 12.00 ± 3.46 a |
Multigrain bread 6 wp | Harghita county | 113.00 ± 95.66 abc | 10.33 ± 0.58 a |
Rustic potato bread 1 pp | Harghita county | 35.33 ± 27.15 a | 97.00 ± 50.59 a |
Rustic potato bread 2 wp | Covasna county | 300.33 ± 178.01 d | 395.00 ± 52.43 b |
Rustic potato bread 3 pp | Harghita county | 53.67 ± 16.86 a | 18.67 ± 15.01 a |
Rustic potato bread 4 pp | Harghita county | 30.67 ± 10.60 a | 10.00 ± 0.00 a |
Rustic potato bread 5 wp | Harghita county | 106.33 ± 110.59 abc | 15.67 ± 9.81 a |
Rustic potato bread 6 wp | Covasna county | 11.67 ± 2.89 a | 58.67 ± 61.78 a |
Rustic potato bread 7 wp | Harghita county | 38.00 ± 28.5 a | 17.67 ± 7.51 a |
Rustic potato bread 8 wp | Harghita county | 18.00 ± 12.17 a | 16.00 ± 5.29 a |
Sliced white bread 1 pp | Harghita county | 310.67 ± 94 d | 237.67 ± 45.36 ab |
White bread 2 wp | Harghita county | 20.33 ± 11.93 a | 17.33 ± 12.70 a |
White bread 3 wp | Covasna county | 14.33 ± 5.13 a | 10.67 ± 1.15 a |
Rye bread 1 pp | Harghita county | 216.00 ± 41.94 cd | 239.00 ± 235.20 ab |
Rye bread 2 pp | Covasna county | 54.67 ± 44.50 a | 10.00 ± 0.00 a |
Rye bread 3 pp | Harghita county | 10.00 ± 0.00 a | 160.33 ± 122.21 ab |
Rye bread 4 pp | Harghita county | 29.00 ± 24.02 a | 11.67 ± 2.89 a |
Sliced brown barley bread pp | Harghita county | 22.67 ± 12.06 a | 207.67 ± 322.46 ab |
Sliced brown potato bread pp | Harghita county | 66.00 ± 50.39 ab | 97.33 ± 126.18 a |
Peasant bread pp | Harghita county | 10.00 ± 0.00 a | 12.67 ± 4.62 a |
Wheat germ bread pp | Harghita county | 18.00 ± 3.00 a | 31.67 ± 37.53 a |
Wholemeal bread pp | Harghita county | 14.00 ± 6.93 a | 17.67 ± 10.02 a |
Graham bread 1 wp | Harghita county | 112.33 ± 54.50 abc | 145.00 ± 199.83 ab |
Graham bread 2 pp | Harghita county | 206.00 ± 32.4 bcd | 22.67 ± 14.19 a |
Bran bread pp | Harghita county | 10.00 ± 0.00 a | 134.00 ± 187.74 a |
French bread pp | Harghita county | 20.00 ± 10.00 a | 10.33 ± 0.58 a |
Cluster | Error | F | Sig. | |||
---|---|---|---|---|---|---|
Mean Square | df | Mean Square | df | |||
Bacteria count in bread crumbs | 60,176.169 | 3 | 1080.839 | 26 | 55.675 | 0.000 |
Bacteria count in bread crusts | 77,454.033 | 3 | 1101.137 | 26 | 70.340 | 0.000 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Bacteria Count in Bread Crumbs Between Groups Within Groups Total | 180,528.506 | 3 | 60,176.169 | 55.675 | 0.000 |
28,101.802 | 26 | 1080.839 | |||
208,630.309 | 29 | ||||
Bacteria Count in Bread Crusts Between Groups Within Groups Total | 232,362.099 | 3 | 77,454.033 | 70.340 | 0.000 |
28,629.575 | 26 | 1101.137 | |||
260,991.674 | 29 |
Source of Isolation | Isolation Medium | Identified Closely Related Species Based on 16S rDNA | Sequence Similarity % |
---|---|---|---|
Multigrain bread 1 | Nutrient Agar | Chryseobacterium spp. | 99.00 |
Multigrain bread 1 | Mannit–Kochsalz Agar | Bacillus tequilensis | 99.68 |
Multigrain bread 1 | Mannit–Kochsalz Agar | Staphylococcus saprophyticus | 99.00 |
Multigrain bread 1 | Czapek Dox Agar | Bacillus subtilis | 99.00 |
Multigrain bread 1 | Czapek Dox Agar | Bacillus subtilis subsp. inaquosorum | 99.22 |
Bran bread | Cereus Selective Agar | Bacillus methylotrophicus | 99.90 |
Rustic potato bread 1 | Mannit–Kochsalz Agar | Staphylococcus warneri | 99.90 |
Rustic potato bread 1 | Mannit–Kochsalz Agar | Bacillus siamensis | 99.40 |
Rustic potato bread 1 | Czapek Dox Agar | Bacillus amyloliquefaciens | 99.00 |
Rustic potato bread 1 | Czapek Dox Agar | Bacillus siamensis | 99.80 |
Rustic potato bread 2 | Cereus Selective Agar | Bacillus siamensis | 99.00 |
Rustic potato bread 2 | Cereus Selective Agar | Bacillus subtilis | 99.00 |
Rustic potato bread 3 | Cereus Selective Agar | Bacillus amyloliquefaciens | 99.00 |
Rustic potato bread 4 | Mannit–Kochsalz Agar | Marinilactobacillus spp. | 99.00 |
Rustic potato bread 4 | Mannit–Kochsalz Agar | Bacillus firmus | 99.00 |
Rustic potato bread 4 | Cereus Selective Agar | Micrococcus luteus | 100.00 |
Rustic potato bread 4 | Cereus Selective Agar | Bacillus methylotrophicus | 100.00 |
Rustic potato bread 4 | Cereus Selective Agar | Bacillus amyloliquefaciens | 99.00 |
Sliced brown potato bread | Mannit–Kochsalz Agar | Streptococcus mitis | 90.00 |
Sliced brown potato bread | Mannit–Kochsalz Agar | Bacillus aryabhattai | 99.79 |
Sliced brown potato bread | Cereus Selective Agar | Bacillus methylotrophicus | 99.00 |
Sliced brown potato bread | Cereus Selective Agar | Bacillus amyloliquefaciens | 99.00 |
Sliced brown potato bread | Cereus Selective Agar | Bacillus amyloliquefaciens | 100.00 |
Sliced white bread | Mannit–Kochsalz Agar | Staphylococcus warneri | 99.90 |
Sliced white bread | Mannit–Kochsalz Agar | Staphylococcus pasteuri | 99.00 |
Sliced white bread | Mannit–Kochsalz Agar | Staphylococcus spp. | 99.00 |
Rye bread 1 | Mannit–Kochsalz Agar | Staphylococcus saprophyticus | 99.00 |
Rye bread 1 | Cereus Selective Agar | Promicromonospora spp. | 99.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
György, É.; Laslo, É. Microbiological Quality Assessment of Some Commercially Available Breads. Foods 2024, 13, 3271. https://doi.org/10.3390/foods13203271
György É, Laslo É. Microbiological Quality Assessment of Some Commercially Available Breads. Foods. 2024; 13(20):3271. https://doi.org/10.3390/foods13203271
Chicago/Turabian StyleGyörgy, Éva, and Éva Laslo. 2024. "Microbiological Quality Assessment of Some Commercially Available Breads" Foods 13, no. 20: 3271. https://doi.org/10.3390/foods13203271
APA StyleGyörgy, É., & Laslo, É. (2024). Microbiological Quality Assessment of Some Commercially Available Breads. Foods, 13(20), 3271. https://doi.org/10.3390/foods13203271