A Comparative Analysis of Aroma Profiles of Soju and Other Distilled Spirits from Northeastern Asia
Abstract
:1. Introduction
2. Previous Research on Aroma Characteristics of Distilled Liquor in Northeast Countries
3. Aroma-Characteristic-Related Factors Involved in the Liquor Production Procedure
3.1. Raw Materials and Processing Methods
3.1.1. Distilled Soju
3.1.2. Baijiu
3.1.3. Shochu
3.2. Fermentation Starters
3.2.1. Nuruk
3.2.2. Qu
3.2.3. Koji
3.3. Distillation Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.-G.; Moon, S.-H.; Bae, G.-H.; Kim, J.-H.; Choi, H.-S.; Kim, T.-W.; Cheong, C. Distilled Spirits; Ministry of Agriculture, Food and Rural Affairs, Korea Agro-Fisheries and Food Trade Corp & Kwangmoon Kag: Seoul, Republic of Korea, 2015. [Google Scholar]
- aT (Korea Agro-Fisheries & Food Trade Corporation). Trend Report of the Alcoholic Beverage Market in 2021. Available online: https://www.atfis.or.kr/home/pdf/view.do?path=/board/202202/807f8c10-9090-4122-9126-e2d599bcaee3.pdf (accessed on 18 October 2024).
- Ryu, G.-M. Alcoholic beverage market stretegy of China. World Agric. 2013, 160, 165–177. [Google Scholar]
- Baek, J.-W. Alcoholic beverage market stretegy of Japan. World Agric. 2013, 160, 143–163. [Google Scholar]
- National Tax Agency. National Tax Agency Annual Statistics Report in Japan in 2021. Available online: https://www.nta.go.jp/publication/statistics/kokuzeicho/tokei.htm (accessed on 8 February 2024).
- Gemert, L.V. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Chin, Y.-W.; Yu, H.H.; Kang, S.; Kim, T.-W. Effects of mutant yeast strain and distillation method on sensory characteristics and volatile compounds in Korean distilled spirit, soju. LWT 2024, 191, 115676. [Google Scholar] [CrossRef]
- Kim, W.-K.; Lee, S.-J. Changes in volatile compounds in rice-based distilled soju aged in different types of containers. Korean J. Food Sci. Technol. 2019, 51, 543–550. [Google Scholar]
- Jeong, Y.-J.; Seo, J.-H. Volatile compounds of potato sojues produced by different distillation condition. Korean J. Food Preserv. 2012, 19, 433–437. [Google Scholar] [CrossRef]
- Park, J.-S.; Chung, B.-W.; Bae, J.-O.; Lee, J.-H.; Jung, M.-Y.; Choi, D.-S. Effects of sweet potato cultivars and koji types on general properties and volatile flavor compounds in sweet potato soju. Korean J. Food Sci. Technol. 2010, 42, 468–474. [Google Scholar]
- Kwak, H.S.; Seo, J.S.; Hur, Y.; Shim, H.S.; Lee, Y.; Kim, M.; Jeong, Y. Influence of yeast strains on the physicochemical characteristics, methanol and acetaldehyde profiles and volatile compounds for Korean rice distilled spirit. J. Inst. Brew. 2015, 121, 574–580. [Google Scholar] [CrossRef]
- Cha, J.; Chin, Y.-W.; Lee, J.-Y.; Kim, T.-W.; Jang, H.W. Analysis of volatile compounds in soju, a Korean distilled spirit, by SPME-arrow-GC/MS. Foods 2020, 9, 1422. [Google Scholar] [CrossRef]
- Kim, W.-K.; Lee, S.-J. Sensory characteristics and preferences of rice-based distilled soju aged in different types of containers using Check-All-That-Apply (CATA). Korean J. Food Sci. Technol. 2022, 54, 362–368. [Google Scholar]
- Hong, J.-M.; Kim, T.-W.; Lee, S.-J. Sensory and Volatile Profiles of Korean Commercially Distilled Soju Using Descriptive Analysis and HS-SPME-GC-MS. Foods 2020, 9, 1330. [Google Scholar] [CrossRef]
- Choi, H.-U.; Kim, T.-W.; Lee, S.-J. Characterization of Korean distilled liquor, soju, using chemical, HS-SPME-GC-MS, and sensory descriptive analysis. Molecules 2022, 27, 2429. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Park, C.-S.; Kim, H.-K. Sensory profiling of commercial Korean distilled soju. Korean J. Food Sci. Technol. 2012, 44, 648–652. [Google Scholar] [CrossRef]
- Yuan, H.W.; Tan, L.; Luo, S.; Chen, H.; Yi, X.; Sun, Z.Y.; Zhang, W.X.; Tang, Y.Q.; Kida, K. Development of a process for producing ethyl caproate-and ethyl lactate-rich rice shochu. J. Inst. Brew. 2015, 121, 432–439. [Google Scholar] [CrossRef]
- Tan, L.; Yuan, H.W.; Wang, Y.F.; Chen, H.; Sun, Z.Y.; Tang, Y.Q.; Kida, K. Behaviour of ethyl caproate during the production and distillation of ethyl caproate-rich rice shochu. J. Inst. Brew. 2016, 122, 486–492. [Google Scholar] [CrossRef]
- Osafune, Y.; Toshida, K.; Han, J.; Kishimoto, T.; Iizuka-Furukawa, S.; Isogai, A.; Mukai, N. Identification of 2-furanmethanethiol contributing to roast aroma in honkaku shochu and awamori. J. Biosci. Bioeng. 2022, 133, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Serikawa, J.; Okutsu, K.; Yoshizaki, Y.; Futagami, T.; Tamaki, H.; Takamine, K. Impact of fermentation temperature on the quality and sensory characteristics of imo-shochu. J. Inst. Brew. 2021, 127, 417–423. [Google Scholar] [CrossRef]
- Ohta, T.; Ikuta, R.; Nakashima, M.; Morimitsu, Y.; Samuta, T.; Saiki, H. Characteristic flavor of Kansho-shochu (sweet potato spirit). Agric. Biol. Chem. 1990, 54, 1353–1357. [Google Scholar] [CrossRef]
- Okutsu, K.; Yamamoto, Y.; Matsuo, F.; Yoshizaki, Y.; Futagami, T.; Tamaki, H.; Maeda, G.; Tsuchida, E.; Takamine, K. Characterization of aroma profiles of kokuto-shochu prepared from three different cultivars of sugarcane. J. Biosci. Bioeng. 2023, 135, 458–465. [Google Scholar] [CrossRef]
- Iwasaki, F.; Sunao, M.; Okutsu, K.; Yoshizaki, Y.; Futagami, T.; Tamaki, H.; Takamine, K.; Sameshima, Y. Effects of liming on the flavor of kokuto-shochu, a spirit made from non-centrifugal sugar. J. Biosci. Bioeng. 2020, 130, 360–366. [Google Scholar] [CrossRef]
- Masuda, S.; Ozaki, K.; Kuriyama, H.; Sugimoto, T.; Shoji, H.; Tanabe, M.; Kitagawa, Y.; Yamashita, H. Classification of Barley Shochu Samples Produced Using Submerged Culture and Solid-state Culture of Koji Mold by Solid-phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Inst. Brew. 2010, 116, 170–176. [Google Scholar] [CrossRef]
- Osafune, Y.; Toshida, K.; Han, J.; Isogai, A.; Mukai, N. Characterisation and threshold measurement of aroma compounds contributing to the quality of Honkaku shochu and Awamori. J. Inst. Brew. 2020, 126, 131–135. [Google Scholar] [CrossRef]
- Yuan, H.; Tan, L.; Zhao, Y.; Wang, Y.; Li, J.; Liu, G.; Zhang, C.; Liu, K.; Wang, S.; Lou, K. Effect of Koji on Flavor Compounds and Sensory Characteristics of Rice Shochu. Molecules 2023, 28, 2708. [Google Scholar] [CrossRef]
- Yin, X.; Yoshizaki, Y.; Kurazono, S.; Sugimachi, M.; Takeuchi, H.; Han, X.-L.; Okutsu, K.; Futagami, T.; Tamaki, H.; Takamine, K. Characterization of flavor compounds in rice-flavor baijiu, a traditional Chinese distilled liquor, compared with Japanese distilled liquors, awamori and kome-shochu. Food Sci. Technol. Res. 2020, 26, 411–422. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, L.; Zheng, F.; Zhang, F.; Shen, C.; Gao, X.; Sun, B.; Huang, M.; Li, H.; Chen, F. Determination and comparison of flavor (retronasal) threshold values of 19 flavor compounds in Baijiu. J. Food Sci. 2021, 86, 2061–2074. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.; Li, X.; Ouyang, L.; Zhu, S.; Hu, S.; Zhou, J. Characterization of key aroma compounds in Rice flavor baijiu from different rice raw materials by gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-quadrupole time of flight mass spectrometry. Food Biosci. 2023, 56, 103370. [Google Scholar] [CrossRef]
- He, Y.; Lu, J.; Zhang, J.; Li, C.; Chen, S.; Xu, Y. Decoding regional flavor uniqueness of Jiangxiangxing baijiu by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry combined with quantitative descriptive analysis. Food Chem. Adv. 2024, 4, 100654. [Google Scholar] [CrossRef]
- Liu, Q.; He, D.; Ma, Y.; Wang, H.; Li, Y.; Cheng, Y.; Huang, Y. Sensory profile and the contribution of key aroma compounds in Jiang-flavor rounded-base Baijiu produced in the Chishui river basin. LWT 2023, 189, 115474. [Google Scholar] [CrossRef]
- Li, X.; Zhang, B.; Li, W.; Zhao, Y.; Lyu, X.; You, X.; Lin, L.; Zhang, C. Unraveling the chemosensory characteristics dependence of sauce-flavor baijiu on regionality using descriptive sensory analysis and quantitative targeted flavoromics. Food Chem. 2024, 441, 138274. [Google Scholar] [CrossRef]
- He, Y.; Liu, Z.; Qian, M.; Yu, X.; Xu, Y.; Chen, S. Unraveling the chemosensory characteristics of strong-aroma type Baijiu from different regions using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry and descriptive sensory analysis. Food Chem. 2020, 331, 127335. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Y.; Chen, S.; Xu, Y.; Tang, K. Exploring the mystery of the sweetness of baijiu by sensory evaluation, compositional analysis and multivariate data analysis. Foods 2021, 10, 2843. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, H.; Yu, X.; Zhao, D.; Zheng, J.; Xu, Y.; Du, H. Fungal biogeographical patterns are key drivers shaping the regional flavor profiles of Chinese strong-flavor Baijiu. Food Biosci. 2023, 55, 102951. [Google Scholar] [CrossRef]
- Yi, H.-C.; Moon, S.-H.; Park, J.-S.; Jung, J.-W.; Hwang, K.-T. Volatile compounds in liquor distilled from mash produced using koji or nuruk under reduced or atmospheric pressure. J. Korean Soc. Food Sci. Nutr. 2010, 39, 880–886. [Google Scholar] [CrossRef]
- Choi, S.-I.; Kang, S.A.; Cheong, C. Yeast selection for quality optimization of distilled spirits. J. Korea Acad. Ind. Coop. Soc. 2013, 14, 3887–3896. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, Y.S.; Cho, C.H.; Park, I.T.; Kim, H.-D.; Kim, J.-H.; Ahn, B.H. The qualities of liquor distilled from ipguk (koji) or nuruk under reduced or atmospheric pressure. Korean J. Food Sci. Technol. 2014, 46, 25–32. [Google Scholar] [CrossRef]
- Choi, H.-S.; Kang, J.-E.; Jeong, S.-T.; Kim, C.-W.; Baek, S.-Y.; Yeo, S.-H. Soju brewing characteristics of yeast strains N4 and N9 isolated from Korean traditional Nuruk. Korean J. Food Preserv. 2017, 24, 714–724. [Google Scholar] [CrossRef]
- Lee, D.-H.; Lee, Y.-S.; Seo, J.-S.; Won, S.-Y.; Cho, C.-H.; Park, I.-T.; Kim, T.-W.; Kim, J.-H. Qualities of distilled liquor using Saccharomyces cerevisiae 88-4 separated from traditional Nuruk. Korean J. Food Sci. Technol. 2017, 49, 279–285. [Google Scholar]
- Moon, S.-H.; Cheong, C. The Change of Components of Distilled Soju Using Different Fermentation Agents. J. Korea Acad. Ind. Coop. Soc. 2018, 19, 466–473. [Google Scholar]
- Shin, K.-J.; Kim, T.-W.; Lee, S.-J. Changes of Volatile Compositions in Soju Wash from Fermentation to Distillation Using Different Kinds of Fermentation Starters. In Chemistry of Korean Foods and Beverages; ACS Publications: Washington, DC, USA, 2019; pp. 57–76. [Google Scholar]
- Lee, Y.; Eom, T.; Cheong, C.; Cho, H.; Kim, I.; Lee, Y.; Kim, M.; Yu, S.; Jeong, Y. Quality characteristics of spirits by different distillation and filtrations. J. Korean Soc. Food Sci. Nutr. 2013, 42, 2012–2018. [Google Scholar] [CrossRef]
- Choi, H.-S.; Kim, E.-G.; Kang, J.-E.; Yeo, S.-H.; Jeong, S.-T.; Kim, C.-W. Effect of organic acids addition to fermentation on the brewing characteristics of Soju distilled from rice. Korean J. Food Sci. Technol. 2015, 47, 579–585. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, B.; Fan, G.; Teng, C.; Xiong, K.; Zhu, Y.; Li, J.; Li, X. The brewing process and microbial diversity of strong flavour Chinese spirits: A review. J. Inst. Brew. 2017, 123, 5–12. [Google Scholar] [CrossRef]
- Woo, S.-H.; Son, E.-S.; Cheong, C. Sensory Profiling of Korean Distilled Soju—Using the CATA Method. J. Korea Acad. Ind. Coop. Soc. 2023, 24, 211–223. [Google Scholar] [CrossRef]
- Kim, M.H.; Yoshitake, K.; Takamine, K.; Lee, H.-U.; Kim, W.S. Aromatic ingredients and distinct flavors of the koguma-Soju produced from Korean sweet potato varieties yeonmi, jeungmi, shincheonmi, and shinyeulmi. Korean J. Food Sci. Technol. 2015, 47, 51–55. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, Y.S.; Cho, C.H.; Seo, J.S.; Park, I.T.; Kim, H.D.; Lim, J.W. Brewing and fermenting characteristics of Makgeolli produced from high-yielding rice varieties. Korean J. Food Sci. Technol. 2013, 45, 714–720. [Google Scholar] [CrossRef]
- Lee, H.-J.; Lee, I.-S.; Jeong, H.-S. Characteristics of Takju with different varieties of rice and particle size. Culin. Sci. Hosp. Res. 2012, 18, 191–205. [Google Scholar] [CrossRef]
- Lee, S.-J.; Kong, T.-I.; Cheong, C. Characterstics of steeping of rice and fermentation of rice koji depending on the milling degrees. J. Korea Acad. Ind. Coop. Soc. 2015, 16, 5384–5393. [Google Scholar] [CrossRef]
- Wang, G.; Song, X.; Zhu, L.; Li, Q.; Zheng, F.; Geng, X.; Li, L.; Wu, J.; Li, H.; Sun, B. A flavoromics strategy for the differentiation of different types of Baijiu according to the non-volatile organic acids. Food Chem. 2022, 374, 131641. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Qian, Y.P.L.; Qian, M.C. Chapter 5—Baijiu. In Distilled Spirits; Hill, A., Jack, F., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 103–130. [Google Scholar]
- Hong, J.; Zhao, D.; Sun, B. Research Progress on the Profile of Trace Components in Baijiu. Food Rev. Int. 2023, 39, 1666–1693. [Google Scholar] [CrossRef]
- Zheng, X.W.; Tabrizi, M.R.; Nout, M.R.; Han, B.Z. Daqu—A traditional Chinese liquor fermentation starter. J. Inst. Brew. 2011, 117, 82–90. [Google Scholar] [CrossRef]
- Liu, H.; Sun, B. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef]
- Tu, W.; Cao, X.; Cheng, J.; Li, L.; Zhang, T.; Wu, Q.; Xiang, P.; Shen, C.; Li, Q. Chinese Baijiu: The perfect works of microorganisms. Front. Microbiol. 2022, 13, 919044. [Google Scholar] [CrossRef]
- Zhao, Z.; Sugimachi, M.; Yoshizaki, Y.; Yin, X.; Han, X.-L.; Okutsu, K.; Futagami, T.; Tamaki, H.; Takamine, K. Impact of solid-state saccharification on the flavor of rice-flavor baijiu. J. Food Sci. 2021, 86, 4958–4968. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Yoshizaki, Y.; Ono, T.; Yamato, H.; Okutsu, K.; Tamaki, H.; Futagami, T.; Yoshihiro, S.; Takamine, K. Characteristic odour compounds in shochu derived from rice koji. J. Inst. Brew. 2016, 122, 381–387. [Google Scholar] [CrossRef]
- Hayashi, K.; Kajiwara, Y.; Futagami, T.; Goto, M.; Takashita, H. Making traditional Japanese distilled liquor, shochu and awamori, and the contribution of white and black koji fungi. J. Fungi 2021, 7, 517. [Google Scholar] [CrossRef]
- Moda, I.; Sugimoto, T.; Wanikawa, A. Chapter 7—Shochu. In Distilled Spirits; Hill, A., Jack, F., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 145–172. [Google Scholar]
- Okutsu, K.; Yoshizaki, Y.; Kojima, M.; Yoshitake, K.; Tamaki, H.; Kazunori, T. Effects of the cultivation period of sweet potato on the sensory quality of imo-shochu, a Japanese traditional spirit. J. Inst. Brew. 2016, 122, 168–174. [Google Scholar] [CrossRef]
- Yu, T.-S.; Kim, H.-S.; Hong, J.; Ha, H.-P.; Kim, T.-Y.; Yoon, I.-W. Bibliographical study on microorganisms of nuruk (until 1945). J. Korean Soc. Food Sci. Nutr. 1996, 25, 170–179. [Google Scholar]
- Yu, T.-S.; Kim, J.; Kim, H.-S.; Hyun, J.-S.; Ha, H.-P.; Park, M.-G. Bibliographical study on microorganims of traditional Korean nuruk (Since 1945). J. Korean Soc. Food Sci. Nutr. 1998, 27, 789–799. [Google Scholar]
- Jeong, S.-T.; Kwak, H.-J.; Kim, S.-M. Quality characteristics and biogenic amine production of makgeolli brewed with commercial nuruks. Korean J. Food Sci. Technol. 2013, 45, 727–734. [Google Scholar] [CrossRef]
- Choi, H.-S.; Kim, E.-G.; Kang, J.-E.; Choi, J.-H.; Yeo, S.-H.; Jeong, S.-T. Effect of varying the amount of water added on the characteristics of mash fermented using modified Nuruk for distilled-Soju production. Korean J. Food Preserv. 2014, 21, 908–916. [Google Scholar] [CrossRef]
- Zheng, X.; Han, B.; Ding, Z.; Chen, X. Microbial Diversities During Chinese Liquor Fermentations. In Science and Engineering of Chinese Liquor (Baijiu) Microbiology, Chemistry and Process Technology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 269–362. [Google Scholar]
- Zhang, C.; Ao, Z.; Chui, W.; Shen, C.; Tao, W.; Zhang, S. Characterization of the aroma-active compounds in Daqu: A tradition Chinese liquor starter. Eur. Food Res. Technol. 2012, 234, 69–76. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Wu, Y.; Zhao, D. Uncover the flavor code of strong-aroma baijiu: Research progress on the revelation of aroma compounds in strong-aroma baijiu by means of modern separation technology and molecular sensory evaluation. J. Food Compos. Anal. 2022, 109, 104499. [Google Scholar] [CrossRef]
- Yamamoto, H.; Mizutani, M.; Yamada, K.; Iwaizono, H.; Takayama, K.; Hino, M.; Kudo, T.; Ohta, H.; Kida, K.; Morimura, S. Characteristics of aromatic compound production using new shochu yeast MF062 isolated from shochu mash. J. Inst. Brew. 2012, 118, 406–411. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kang, S.-A.; Cheong, C. Quality characteristics of distilled alcohols prepared with different fermenting agents. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 275–283. [Google Scholar] [CrossRef]
- Kim, T.-W. Distillation technology and history of Korean distilled spirit, Soju. Food Sci. Ind. 2019, 52, 410–417. [Google Scholar]
- Lee, D.-H.; Park, I.-T.; Lee, Y.-S.; Seo, J.-S.; Jung, J.-W.; Kim, T.-W.; Kim, J.-H.; Ahn, B.-H. Quality characteristics of fermented wine using nuruk by aging container and period of distilled liquor. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1579–1587. [Google Scholar] [CrossRef]
Compound | Rice | Potato | Sweet Potato | Odor Threshold (mg/kg) [6] | |||
---|---|---|---|---|---|---|---|
Atmospheric | Vacuum | Atmospheric | Vacuum | Atmospheric | Water | Ethanol/Water Solution | |
Alcohols | |||||||
1-Propanol | O | O | O | O | 8.5056 | 830 | |
Ethanol | O | O | O | O | 950 | 120 | |
1-Butanol | O | O | 0.4592 | 820 | |||
Isobutyl alcohol | O | O | O | O | 6.5052 | 40 | |
Isoamyl alcohol | O | O | O | O | 0.004 | 56.1 | |
Isohexanol | O | 0.82–4.1 | 50 | ||||
1-Hexanol | O | 0.0056 | 8 | ||||
n-Octanol | O | 0.1258 | 10 | ||||
Nonanol | O | 0.0455 | |||||
Nonen-1-ol | O | 0.13 | |||||
2-Methyl-1-butanol | O | 0.0159 | 32 | ||||
3,7-Dimethyl-6-octen-1-ol | O | 0.062–2.2 | 0.1 | ||||
3-Methylthio-1-propanol | O | O | 0.12323 | 0.5 | |||
Benzyl alcohol | O | O | 2.54621 | 159 | |||
Phenylethyl alcohol | O | O | 0.56423 | 10 | |||
Undecanol | O | 0.086–0.41 | |||||
1-Dodecanol | O | 0.016 | 1 | ||||
2-Ethyl-1-hexanol | O | 25.4822 | |||||
Hexadecanol | O | >1.1 | |||||
Acids | |||||||
Acetic acid | O | O | O | O | 99 | 26 | |
Butanoic acid | O | 2.4 | 10 | ||||
4-Hydroxybutanoic acid | O | ||||||
Propanoic acid | O | 2.19 | 830 | ||||
Aldehydes | |||||||
Furfural | O | O | 9.562 | 15 | |||
5-Methyl furfural | O | 1.11 | 16 | ||||
Benzaldehyde | O | 0.75089 | 5 | ||||
Benzeneacetaldehyde | O | O | 0.0063 | 0.001 | |||
Hexdecanal | |||||||
1-Tetradecanal | O | ||||||
n-Valeraldehyde | O | 0.012 | 0.11 | ||||
Acetaldehyde | O | O | 0.0251 | 10 | |||
Hexanal | O | 0.005 | 0.07–0.1 | ||||
2,4-Nonadienal | O | 0.0001 | 0.0026 | ||||
Esters | |||||||
Ethyl formate | O | 8.9–89 | |||||
Ethyl acetate | O | O | O | O | 0.005 | 7.5 | |
n-Propyl acetate | O | O | 2 | 65 | |||
Isobutyl acetate | O | O | 0.025 | 3.4 | |||
Phenylethyl acetate | O | O | 0.25 | 0.25 | |||
Ethyl butanoate | O | 0.0009 | 0.02 | ||||
Diethyl butanedioate | O | 100 | |||||
Ethyl butyrate | O | O | 0.009 | 0.02 | |||
Isoamyl acetate | O | O | O | 0.00015 | 0.03 | ||
Isoamyl propanoate | O | 0.0086–0.043 | |||||
Ethyl valerate | O | 0.0058 | |||||
Ethyl lactate | O | 50–250 | 100 | ||||
Dodecyl acetate | O | ||||||
Ethyl caproate | O | O | 0.0022 | 0.005 | |||
Methyl caprate | O | 0.07 | |||||
Ethyl 2-hydroxyisocaproate | O | ||||||
Ethyl heptanoate | O | O | O | 0.0019 | 0.3 | ||
Isobutyl hexanoate | O | O | O | ||||
Ethyl caprylate | O | O | O | O | 0.0193 | 0.002 | |
Isoamyl hexanoate | O | O | 0.32 | 1.4 | |||
Propyl octanoate | O | O | |||||
Butyl octanoate | O | O | |||||
Ethyl 9-decenoate | O | O | |||||
Ethyl nonanoate | O | O | O | 0.377 | |||
Isobutyl caprylate | O | O | O | ||||
Ethyl caprate | O | O | O | O | 0.005 | 0.51 | |
Isoamyl caprylate | O | O | O | 0.07 | 0.6 | ||
Propyl decanoate | O | O | O | ||||
Isobutyl decanoate | O | O | O | ||||
Ethyl benzeneacetate | O | ||||||
Methyl salicylate | O | O | 0.04 | 0.071 | |||
Ethyl laurate | O | O | O | O | O | 5.9 | 0.64 |
Isoamyl decanoate | O | O | O | O | >5.0 | ||
Ethyl myristate | O | O | O | 4 | 494 | ||
Isoamyl laurate | O | O | 100 | ||||
Ethyl palmitate | O | O | O | O | 2 | >14 | |
Ethyl palmitoleate | O | O | O | 10 | |||
3-Methylbutyl hexanoate | O | ||||||
3-Methylbutyl octanoate | O | ||||||
Methyl 2-hydroxybenzoate | O | O | |||||
Ethyl benzeneacetate | O | ||||||
Ethyl 3-methylbutyl butanedioate | O | ||||||
Methyl hexadecanoate | O | O | >2 | ||||
Ethyl-(E)-11-hexadecenoate | O | ||||||
Ethyl octadecanoate | O | O | >0.5 | ||||
Ethyl oleate | O | O | 0.87 | ||||
Ethyl linoleate | O | 0.45 | |||||
Propyl lactate | O | O | O | ||||
Butyl lactate | O | 10 | |||||
Diethyl phthalate | O | ||||||
Bis(2-ethylhezyl)hexanedioate | O | ||||||
Ethyl-4-decanoate | O | ||||||
Ethyl pentadecanoate | O | O | |||||
Diethyl butanedoate | O | ||||||
2-Hydroxy-methyl benzoate | O | ||||||
Ethyl-3-heptenoate | O | ||||||
3-Phenylethyl-2-propenoate | O | ||||||
Ethyl-3-methylbutyl pentadecanoate | O | ||||||
Ethyl undecanoate | O | ||||||
2-Methyl decanoate | O | 0.0043–0.0088 | |||||
Ethyl 2-furoate | O | 1 | |||||
Ketones | |||||||
2-Nonanone | O | 0.041–0.082 | |||||
Acetophenone | O | 0.065 | |||||
2-Dodecanone | O | 0.042–0.083 | |||||
Butyrolactone | O | >1 | 100 | ||||
Trans-Whiskey lactone | O | ||||||
Oaklactone | O | ||||||
Acetals | |||||||
1-(1-Ethoxyethoxy)pentane | O | O | |||||
Others | |||||||
1-Ethyl-2,3-dimethylbenzene | O | ||||||
1-Ethyl-3,5-dimethylbenzene | O | ||||||
1,2,4,5-Tetramethylbenzene | O | ||||||
2,6-Dimethyl-2,6-octadiene | O | ||||||
1-Cyclohexylheptene | O | ||||||
2-Pentadecyle-1,3-dicxolane | O | ||||||
Phenol | O | 58.58525 | 7.1 | ||||
Eugenol | O | O | 0.00071 | 0.005 | |||
2-Methoxy phenol | O | 0.00084 | 0.03 | ||||
Benzofuran | O | ||||||
2-Acetylfuran | O | 15.0252 | |||||
2-Methylbenzofuran | O | ||||||
2,4-Dimethylheptane | O | ||||||
4-Methyloctane | O |
Sensory Attributes | References | Sensory Attributes | References | ||
---|---|---|---|---|---|
Aroma | Brandy | [13,14] | Flavor/taste | Alcohol | [13,14,15,16] |
Sweet | [13,14,15,16] | Bitter | [13,14,15,16] | ||
Acetone | [13,14,16] | Sweet | [13,14,15,16] | ||
Alcohol | [13,14,15,16] | Fruit | [13,14,15] | ||
Fruity | [13,14,15,16] | Sour | [13,14,15,16] | ||
Gusu | [13] | Salty | [15] | ||
Sour | [14,15,16] | Mint | [15] | ||
Wine | [16] | Barley | [15] | ||
Yeast | [14,15,16] | Earthy | [15] | ||
Oak | [16] | Metal | [15] | ||
Earthy/woody | [15] | Yeast | [14] | ||
Nuruk | [14] | Texture | Body | [13,14,15,16] | |
Sauce-like | [15] | Swallow | [13,14,15,16] | ||
Green grape | [15] | Persistence | [13,14] | ||
Pineapple | [15] | Pungent | [14,16] | ||
Barley | [14,15] | Astringent | [14,15,16] | ||
Metal | [15] | Cooling sensation | [14,15,16] | ||
Bleach | [14,15] | Tingling | [16] | ||
Spicy | [15] |
Liquor | Raw Materials | Type | Objectives | Major Results | References |
---|---|---|---|---|---|
Shochu | Rice | Shochu | VOC enhancement | Ethyl caproate, ethyl lactate | [17] |
VOC synthesis | Ethyl caproate | [18] | |||
Barley shochu, awamori | Flavoromics focusing on roasted aroma | 2-Furanmethanethiol | [19] | ||
Rice, sweet potato | Imo-shochu | Fermentation temperature control for sensory quality | Sweet/acidic taste | [20] | |
Sweet potato | Sweet potato shochu | Flavor characteristic determination | Linalool, α-terpineol | [21] | |
Sugarcane | Sugarcane shochu | Aroma profile differences by cultivar | MRPs (pyrazines and furans), β-damascenone, guaiacol | [22] | |
Liming effect determination | pH-relevant volatiles | [23] | |||
Barley | Barley shochu | Aroma characteristic difference in koji | Ethyl lactate, 3-methyl-1-pentanol, ethyl benzoate, diethyl succinate, citronellol, 2-phenyl acetate | [24] | |
Shochu, awamori | Major VOC threshold measurement | [25] | |||
Rice | Shochu | Effect of koji VOC on final product | Amino acids, volatile compounds, sensory lexicon | [26] | |
Baijiu | Rice | Rice-flavored baijiu | VOC profile | Key compound—ethyl lactate | [27] |
Major VOC threshold measurement | [28] | ||||
Effect of rice cultivar on VOCs | Isopentyl acetate, ethyl hexanoate, benzeneacetaldehyde, phenethyl acetate, undecane-2-one, ethyl decanoate | [29] | |||
Sauce-flavored baijiu | Regional flavor characteristic determination | [30] | |||
Key VOCs and aroma lexicon development | [31] | ||||
Regional-specific aroma characteristic determination | [32] | ||||
Strong aroma baijiu | Regional chemosensory characteristic determination | [33] | |||
Correlation between sweetness and VOCs | Ethyl hexanoate, hexyl hexanoate, ethyl 3-methylbutanoate | [34] | |||
Qu, environmental elements | Strong aroma baijiu | Regional flavor profile difference-inducing factor | Fungal diversity differences by climate | [35] |
Raw Materials | Objectives | Differences | References | |
---|---|---|---|---|
Rice | VOC profile | Fermentation starter | Traditional/modified nuruk | [36] |
Distillation condition | Atmospheric/vacuum distillation | [36] | ||
Quality optimization | Commercial yeast | Domestic/commercial yeasts | [37] | |
VOC profile | Fermentation starter | Traditional nuruk, koji | [38] | |
Distillation condition | Atmospheric/vacuum distillation | [38] | ||
Liquor production properties | Yeast strain | Saccharomyces cerevisiae N4, N9 isolated from traditional nuruk | [39] | |
Yeast strain | Saccharomyces cerevisiae 88-4 isolated from traditional nuruk | [40] | ||
Fermentation starter | Koji (Aspergillus kawachii, Aspergillus oryzae), traditional/modified nuruk | [41] | ||
VOC profile | Fermentation starter | Koji (Aspergillus luchuensis), traditional nuruk, crude amyloytic enzyme | [42] | |
VOCs, sensory characteristics | Yeast strain | Saccharomyces cerevisiae 88-4 and GNIA2 (selective mutant) isolated from traditional nuruk | [7] | |
Liquor production properties | Distillation condition | Atmospheric/vacuum distillation | [7] | |
Atmospheric/vacuum single distillation, atmospheric continuous distillation | [43] | |||
Organic acid addition | Acetic, citric, lactic acid (0.3% w/v) | [44] | ||
Sweet potato | Liquor production properties | Cultivar | Jinhongmi, Hobak | [10] |
Fermentation starter | Koji (Aspergillus awamori Nakazawa, Aspergillus kawachii, Aspergillus oryzae), modified nuruk | [10] | ||
VOCs, sensory characteristics | Cultivar | Yeonmi, Jeungmi, Shincheonmi, Shinwyeulmi | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, I.-S.; Kim, C.-W.; Kim, B.R.; Lim, B.-R.; Choi, J.-H. A Comparative Analysis of Aroma Profiles of Soju and Other Distilled Spirits from Northeastern Asia. Foods 2024, 13, 3368. https://doi.org/10.3390/foods13213368
Hwang I-S, Kim C-W, Kim BR, Lim B-R, Choi J-H. A Comparative Analysis of Aroma Profiles of Soju and Other Distilled Spirits from Northeastern Asia. Foods. 2024; 13(21):3368. https://doi.org/10.3390/foods13213368
Chicago/Turabian StyleHwang, In-Seo, Chan-Woo Kim, Bo Ram Kim, Bo-Ra Lim, and Ji-Ho Choi. 2024. "A Comparative Analysis of Aroma Profiles of Soju and Other Distilled Spirits from Northeastern Asia" Foods 13, no. 21: 3368. https://doi.org/10.3390/foods13213368
APA StyleHwang, I.-S., Kim, C.-W., Kim, B. R., Lim, B.-R., & Choi, J.-H. (2024). A Comparative Analysis of Aroma Profiles of Soju and Other Distilled Spirits from Northeastern Asia. Foods, 13(21), 3368. https://doi.org/10.3390/foods13213368