A Comprehensive Study on the Amino Acids and Tryptophan-Derived Molecules in Iberian Wine Vinegar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Reagents
2.3. Total Amino Acids Content Extraction
2.4. Amino Acids and Tryptophan-Derived Molecules Analysis by HPLC
2.5. Statistical Analysis
3. Results and Discussion
3.1. Total Amino Acid Content
3.2. Statistical Grouping Study
3.3. Tryptophan-Derived Molecules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, T.; Zhang, B.; Duan, W.; Zhang, J.; Wang, M. Nutrients and bioactive components from vinegar: A fermented and functional food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- Fernandez-Mar, M.I.; Mateos, R.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol. hydroxytyrosol and melatonin. A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- Samad, A.; Azlan, A.; Ismail, A. Therapeutic effects of vinegar: A review. Curr. Opin. Food Sci. 2016, 8, 56–61. [Google Scholar] [CrossRef]
- Kocot, A.M.; Wróblewska, B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci. Technol. 2021, 118, 905–919. [Google Scholar] [CrossRef]
- Awwad, S.; Abdalla, A.; Howarth, F.; Stojanovska, L.; Kamal-Eldin, A.; Ayyash, M. Invited Review: Potential effects of short- and long-term intake of fermented dairy products on prevention and control of type 2 diabetes mellitus. J. Dairy Sci. 2022, 105, 4722–4733. [Google Scholar] [CrossRef]
- Hoffman, R.; Varanoske, A.; Stout, J.R. Chapter Five—Effects of β-Alanine Supplementation on Carnosine Elevation and Physiological Performance. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 84, pp. 183–206. [Google Scholar] [CrossRef]
- Marhuenda, J.; Villaño, D.; Arcusa, R.; Zafrilla, P. Melatonin in wine and beer: Beneficial effects. Molecules 2021, 26, 343. [Google Scholar] [CrossRef] [PubMed]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef]
- Mercolini, L.; Saracino, M.A.; Bugamelli, F. HPLC-F analysis of melatonin and resveratrol isomers in wine using an SPE procedure. J. Sep. Sci. 2008, 31, 1007–1014. [Google Scholar] [CrossRef]
- Mercolini, L.; Mandrioli, R.; Raggi, M.A. Content of melatonin and other antioxidants in grape-related foodstuffs: Measurement using a MEPS-HPLC-F method. J. Pineal Res. 2012, 53, 21–28. [Google Scholar] [CrossRef]
- Muszyńska, B.; Sułkowska-Ziaja, K. Analysis of indole compounds in edible Basidiomycota species after thermal processing. Food Chem. 2012, 132, 455–459. [Google Scholar] [CrossRef]
- Muñiz-Calvo, S.; Bisquert, R.; Guillamón, J.M. Melatonin in yeast and fermented beverages: Analytical tools for detection. physiological role and biosynthesis. Melatonin Res. 2020, 3, 144–160. [Google Scholar] [CrossRef]
- Mutaguchi, Y.; Ohmori, T.; Akano, H.; Doi, K.; Ohshima, T. Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids. Springerplus 2013, 27, 691. [Google Scholar] [CrossRef] [PubMed]
- Chinnici, F.; Durán-Guerrero, E.; Riponia, C. Discrimination of some European vinegars with protected denomination of origin as a function of their amino acid and biogenic amine content. J. Sci. Food Agric. 2016, 96, 3762–3771. [Google Scholar] [CrossRef] [PubMed]
- Albu, C.; Radu, L.E.; Radu, G.L. Assessment of melatonin and its precursors content by a HPLC-MS/ MS method from different Romanian wines. ACS Omega 2020, 5, 27254–27260. [Google Scholar] [CrossRef]
- Rodriguez-Naranjo, M.I.; Gil-Izquierdo, A.; Troncoso, A.M.; Cantos, E.; García-Parrilla, M.C. Melatonin: A new bioactive compound in wine. J. Food Compos. Anal. 2011, 24, 603–608. [Google Scholar] [CrossRef]
- Vilela, A. Microbial Dynamics in Sour–Sweet Wine Vinegar: Impacts on Chemical and Sensory Composition. Appl. Sci. 2023, 13, 7366. [Google Scholar] [CrossRef]
- Pinto, T.; Vilela, A.; Cosme, F. Overview of the Recent Innovations in Vitis Products. In Vitis Products Composition, Health Benefits and Economic Valorization; Botelho, R.V., Jordão, A.M., Eds.; Nova Science Publishers: New York, NY, USA, 2021; Chapter 4, pp. 132–178. [Google Scholar]
- Callejón, R.M.; Tesfaye, W.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. HPLC determination of amino acids with AQC derivatization in vinegars along submerged and surface acetifications and its relation to the microbiota. Eur. Food Res. Technol. 2008, 227, 93–102. [Google Scholar] [CrossRef]
- Giudici, P.; Gullo, M.; Solieri, L.; Falcone, P.M. Technological and microbiological aspects of traditional balsamic vinegar and their influence on quality and sensorial properties. Adv Food Nutr Res. 2009, 58, 137–182. [Google Scholar] [CrossRef]
- Gullo, M.; Giudici, P. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 2008, 125, 46–53. [Google Scholar] [CrossRef]
- Del Signore, A.; Stancher, B.; Calabrese, M. Characterisation of Balsamic vinegars by amino acid content using a multivariate statistical approach. Ital. J. Food Sci. 2000, 12, 317–332. [Google Scholar]
- Martín, M.H.J.; Ángel, M.M.M.; Aarón, S.L.J.; Israel, B.G. Protein Hydrolysates as Biostimulants of Plant Growth and Development. In Biostimulants: Exploring Sources and Applications. Plant Life and Environment Dynamics; Ramawat, N., Bhardwaj, V., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Owolabi, I.O.; Fadairo, O.S.; Ghosal, A.; Coker, O.J.; Soladoye, O.P.; Aluko, R.E.; Bandara, N. Enzymatic Modification of Plant Proteins for Improved Functional and Bioactive Properties. Food Bioprocess Technol. 2023, 16, 1216–1234. [Google Scholar] [CrossRef]
- Olson, R.; Gavin-Smith, B.; Ferraboschi, C.; Kraemer, K. Food Fortification: The Advantages, Disadvantages and Lessons from Sight and Life Programs. Nutrients 2021, 13, 1118. [Google Scholar] [CrossRef]
- Nugrahadi, P.P.; Hinrichs, W.L.J.; Frijlink, H.W.; Schöneich, C.; Avanti, C. Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023, 15, 935. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yan, X.; Zheng, H.; Li, J.; Wu, X.; Xu, J.; Zhen, Z.; Du, C. The application of encapsulation technology in the food Industry: Classifications, recent Advances, and perspectives. Food Chem. X 2024, 21, 101240. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional properties of vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef]
- Leinonen, I.; Iannetta, P.P.M.; Rees, R.M.; Russell, W.; Watson, C.; Barnes, A.P. Lysine Supply Is a Critical Factor in Achieving Sustainable Global Protein Economy. Front. Sustain. Food Syst. 2019, 3, 27. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Ghasemi, A.; Azizi, F. The Association of Dietary l-Arginine Intake and Serum Nitric Oxide Metabolites in Adults: A Population-Based Study. Nutrients 2016, 8, 311. [Google Scholar] [CrossRef] [PubMed]
- Wijnands, K.A.; Castermans, T.M.; Hommen, M.P.; Meesters, D.M.; Poeze, M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015, 7, 1426–1463. [Google Scholar] [CrossRef]
- Rhim, H.C.; Kim, M.S.; Park, Y.-J.; Choi, W.S.; Park, H.K.; Kim, H.G.; Kim, A.; Paick, S.H. The Potential Role of Arginine Supplements on Erectile Dysfunction: A Systemic Review and Meta-Analysis. J. Sex. Med. 2019, 16, 223–234. [Google Scholar] [CrossRef]
- King, D.A.; Mainous III, A.G.; Geesey, M.E. Variation in L-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr. Res. 2008, 28, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Cynober, L.; Bier, D.M.; Kadowaki, M.; Morris Jr, S.M.; Elango, R.; Smriga, M. Proposals for Upper Limits of Safe Intake for Arginine and Tryptophan in Young Adults and an Upper Limit of Safe Intake for Leucine in the Elderly. J. Nutr. 2016, 146, 2652S–2654S. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, C.; Rochell, S.J.; Applegate, T.J. Threonine. arginine. and glutamine: Influences on intestinal physiology. immunology. and microbiology in broilers. Poult. Sci. 2018, 97, 937–945. [Google Scholar] [CrossRef]
- Broberg, A.; Nissinen, L.; Potila, M.; Heino, J. Three-Dimensional Collagen Regulates Collagen Gene Expression by a Mechanism That Requires Serine/Threonine Kinases and Is Independent of Mechanical Contraction. Biochem. Biophys. Res. Commun. 2001, 280, 328–333. [Google Scholar] [CrossRef]
- Jiang, J.; Batra, S.; Zhang, J. Asparagine: A Metabolite to Be Targeted in Cancers. Metabolites 2021, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Jingwen, J.; Li, B.; He, W.; Huang, C. Dietary serine supplementation: Friend or foe? Curr. Opin. Pharmacol. 2021, 61, 12–20. [Google Scholar] [CrossRef]
- Santos, O.; de Moraes, W.M.A.M.; da Silva, G.A.R.; Prestes, J.; Schoenfeld, B.J. Vinegar (acetic acid) intake on glucose metabolism: A narrative review. Clin. Nutr. ESPEN 2019, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO (Food and Agriculture Organization/World Health Organization). Energy and Protein Requirements. Report of a Joint FAO/WHO Ad Hoc Expert Committee; Technical Report Series No. 552; FAO Nutrition Meetings Report Series 52; World Health Organization: Geneva, Switzerland, 1973; p. 118. [Google Scholar]
- Falcone, P.M.; Giudici, P. Molecular Size and Molecular Size Distribution Affecting Traditional Balsamic Vinegar Aging. J. Agric. Food Chem. 2008, 56, 7057–7066. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Dinis, L.-T.; Santos, M.J.; Mota, J.; Vilela, A. Beyond the bottle: Exploring health-promoting compounds in wine and wine-related products—Extraction, detection, quantification, aroma properties, and terroir effects. Foods 2023, 12, 4277. [Google Scholar] [CrossRef]
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. 3—Soils and soil management. In Woodhead Publishing Series in Food Science, Technology and Nutrition, 9th ed.; Lockhart & Wiseman’s Crop Husbandry Including Grassland; Finch, H.J.S., Samuel, A.M., Lane, G.P.F., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 37–62. [Google Scholar] [CrossRef]
- Sagonas, I.; Daoussis, D. Serotonin and systemic sclerosis. An emerging player in pathogenesis. Jt. Bone Spine 2022, 89, 105309. [Google Scholar] [CrossRef]
Type of Vinegar | Sample Code | Source (Sub-Region) | Production Process |
---|---|---|---|
WWV 1 | 876 | Producer (Rioja Alta) | Frings acetifier (submerged method) |
059 | Supermarket | ||
RWV 2 | 134 | Producer (Cima Corgo) | Frings acetifier (submerged method) |
256 | Producer (Cima Corgo) | ||
587 | Producer (Cima Corgo) | ||
398 | Producer (Cima Corgo) | ||
927 | Producer (Cima Corgo) | ||
416 | Producer (Douro Superior) | ||
127 | Producer (Douro Superior) | ||
901 | Producer (Douro Superior) | ||
612 | Producer (Rioja Alta) | ||
209 | Producer (Rioja Alta) | ||
565 | Producer (Rioja Alta) | ||
BV 3 | 809 | Producer (Rioja Alta) | Modified Orleans method |
101 | Producer (Rioja Alta) | ||
326 | Producer (Rioja Alta) | ||
PWV 4 | 834 | Producer (Douro Superior) | Frings acetifier (submerged method) and aging in wood |
215 | Producer (Cima Corgo) | ||
462 | Producer (Cima Corgo) | ||
198 | Producer (Cima Corgo) | ||
703 | Producer (Cima Corgo) | ||
619 | Producer (Cima Corgo) |
Sample | Asp | Glu | Asn | Ser | Hist | Gln | Gly | Thr | Arg | Ala | Tyr | Val | Met | Tryp | Phe | Ile | Leu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WWV | 876 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 4.48 ±0.04 f | 6.18 ±0.08 d | 2.29 ±0.02 b | n.d. | n.d. | n.d. | n.d. | 1.78 ±0.01 d | 1.46 ±0.01 e |
059 | 7.66 ±0.09 c | 5.71 ±0.07 | 3.86 ±0.05 e | 3.31 ±0.05 d | 19.33 ±0.12 d | 21.06 ±0.17 e | 11.01 ±0.09 e | 71.47 ±0.34 f | 61.21 ±0.30 j | 11.33 ±0.12 f | 12.57 ±0.12 f | 1.74 ±0.04 | 6.64 ±0.07 | 30.54 ±0.19 b | 19.11 ±0.17 | 13.61 ±0.15 j | 9.64 ±0.11 j | |
RWV | 134 | n.d. | n.d. | n.d. | 0.77 ±0.01 a | 4.34 ±0.06 b | 0.4 8±0.01 a | 2.77 ±0.05 a | 1.74 ±0.03 c,d | 1.18 ±0.02 b | 11.54 ±0.13 f | 5.76 ±0.07 d | n.d. | n.d. | n.d. | n.d. | 4.06 ±0.06 g | 6.08 ±0.08 i |
256 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.00 ±0.01 a | 0.60 ±0.01 a | 1.58 ±0.02 a | n.d. | 0.013 ±0.006 | n.d. | 1.19 ±0.02 a | n.d. | 1.43 ±0.02 c | 1.21 ±0.02 d | |
587 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
398 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
927 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
416 | n.d. | n.d. | n.d. | n.d. | n.d. | 1.11 ±0.02 c | 4.29 ±0.06 b | 3.78 ±0.05 e | 11.81 ±0.12 h | 6.56 ±0.08 e | 13.22 ±0.14 g | n.d. | n.d. | n.d. | n.d. | 3.50 ±0.05 e | 0.95 ±0.01 c | |
127 | n.d. | n.d. | 0.82 ±0.01 a | 0.91 ±0.01 b | n.d. | n.d. | n.d. | n.d. | n.d. | 1.79 ±0.03 a | 1.58 ±0.02 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
901 | n.d. | n.d. | n.d. | 2.00 ±0.02 c | 1.57 ±0.02 a | 0.76 ±0.01 b | 2.75 ±0.03 a | 1.53 ±0.01 c | 9.31 ±0.09 g | 12.82 ±0.13 g | 3.05 ±0.03 c | n.d. | n.d. | n.d. | n.d. | 3.89 ±0.04 f | 3.60 ±0.03 f | |
612 | n.d. | n.d. | 1.13 ±0.01 b | n.d. | n.d. | n.d. | n.d. | n.d. | 3.40 ±0.03 e | 3.67 ±0.04 b | 1.64 ±0.01 a | n.d. | n.d. | n.d. | n.d. | 1.59 ±0.01 c | 1.13 ±0.01 d | |
209 | 2.68 ±0.04 b | 3.76 ±0.06 | 1.98 ±0.04 c | 1.95 ±0.03 c | 5.30 ±0.07 | 0.91 ±0.01 b | 6.32 ±0.08 d | 3.86 ±0.04 e | 1.95 ±0.03 c | 30.33 ±0.21 i | 26.07 ±0.15 h | n.d. | n.d. | n.d. | n.d. | 5.02 ±0.07 h | 5.03 ±0.07h | |
565 | 2.07 ±0.02 a | n.d. | 3.09 ±0.03 d | 3.25 ±0.03 d | n.d. | 5.06 ±0.06 d | 4.61 ±0.06 c | 1.20 ±0.01 b | 25.27 ±0.18 i | 27.89 ±0.19 h | 7.93 ±0.09 e | n.d. | n.d. | n.d. | n.d. | 5.36 ±0.06 i | 4.78 ±0.04 g | |
BV | 809 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
101 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
326 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.79 ±0.01 a | 0.40 ±0.01 a | 1.47 ±0.02 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
PWV | 834 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2.64 ±0.02 d | 4.49 ±0.05 c | 2.82 ±0.03 c | n.d. | n.d. | n.d. | n.d. | 0.91 ±0.01 a | 0.65 ±0.01 b |
215 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
462 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.17 ±0.01 b | 0.24 ±0.01 a | |
198 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
703 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
619 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | n.d. | <0.001 | n.d. | <0.001 | <0.001 |
Amino Acids | Molar Mass (g/mol) | Daily Intake (mmol/L) per 10 mL of Sample 059 | Classification | RDA for Adults mg/kg/Day [41] | Daily Intake for an Adult of 50 kg mg/50 kg/Day |
---|---|---|---|---|---|
Aspartic Acid | 133.10 | 0.0766 | Dispensable | n.d. | n.d. |
Glutamic acid | 147.13 | 0.0571 | Dispensable | n.d. | n.d. |
Asparagine | 132.12 | 0.0386 | Dispensable | n.d. | n.d. |
Serine | 105.09 | 0.0331 | Dispensable | n.d. | n.d. |
Histidine | 155.16 | 0.1933 | Indispensable | 8–12 | 14.99 |
Glutamine | 146.14 | 0.2106 | Conditionally Indispensable | n.d. | n.d. |
Glycine | 75.07 | 0.1101 | Conditionally Indispensable | n.d. | n.d. |
Threonine | 119.12 | 0.7147 | Indispensable | 7 | 42.56 |
Arginine | 174.20 | 0.6121 | Conditionally Indispensable | n.d. | n.d. |
Alanine | 89.09 | 0.1133 | Dispensable | n.d. | n.d. |
Tyrosine | 181.19 | 0.1257 | Conditionally Indispensable | n.d. | n.d. |
Valine | 117.15 | 0.0174 | Indispensable | 3.5 | 1.02 |
Methionine | 149.21 | 0.0664 | Indispensable | n.d. | n.d. |
Tryptophan | 204.23 | 0.3054 | Indispensable | 5 | 31.18 |
Phenylalanine | 165.19 | 0.1911 | Indispensable | n.d. | n.d. |
Isoleucine | 131.17 | 0.1361 | Indispensable | 10 | 8.92 |
Leucine | 131.17 | 0.0964 | Indispensable | 14 | 6.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, C.; Correia, E.; Aires, A.; Dinis, L.-T.; Vilela, A. A Comprehensive Study on the Amino Acids and Tryptophan-Derived Molecules in Iberian Wine Vinegar. Foods 2024, 13, 3384. https://doi.org/10.3390/foods13213384
Marques C, Correia E, Aires A, Dinis L-T, Vilela A. A Comprehensive Study on the Amino Acids and Tryptophan-Derived Molecules in Iberian Wine Vinegar. Foods. 2024; 13(21):3384. https://doi.org/10.3390/foods13213384
Chicago/Turabian StyleMarques, Catarina, Elisete Correia, Alfredo Aires, Lia-Tânia Dinis, and Alice Vilela. 2024. "A Comprehensive Study on the Amino Acids and Tryptophan-Derived Molecules in Iberian Wine Vinegar" Foods 13, no. 21: 3384. https://doi.org/10.3390/foods13213384
APA StyleMarques, C., Correia, E., Aires, A., Dinis, L. -T., & Vilela, A. (2024). A Comprehensive Study on the Amino Acids and Tryptophan-Derived Molecules in Iberian Wine Vinegar. Foods, 13(21), 3384. https://doi.org/10.3390/foods13213384