Impact of Various Extraction Technologies on Protein and Chlorophyll Yield from Stinging Nettle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Sample Preparation
2.4. Cell Disruption
2.4.1. High-Pressure Homogenization (HPH)
2.4.2. Pulsed Electric Field (PEF)
2.5. Particle Size Distribution
2.6. Protein Solubility
2.7. Extraction
2.7.1. Isoelectric Precipitation (Alkaline Solving)
2.7.2. Ultrafiltration
2.7.3. Protein Extraction Utilizing Salting-In and Salting-Out
2.8. Dry Matter
2.9. Total Nitrogen Content
2.10. Protein Yield
2.11. Color Intensity
2.11.1. Color Analysis
2.11.2. Determination of Chlorophyll Through Extraction with Ethanol
2.12. Statistical Analysis
3. Results and Discussion
3.1. Evaluation Particle Size Distribution
3.2. Evaluation Protein Solubility
3.3. Evaluation Protein Content and Dry Mater
3.4. Evaluation Protein Yield
3.5. Evaluation Color Intensity
3.6. Comparison of Extraction Efficiency and Color Reduction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devkota, H.P.; Paudel, K.R.; Khanal, S.; Baral, A.; Panth, N.; Adhikari-Devkota, A.; Jha, N.K.; Das, N.; Singh, S.K.; Chellappan, D.K.; et al. Stinging Nettle (Urtica dioica L.): Nutritional Composition, Bioactive Compounds, and Food Functional Properties. Molecules 2022, 16, 5219. [Google Scholar] [CrossRef] [PubMed]
- Krawęcka, A.; Sobota, A.; Pankiewicz, U.; Zielińska, E.; Zarzycki, P. Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production: Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties. Molecules 2021, 22, 6909. [Google Scholar] [CrossRef] [PubMed]
- Paulauskienė, A.; Tarasevičienė, Ž.; Laukagalis, V. Influence of Harvesting Time on the Chemical Composition of Wild Stinging Nettle (Urtica dioica L.). Plants 2021, 4, 686. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Otmani, I.; Derfoufi, S.; Benmoussa, A. Highlights on nutritional and therapeutic value of stinging nettle (Urtica dioica). Int. J. Pharm. Pharm. Sci. 2015, 7, 8–14. [Google Scholar]
- Rafajlovska, V.; Kavrakovski, Z.; Simonovska, J.; Srbinoska, M. Determination of protein and mineral contents in stinging nettle. Qual. Life 2013, 1–2, 26–30. [Google Scholar] [CrossRef]
- Fiol, C.; Prado, D.; Mora, M.; Alava, J.I. Nettle cheese: Using nettle leaves (Urtica dioica) to coagulate milk in the fresh cheese making process. Int. J. Gastron. Food Sci. 2016, 4, 19–24. [Google Scholar] [CrossRef]
- Mohammadian, M.; Biregani, Z.M.; Hassanloofard, Z.; Salami, M. Nettle (Urtica dioica L.) as a functional bioactive food ingredient: Applications in food products and edible films, characterization, and encapsulation systems. Trends Food Sci. Technol. 2024, 147, 104421. [Google Scholar] [CrossRef]
- Flórez, M.; Cazón, P.; Vázquez, M. Antioxidant Extracts of Nettle (Urtica dioica) Leaves: Evaluation of Extraction Techniques and Solvents. Molecules 2022, 18, 6015. [Google Scholar] [CrossRef]
- Goktayoglu, E.; Oztop, M.H.; Ozcan, S. Proteomics Approach to Differentiate Protein Extraction Methods in Sugar Beet Leaves. J. Agric. Food Chem. 2023, 23, 9157–9163. [Google Scholar] [CrossRef]
- Kronbauer, M.; Shorstkii, I.; Da Botelho Silva, S.; Toepfl, S.; Lammerskitten, A.; Siemer, C. Pulsed electric field assisted extraction of soluble proteins from nettle leaves (Urtica dioica L.): Kinetics and optimization using temperature and specific energy. Sustain. Food Technol. 2023, 6, 886–895. [Google Scholar] [CrossRef]
- Mishyna, M.; Martinez, J.-J.I.; Chen, J.; Benjamin, O. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res. Int. 2019, 116, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Nynäs, A.-L.; Newson, W.R.; Johansson, E. Protein Fractionation of Green Leaves as an Underutilized Food Source-Protein Yield and the Effect of Process Parameters. Foods 2021, 10, 2533. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.H.; Castellani, O.; de Jong, G.A.; Bovetto, L.; Schmitt, C. Comparison of the functional properties of RuBisCO protein isolate extracted from sugar beet leaves with commercial whey protein and soy protein isolates. J. Sci. Food Agric. 2019, 4, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Kusumawati, E.; Keryanti; Widyanti, E.M.; Risnawati, F.W. Production of Powdered Bio-coagulant from Moringa. Adv. Eng. Res. 2020, 198, 365–370. [Google Scholar]
- KERN & Sohn GmbH. Operating Manual Electronic Moisture Analyser KERN DAB. Available online: https://www.humimeter.com/wp-content/uploads/2024/07/Bedienungsanleitung-G100-Analysewaage_en-Kern.pdf?srsltid=AfmBOooHSZMV5wnKz0EBBurZyzict1-EnSn_5INoWKyCskImb11tN69y (accessed on 30 September 2024).
- C. Gerhard GmbH & Co. KG. Kjeldahl Method. Available online: https://www.gerhardt.de/en/know-how/analytical-methods/kjeldahl-method/ (accessed on 30 September 2024).
- Limbo, S.; Piergiovanni, L. Shelf life of minimally processed potatoes. Postharvest Biol. Technol. 2006, 3, 254–264. [Google Scholar] [CrossRef]
- Caesar, J.; Tamm, A.; Ruckteschler, N.; Leifke, A.L.; Weber, B. Revisiting chlorophyll extraction methods in biological soil crusts—Methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods. Biogeosciences 2018, 5, 1415–1424. [Google Scholar] [CrossRef]
- Carullo, D.; Abera, B.D.; Scognamiglio, M.; Donsì, F.; Ferrari, G.; Pataro, G. Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of C. vulgaris Microalgae. Foods 2022, 3, 471. [Google Scholar] [CrossRef]
- Bouazizi, A.; Felfoul, I.; Attia, H.; Karoui, R. Characterization of nettle leaves (Urtica dioica) as a novel source of protease for clotting dromedary milk by non-destructive methods. Biointerfaces 2022, 211, 112312. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Vitkauskaitė, M.; Paulauskienė, A.; Černiauskienė, J. Wild Stinging Nettle (Urtica dioica L.) Leaves and Roots Chemical Composition and Phenols Extraction. Plants 2023, 2, 309. [Google Scholar] [CrossRef]
- De Jong, G.A.H.; Schoemak Geerdink, P.; Bussmann, P.; Josephus, T.; Hylkema, N. Economical Process for the Isolation of Functional Protein from Plants. WIPO, PCT WO 2014/104880Al, 3 July 2014. [Google Scholar]
- More, A.D.; Borkar, A.T. Improvement in Protein and Chlorophyll Content through Physical and Chemical Mutagens in Phaseolus vulgaris L. Int. J. Curr. Microbiol. Appl. Sci. 2016, 10, 583–591. [Google Scholar] [CrossRef]
- Alattar, O.; Fayed, H.; Farag, A. Sds-page electrophoresis and solubility characteristics of casein—Chlorella vulgaris protein isolate co-precipitate mixtures. J. Product. Dev. 2022, 2, 263–279. [Google Scholar] [CrossRef]
Abbreviation | Meaning |
---|---|
RAW | Untreated raw material |
HPH | Cell disruption via HPH |
PEF | Cell disruption via PEF |
IEP | Extraction via IEP |
UF | Extraction via UF |
SO | Extraction via salting-out |
Sample | D10 [µm] | D50 [µm] | D90 [µm] |
---|---|---|---|
SN5%_RAW | 18.1 0.26 a | 87.17 0.76 d | 181.6 5.8 f |
SN5%_HPH | 5.56 0.03 b | 41.66 0.33 e | 134.6 0.9 g |
SN5%_PEF | 16.54 0.06 c | 88.34 0.47 d | 189.3 1.1 f |
Sample [%] | Protein Content [%] | Dry Matter [%] | Protein Content Based on Dry Matter [%] |
---|---|---|---|
RAW | 22.85 0.69 c | 91.74 0.32 b | 24.91 |
HPH_IEP | 44.42 0.27 a | 90.47 0.30 c | 49,09 |
HPH_UF | 17.29 0.54 d | 88.92 0.45 d | 19.45 |
HPH_UF_SO | 13.71 0.47 f | 92.50 0.45 b | 14.82 |
PEF_IEP | 39.23 0.11 b | 91.47 0.41 b,c | 42.89 |
PEF_IEP_SO | 15.88 0.15 e | 94.32 0.20 a | 16.84 |
PEF_UF | 17.33 0.27 d | 86.12 0.63 e | 20.12 |
RAW | HPH_IEP | HPH_UF | HPH_UF_SO |
100% | 11.60% | 2.27% | 0.27% |
PEF_IEP | PEF_UF | PEF_IEP_SO | |
2.96% | 2.68% | 0.58% | |
Sample | L* | a* | b* | ΔΕ |
---|---|---|---|---|
RAW | 47.10 ± 0.01 d | −2.99 ± 0.03 g | 22.81 ± 0.04 c | 0 |
HPH_IEP | 25.20 ± 0.01 f | 3.44 ± 0.01 c | 11.78 ± 0.04 f | 25.35 |
HPH_UF | 56.91 ± 0.07 b | 8.38 ± 0.03 a | 27.74 ± 0.02 a | 15.81 |
HPH_UF_SO | 66.82 ± 0.49 a | −2.64 ± 0.01 f | 16.10 ± 0.19 d | 20.83 |
PEF_IEP | 30.51 ± 0.13 e | 2.27 ± 0.10 d | 11.41 ± 0.03 g | 20.81 |
PEF_UF | 53.39 ± 0.13 c | 7.84 ± 0.02 b | 26.85 ± 0.05 b | 13.16 |
PEF_IEP_SO | 52.87 ± 0.38 c | 0.95 ± 0.01 e | 14.01 ± 0.04 e | 11.24 |
Sample | Chl a [μg] | Chl b [μg] | Chl a + b [μg] |
---|---|---|---|
RAW | 69.10 0.11 a | 18.63 0.06 a | 87.73 0.05 a |
HPH_IEP | 32.74 0.06 b | 1.63 0.04 d | 34.37 0.03 b |
HPH_UF | 1.48 0.02 c | 0.24 0.02 e,f | 1.71 0.03 c |
HPH_UF_SO | 32.52 0.05 d | 4.88 0.02 b | 37.41 0.03 d |
PEF_IEP | 5.04 0.02 e | 2.13 0.10 c | 7.17 0.10 e |
PEF_UF | 0.18 0.04 f | 0.09 0.07 f | 0.28 0.04 f |
PEF_IEP_SO | 3.13 0.06 g | 0.26 0.06 e | 3.39 0.02 g |
Sample | Chl a [μg/g] | Chl b [μg/g] | Chl a + b [μg/g] |
---|---|---|---|
RAW | 3766.28 5.83 a | 1015.13 3.26 a | 4781.41 2.76 a |
HPH_IEP | 1731.55 3.31 b | 86.18 2.36 d | 1817.74 1.78 c |
HPH_UF | 82.97 0.64 f | 13.24 1.18 e | 96.21 1.83 f |
HPH_UF_SO | 1706.86 2.62 c | 256.16 1.12 b | 1963.02 1.77 b |
PEF_IEP | 268.883 1.21 d | 113.38 5.36 c | 382.26 5.22 d |
PEF_UF | 9.96 2.01 g | 5.11 3.95 e | 15.07 2.16 g |
PEF_IEP_SO | 162.64 3.06 e | 13.71 3.24 e | 176.35 1.28 e |
Method | Protein Yield [%] | Chlorophyll Reduction [µg/g] | Comments |
---|---|---|---|
RAW | 100 | 0 | Untreated raw material with highest chlorophyll content. |
HPH_IEP | 11.60 | 2963.67 | Highest protein yield among methods tested, significant chlorophyll reduction. |
HPH_UF | 2.27 | 4685.20 | Lower protein yield, effective chlorophyll reduction. |
HPH_UF_SO | 0.27 | 2818.39 | Minimal protein yield, moderate chlorophyll reduction. |
PEF_IEP | 2.96 | 4399.15 | Moderate protein yield, effective chlorophyll reduction. |
PEF_UF | 2.68 | 4766.34 | Low protein yield, most effective chlorophyll reduction. |
PEF_IEP_SO | 0.58 | 4605.06 | Low protein yield, effective chlorophyll reduction. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirr, S.; Karslioglu, Ö.Ö. Impact of Various Extraction Technologies on Protein and Chlorophyll Yield from Stinging Nettle. Foods 2024, 13, 3318. https://doi.org/10.3390/foods13203318
Dirr S, Karslioglu ÖÖ. Impact of Various Extraction Technologies on Protein and Chlorophyll Yield from Stinging Nettle. Foods. 2024; 13(20):3318. https://doi.org/10.3390/foods13203318
Chicago/Turabian StyleDirr, Simon, and Özlem Özmutlu Karslioglu. 2024. "Impact of Various Extraction Technologies on Protein and Chlorophyll Yield from Stinging Nettle" Foods 13, no. 20: 3318. https://doi.org/10.3390/foods13203318
APA StyleDirr, S., & Karslioglu, Ö. Ö. (2024). Impact of Various Extraction Technologies on Protein and Chlorophyll Yield from Stinging Nettle. Foods, 13(20), 3318. https://doi.org/10.3390/foods13203318