Improvement of Storage Quality of Broccoli Using a Cold-Shock Precooling Way and the Related Molecular Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Standards and Test Kits
2.2. Sample Collection and Grouping
2.3. Analysis of Physicochemical Qualities of Broccoli During Storage
2.3.1. Hardness, Moisture Content and Weight Loss
2.3.2. Color
2.3.3. Soluble Solid Content
2.3.4. Soluble Protein Content
2.3.5. Titratable Acidity
2.3.6. Chlorophyll Content
2.3.7. Cellulose Content
2.3.8. Contents of Total Phenols and Flavonoids
2.4. Analysis of Physiological Qualities of Broccoli During Storage
2.4.1. Malondialdehyde Content
2.4.2. Pheophytinase Activity
2.4.3. Mg-Dechelatase Activity
2.4.4. Peroxidase Activity
2.4.5. Catalase Activity
2.5. Analysis of Volatile Flavor Compounds of Broccoli During Storage
2.6. Sensory Evaluation of Broccoli Samples During Storage
2.7. Data Processing and Statistics
3. Results and Discussion
3.1. Effects on the Physicochemical Qualities of Broccoli
3.1.1. Hardness, Moisture Content and Weight Loss
3.1.2. Color
3.1.3. Soluble Solid Content
3.1.4. Soluble Protein Content
3.1.5. Titratable Acid Content
3.1.6. Chlorophyll Content
3.1.7. Cellulose Content
3.1.8. Contents of Total Phenols and Flavonoids
3.2. Effects on the Physiological Qualities of Broccoli
3.2.1. Malondialdehyde Concentration
3.2.2. Pheophytinase and Mg-Dechelatase Activities
3.2.3. Peroxidase and Catalase Activities
3.3. Effects on the Volatile Flavor Compounds of Broccoli
3.4. Effects on the Sensory Qualities of Broccoli
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Huang, T.; Zhang, Y.; Xing, Z.; Yue, X.; Yuan, S.; Li, H.; Xu, X.; Zuo, J.; Wang, Q. The effect of BVOCs produced by Lysinibacillus fusiformis and LED irradiation on pigment metabolism in stored broccoli. Food Chem. 2023, 420, 136038. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.N.; Pieczywek, P.M.; Cybulska, J.; Zdunek, A.; Jelen, H.H. Chemical changes in the broccoli volatilome depending on the tissue treatment. Molecules 2022, 27, 500. [Google Scholar] [CrossRef] [PubMed]
- Aghdam, M.S.; Flores, F.B. Employing phytosulfokine α (PSKα) for delaying broccoli florets yellowing during cold storage. Food Chem. 2021, 355, 129626. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhou, Q.; Zhou, X.; Fang, H.; Zhao, Y.; Wei, B.; Ji, S. Insights into profiling of glucosinolates and genes involved in its metabolic pathway accompanying postharvest yellowing of broccoli. Postharvest Biol. Technol. 2022, 185, 111780. [Google Scholar] [CrossRef]
- Yan, R.; Kebbeh, M.; Cheng, Y.; Wang, Y.; Liu, Y.; Huan, C.; Zheng, X. Exogenous melatonin delays yellowing in broccoli based on hormone, nitrogen and sucrose metabolism regulation during postharvest. Sci. Hortic. 2023, 314, 111944. [Google Scholar] [CrossRef]
- Fang, H.; Zhou, Q.; Cheng, S.; Zhou, X.; Wei, B.; Zhao, Y.; Ji, S. 24-epibrassinolide alleviates postharvest yellowing of broccoli via improving its antioxidant capacity. Food Chem. 2021, 365, 130529. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Y.; Guo, Y.; Zhang, Y.; Li, Y. Pre and postharvest spraying of arginine enhanced the stress resistance and promoted wound healing in broccoli during storage. Postharvest Biol. Technol. 2024, 208, 112669. [Google Scholar] [CrossRef]
- Xie, C.; Tang, J.; Xiao, J.; Geng, X.; Guo, L. Purple light-emitting diode (LED) lights controls chlorophyll degradation and enhances nutraceutical quality of postharvest broccoli florets. Sci. Hortic. 2022, 294, 110768. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Guo, Y.; Ma, Y.; Yang, M.; Fu, R.; Sun, Y. Elevated CO2 delayed yellowing by maintaining chlorophyll biosynthesis and inhibiting chlorophyll degradation and carotenoid accumulation of postharvest broccoli. Postharvest Biol. Technol. 2022, 194, 112089. [Google Scholar] [CrossRef]
- Mi, S.; Li, T.; Sang, Y.; Wang, X.; Duan, Y. Effect of cold shock precooling on the physicochemical, physiological properties and volatile profiles of chili peppers during postharvest storage. LWT-Food Sci. Technol. 2023, 187, 115300. [Google Scholar] [CrossRef]
- Nian, Y.; Wang, N.; Li, R.; Shao, Y.; Li, W. Cold shock treatment alleviates chilling injury in papaya fruit during storage by improving antioxidant capacity and related gene expression. Sci. Hortic. 2022, 294, 110784. [Google Scholar] [CrossRef]
- Hsiao, J.T.; Kuan, Y.C.; Sheu, F. Cold shock treatment delays broccoli flower bud yellowing by repressing the gene expression of glycine-rich RNA-binding protein 2, a senescence-associated protein involved in the regulation of stomata opening. Postharvest Biol. Technol. 2023, 201, 112367. [Google Scholar] [CrossRef]
- Mi, S.; Li, T.; Shi, Q.; Zhu, W.; Wang, X. Cold shock precooling improves the firmness of chili pepper during postharvest storage and the molecular mechanisms related to pectin. Food Chem. 2023, 419, 136052. [Google Scholar] [CrossRef]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Elia, A. Harvest season and genotype affect head quality and shelf-life of ready-to-use broccoli. Agronomy 2020, 10, 527. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, D.; Wang, X.; Xu, X.; Yu, W.; Wang, C.; Yuan, Y.; Yang, S.; Cheng, C. Integrated analysis of postharvest storage characteristics of seven apple cultivars and transcriptome data identifies MdBBX25 as a negative regulator of fruit softening during storage in apples. Postharvest Biol. Technol. 2024, 207, 112646. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Wang, X.; Wu, Z.; Weng, Y. Kinetic analysis of PGA/PBAT plastic films for strawberry fruit preservation quality and enzyme activity. J. Food Compos. Anal. 2022, 108, 104439. [Google Scholar] [CrossRef]
- Gu, S.; Xu, D.; Zhou, F.; Gao, H.; Hu, W.; Gao, X.; Jiang, A. Cold shock treatment maintains quality and induces relative expression of cold shock domain protein (CSDPs) in postharvest sweet cherry. Sci. Hortic. 2020, 262, 109058. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, P.; Feng, D.; Jin, M.; Qi, H. Characterization of flavor substances in cooking and seasoned cooking brown seaweeds by GC-IMS and E-nose. Food Chem. X 2024, 22, 101325. [Google Scholar] [CrossRef]
- Rizzolo, A.; Grassi, M.; Vanoli, M. 1-Methylcyclopropene application, storage temperature and atmosphere modulate sensory quality changes in shelf-life of ‘Abbé Fétel’ pears. Postharvest Biol. Technol. 2014, 92, 87–97. [Google Scholar] [CrossRef]
- Ali, S.; Ishtiaq, S.; Nawaz, A.; Naz, S.; Ejaz, S.; Haider, M.W.; Shah, A.A.; Ali, M.M.; Javad, S. Layer by layer application of chitosan and carboxymethyl cellulose coatings delays ripening of mango fruit by suppressing cell wall polysaccharides disassembly. Int. J. Biol. Macromol. 2024, 256, 128429. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Luo, M.; Song, M.; Zhou, Q.; Chen, J.; Ji, S. Insights into profiling of p-coumaric acid treatment on delaying the yellowing of broccoli. Postharvest Biol. Technol. 2023, 201, 112371. [Google Scholar] [CrossRef]
- Sruthi, N.U.; Josna, K.; Pandiselvam, R.; Kothakota, A.; Gavahian, M.; Mousavi, K.A. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chem. 2022, 368, 130809. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Sun, S.; Dong, C.; Chen, C.; Liu, W.; Du, T. A study on phenotypic micro-variation of stored melon based on weight loss rate. Postharvest Biol. Technol. 2023, 204, 112464. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, C.S. Edible composite bi-layer coating based on whey protein isolate, xanthan gum and clove oil for prolonging shelf life of tomatoes. Meas. Food 2021, 2, 100005. [Google Scholar] [CrossRef]
- Suryatapa, D.; Lakshmishri, R.; Annalakshmi, C.; Kumar, P.T. Impact of domestic packaging and storage on shelflife and sensory quality of organic and conventional Cucumus sativus L. Food Chem. Adv. 2023, 3, 100527. [Google Scholar] [CrossRef]
- Luo, F.; Fang, H.; Zhou, Q.; Zhou, X.; Ji, S. Insights into the mechanism of chlorophyll and carotenoid metabolism regulated by BoPIF4 and BobHLH66 in broccoli. Postharvest Biol. Technol. 2022, 194, 112076. [Google Scholar] [CrossRef]
- Wang, H.; Ou, L.; Chen, T.; Kuan, Y. Refrigeration, forchlorfenuron, and gibberellic acid treatments differentially regulate chlorophyll catabolic pathway to delay yellowing of broccoli. Postharvest Biol. Technol. 2023, 197, 112221. [Google Scholar] [CrossRef]
- Jia, L.; Li, Y.; Liu, G.; He, J. Acidic electrolyzed water improves the postharvest quality of jujube fruit by regulating antioxidant activity and cell wall metabolism. Sci. Hortic. 2022, 304, 111253. [Google Scholar] [CrossRef]
- Fang, H.; Luo, F.; Li, P.; Zhou, Q.; Zhou, X.; Wei, B.; Cheng, S.; Zhou, H.; Ji, S. Potential of jasmonic acid (JA) in accelerating postharvest yellowing of broccoli by promoting its chlorophyll degradation. Food Chem. 2020, 309, 125737. [Google Scholar] [CrossRef]
- An, R.; Liu, X.; Luo, S.; Li, G.; Hu, H.; Li, P. Taxifolin delays the degradation of chlorophyll in pakchoi (Brassica rapa L subsp. chinensis) by regulating the ascorbate-glutathione cycle. Postharvest Biol. Technol. 2022, 191, 111982. [Google Scholar]
- Delbaere, S.M.; Lanssens, L.; Bernaerts, T.; Van Audenhove, J.; Hendrickx, M.E.; Grauwet, T.; Van Loey, A.M. Cell membrane permeabilization by pulsed electric field treatment impacts biochemical conversions and the volatile profile of broccoli stalks. LWT-Food Sci. Technol. 2023, 187, 115307. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, G.; Deng, B.; Di, J.; Wang, Y. Unveiling the mechanisms of aroma metabolism in selenium-treated broccoli through transcriptome sequencing analyses. Sci. Hortic. 2023, 314, 111930. [Google Scholar] [CrossRef]
- Lv, J.; Wu, J.; Zuo, J.; Fan, L.; Shi, J.; Gao, L.; Li, M.; Wang, Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem. 2017, 216, 225–233. [Google Scholar] [CrossRef] [PubMed]
(A) Contents and Statistical Results of Volatiles in Different Groups of Broccolis Collected at the 2nd Day of Storage. | |||||||
No. | Compounds | Contents (μg/g) | p Value | VIP Score | |||
NCS | CS/30 min | CS/60 min | CS/90 min | ||||
1 | Benzyl alcohol | 0.19 ± 0.04 | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.20 ± 0.03 | <0.01 | 1.67 |
2 | Linalool | 0.09 ± 0.02 | 0.12 ± 0.02 | 0.18 ± 0.06 | 0.16 ± 0.01 | <0.05 | 1.31 |
3 | 2-Methylpropanal | 1.74 ± 0.55 | 3.14 ± 0.55 | 6.17 ± 0.91 | 5.14 ± 0.57 | <0.001 | 1.27 |
4 | Pentanal | 4.30 ± 0.85 | 7.02 ± 0.24 | 7.68 ± 0.68 | 6.47 ± 0.42 | <0.001 | 1.24 |
5 | Dimethyl disulfide | 12.22 ± 8.55 | 1.90 ± 0.10 | 1.96 ± 0.13 | 2.18 ± 0.66 | <0.05 | 1.11 |
6 | 1-Propanol | 2.98 ± 0.49 | 4.09 ± 0.69 | 5.50 ± 0.44 | 7.74 ± 3.04 | 0.03 | 1.05 |
7 | (Z)-3-Octen-1-ol | 1.82 ± 0.59 | 1.92 ± 0.32 | 2.58 ± 0.16 | 2.71 ± 0.14 | 0.03 | 1.03 |
8 | 2-Methyl-1-propanol | 3.06 ± 0.45 | 4.17 ± 1.10 | 5.59 ± 1.00 | 6.25 ± 1.28 | 0.02 | 1.02 |
9 | 2-Ethyl furan | 6.48 ± 1.23 | 7.48 ± 0.96 | 9.70 ± 0.25 | 9.44 ± 1.84 | 0.03 | 1.02 |
(B) Contents and Statistical Results of Volatiles in Different Groups of Broccolis Collected at the 4th day of Storage. | |||||||
No. | Compounds | Contents (μg/g) | p Value | VIP Score | |||
NCS | CS/30 min | CS/60 min | CS/90 min | ||||
1 | Propanoic acid | 11.13 ±1.15 | 14.05 ± 1.29 | 10.54 ± 0.33 | 10.36 ± 0.96 | 0.01 | 1.47 |
2 | Isopentanal | 24.19 ± 0.91 | 27.76 ± 1.96 | 28.7 ± 1.61 | 38.03 ± 1.34 | <0.0001 | 1.26 |
3 | 2,3-Butanediol | 1.41 ± 0.01 | 0.87 ± 0.17 | 0.66 ± 0.07 | 0.99 ± 0.07 | <0.001 | 1.20 |
4 | 2-Methylpropanal | 3.95 ± 0.21 | 3.87 ± 0.09 | 4.63 ± 0.60 | 6.38 ± 0.31 | <0.0001 | 1.12 |
5 | Hexanal | 7.76 ± 1.32 | 13.94 ± 6.09 | 3.03 ± 0.66 | 4.01 ± 2.35 | 0.02 | 1.11 |
6 | 2-Furanmethanol | 1.06 ± 0.13 | 0.63 ± 0.25 | 0.68 ± 0.03 | 0.75 ± 0.02 | 0.02 | 1.10 |
7 | 1-Heptanol | 0.04 ± 0.04 | 0.42 ± 0.6 | 1.27 ± 0.21 | 0.95 ± 0.30 | 0.01 | 1.09 |
8 | 5-Methyl-2-thiophenecarboxaldehyde | 5.09 ± 0.81 | 0.74 ± 0.07 | 0.64 ± 0.16 | 0.75 ± 0.08 | <0.0001 | 1.06 |
9 | Nonanal | 0.23 ± 0.01 | 0.18 ± 0.02 | 0.15 ± 0.00 | 0.15 ± 0.03 | <0.01 | 1.06 |
10 | n-Pentyl cyanide | 0.83 ± 0.06 | 0.74 ± 0.04 | 0.76 ± 0.06 | 0.68 ± 0.02 | 0.04 | 1.06 |
11 | β-Ocimene | 0.08 ± 0.04 | n.d. | 0.06 ± 0.02 | 0.15 ± 0.06 | 0.01 | 1.04 |
12 | (E,E)-2,4-Heptadienal | 1.07 ± 0.14 | 1.83 ±0.33 | 2.17 ± 0.23 | 2.59 ± 0.16 | <0.001 | 1.03 |
13 | Dimethyl disulfide | 35.14 ± 2.67 | 24.32 ±0.67 | 26.99 ± 3.87 | 24.64 ± 3.16 | 0.01 | 1.03 |
14 | Heptanal | 1.79 ± 0.14 | 1.07 ± 0.12 | 1.23 ± 0.01 | 1.47 ± 0.17 | <0.001 | 1.03 |
15 | 2-Hexanol | 2.82 ± 0.23 | 3.08 ± 0.17 | 3.55 ± 0.09 | 3.81 ± 0.10 | <0.001 | 1.03 |
16 | 2-Hexen-1-ol | 4.00 ± 0.65 | 2.67 ± 0.45 | 3.36 ± 0.21 | 3.22 ± 0.12 | 0.03 | 1.02 |
17 | 2-Ethyl furan | 10.24 ± 0.46 | 7.52 ± 0.25 | 9.49 ± 0.79 | 10.90 ± 0.82 | <0.001 | 1.02 |
18 | Tert-butylmethylether | 46.73 ± 1.49 | 36.66 ± 1.37 | 38.89 ± 2.36 | 42.12 ± 1.96 | <0.001 | 1.01 |
19 | 3-Methyl valeric acid | 3.73 ± 0.10 | 2.99 ± 0.18 | 3.68 ± 0.23 | 4.22 ± 0.28 | <0.001 | 1.01 |
20 | 2,6-Dimethylpyrazine | 0.23 ± 0.12 | 0.23 ± 0.17 | 0.73 ± 0.15 | 1.01 ± 0.17 | <0.001 | 1.00 |
(C) Contents and Statistical Results of Volatiles in Different Groups of Broccolis Collected at the 7th Day of Storage. | |||||||
No. | Compounds | Contents (μg/g) | p Value | VIP Score | |||
NCS | CS/30 min | CS/60 min | CS/90 min | ||||
1 | 2-Furanmethanol | 1.43 ± 0.45 | 0.96 ± 0.35 | 0.73 ± 0.12 | 0.55 ± 0.15 | 0.03 | 1.39 |
2 | 2,3-Butanediol | 1.83 ± 0.80 | 0.72 ± 0.40 | 0.34 ± 0.05 | 0.38 ± 0.15 | 0.01 | 1.22 |
3 | Benzaldehyde | 1.21 ± 0.19 | 1.35 ± 0.27 | 1.78 ± 0.35 | 2.64 ± 0.56 | 0.01 | 1.08 |
(D) Contents and Statistical Results of Volatiles in Different Groups of Broccolis Collected at the 10th Day of Storage. | |||||||
No. | Compounds | Contents (μg/g) | p Value | VIP Score | |||
NCS | CS/30 min | CS/60 min | CS/90 min | ||||
1 | Pentanal | 5.90 ± 0.18 | 4.79 ± 0.13 | 4.96 ± 0.18 | 7.63 ± 0.31 | <0.0001 | 1.58 |
2 | Tert-butylmethylether | 40.95 ± 0.86 | 45.36 ± 1.81 | 39.92 ± 1.38 | 41.27 ± 1.47 | 0.01 | 1.34 |
3 | 5-Methyl-2-thiophenecarboxaldehyde | 0.18 ± 0.01 | 0.20 ± 0.04 | 0.17 ± 0.05 | 0.28 ± 0.03 | 0.03 | 1.33 |
4 | Propanoic acid | 6.93 ± 0.52 | 12.37 ± 1.21 | 8.78 ± 0.24 | 7.85 ± 0.43 | <0.0001 | 1.22 |
5 | 2,6-Dimethylpyrazine | 0.17 ± 0.10 | 0.91 ± 0.23 | 0.36 ± 0.06 | 0.34 ± 0.09 | <0.001 | 1.18 |
6 | Octanol | 0.52 ± 0.12 | 0.63 ± 0.10 | 0.60 ± 0.06 | 0.86 ± 0.08 | 0.01 | 1.17 |
7 | Methyl isobutyl ketone | 8.15 ± 0.27 | 7.46 ± 1.22 | 6.41 ± 0.49 | 5.67 ± 0.43 | 0.01 | 1.16 |
8 | α-Phellandrene | 3.57 ± 0.60 | 8.81 ± 0.74 | 10.05 ± 0.79 | 12.91 ± 1.92 | <0.0001 | 1.11 |
9 | Octamethyltrisiloxane | 5.96 ± 0.46 | 3.40 ± 0.69 | 3.74 ± 0.14 | 5.13 ± 0.42 | <0.001 | 1.09 |
10 | 2-Hexanol | 4.45 ± 0.12 | 3.89 ± 0.20 | 3.67 ± 0.14 | 3.49 ± 0.21 | <0.001 | 1.06 |
11 | Benzaldehyde | 4.25 ± 0.43 | 5.15 ± 0.95 | 5.43 ± 0.17 | 6.18 ± 0.29 | 0.02 | 1.05 |
12 | 2-Methylpropanal | 4.46 ± 0.24 | 8.21 ± 0.91 | 8.76 ± 0.32 | 10.14 ± 0.84 | <0.0001 | 1.04 |
13 | 1,8-Cineole | 0.18 ± 0.02 | 0.68 ± 0.28 | 0.61 ± 0.14 | 0.31 ± 0.13 | 0.02 | 1.03 |
14 | 2,3-Butanediol | 0.31 ± 0.00 | 1.04 ± 0.07 | 0.65 ± 0.12 | 0.73 ± 0.05 | <0.0001 | 1.01 |
15 | 2,5-Dimethylfuran | 27.11 ± 1.87 | 34.72 ± 4.34 | 35.16 ± 2.38 | 40.07 ± 2.64 | <0.01 | 1.01 |
Storage Time (d) | Treatments | Scores | |||
---|---|---|---|---|---|
Color | Flavor | Compactness | Overall Acceptability | ||
0 | / | 94.80 ± 2.39 | 92.70 ± 3.23 | 95.50 ± 3.14 | 93.90 ± 3.35 |
2 | NCS | 92.00 ± 3.02 | 87.80 ± 3.12 | 93.90 ± 2.42 | 92.60 ± 2.01 |
CS/30 min | 92.60 ± 2.99 | 88.00 ± 4.55 | 92.10 ± 1.52 | 91.30 ± 3.74 | |
CS/60 min | 93.50 ± 2.07 | 94.50 ± 2.59 | 90.00 ± 1.83 | 93.30 ± 2.21 | |
CS/90 min | 92.90 ± 3.35 | 92.50 ± 4.90 | 91.20 ± 3.29 | 93.10 ± 3.63 | |
p value | 0.71 | < 0.001 | 0.01 | 0.45 | |
4 | NCS | 69.50 ± 4.20 | 61.40 ± 6.79 | 66.80 ± 9.60 | 70.50 ± 5.15 |
CS/30 min | 72.60 ± 2.50 | 63.20 ± 10.18 | 78.70 ± 5.01 | 76.20 ± 3.05 | |
CS/60 min | 75.90 ± 3.38 | 65.90 ± 6.62 | 79.10 ± 5.07 | 79.90 ± 4.36 | |
CS/90 min | 82.30 ± 4.16 | 71.50 ± 7.47 | 84.00 ± 5.62 | 85.80 ± 5.83 | |
p value | <0.0001 | 0.04 | <0.0001 | <0.0001 | |
7 | NCS | 50.70 ± 7.78 | 51.50 ± 11.80 | 35.50 ± 11.66 | 51.80 ± 13.46 |
CS/30 min | 62.90 ± 12.12 | 60.50 ± 14.38 | 56.70 ± 18.12 | 63.10 ± 13.32 | |
CS/60 min | 59.90 ± 14.22 | 52.80 ± 14.74 | 61.70 ± 11.97 | 57.40 ± 11.69 | |
CS/90 min | 67.50 ± 8.48 | 55.30 ± 12.42 | 47.80 ± 13.48 | 60.00 ± 12.91 | |
p value | 0.01 | 0.46 | <0.01 | 0.26 | |
10 | NCS | 29.80 ± 8.52 | 31.00 ± 7.75 | 32.50 ± 4.86 | 31.20 ± 7.87 |
CS/30 min | 26.00 ± 4.59 | 27.50 ± 3.66 | 24.60 ± 4.55 | 20.00 ± 7.45 | |
CS/60 min | 40.50 ± 4.97 | 40.50 ± 5.87 | 36.70 ± 6.50 | 37.80 ± 8.16 | |
CS/90 min | 39.40 ± 6.50 | 30.00 ± 6.67 | 35.20 ± 5.47 | 33.50 ± 8.18 | |
p value | <0.0001 | <0.001 | <0.0001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liu, W.; Zhang, L.; Zhu, X.; Wang, X.; Mi, S. Improvement of Storage Quality of Broccoli Using a Cold-Shock Precooling Way and the Related Molecular Mechanisms. Foods 2024, 13, 3401. https://doi.org/10.3390/foods13213401
Guo X, Liu W, Zhang L, Zhu X, Wang X, Mi S. Improvement of Storage Quality of Broccoli Using a Cold-Shock Precooling Way and the Related Molecular Mechanisms. Foods. 2024; 13(21):3401. https://doi.org/10.3390/foods13213401
Chicago/Turabian StyleGuo, Xiaoqian, Weihua Liu, Liyong Zhang, Xinyue Zhu, Xianghong Wang, and Si Mi. 2024. "Improvement of Storage Quality of Broccoli Using a Cold-Shock Precooling Way and the Related Molecular Mechanisms" Foods 13, no. 21: 3401. https://doi.org/10.3390/foods13213401
APA StyleGuo, X., Liu, W., Zhang, L., Zhu, X., Wang, X., & Mi, S. (2024). Improvement of Storage Quality of Broccoli Using a Cold-Shock Precooling Way and the Related Molecular Mechanisms. Foods, 13(21), 3401. https://doi.org/10.3390/foods13213401