Mung Bean Functional Protein Enhances Endothelial Function via Antioxidant Activity and Inflammation Modulation in Middle-Aged Adults: A Randomized Double-Blind Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of a Functional Protein Powder Derived from MB
2.2. Determination of the Total Phenolic Content of a Functional Protein Powder Derived from MB
2.3. Determination of Total Flavonoid Content of a Functional Protein Powder Derived from MB
2.4. Determination of the Amino Acid Profile of a Functional Protein Powder Derived from MB
2.5. Determination of Antioxidant Activity of MB
2.5.1. 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) Radical Scavenging Activity
2.5.2. 2,2′-Azino-Bis(3-Ethylbenzthiazoline-6-Sulfonic Acid) (ABTS) Radical Scavenging Activity
2.6. Determination of Anti-Inflammatory Activity via Cyclooxygenase-2 (COX-2) Inhibition by MB
2.7. Determination of ACE Inhibition by MB
2.8. Study Design
2.9. BMI Assessment
2.10. Flow Mediated Dilation (FMD) before Consumption and at the End Period of Consumption the Product
2.11. Biochemical Assessments
Serum Inflammatory Markers: TNF-α, IL-6, NF-kB, Nitrite, Nitrate, and NO
2.12. Statistical Analysis
3. Results
3.1. Polyphenol and Flavonoids Contents of MB
3.2. Amino Acid Profile of MB
3.3. Biological Activities Profile of MB
3.4. Composition and Biological Activities Profile of MB Functional Protein Drink and Placebo
3.5. Data Characteristics of Subjects
3.6. Effect of the Functional Protein Derived from MB Drinks on Blood Oxidative Stress: Malondialdehyde (MDA) Levels, Catalase (CAT) Activity, and Glutathione Peroxidase (GPx) Activity
3.7. Effect of the Functional Protein Derived from MB Drinks on Inflammatory Markers: NF-kB, TNF-α, IL-6, Nitrite, Nitrate, and NO
3.8. Effect of the Functional Protein Derived from MB Drinks on FMD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Fuang, Y.; Yao, Y.; Zhao, Y.; Yue, D.; Sung, M.; Jin, Y.; Zheng, Z.J. Disparities in cardiovascular disease prevalence among middle-aged and older adults: Roles of socioeconomic position, social connection, and behavioral and physiological risk factors. Front. Cardiovasc. Med. 2022, 9, 972683. [Google Scholar] [CrossRef] [PubMed]
- Bhana, S.; Naidoo, P.; Pillay, S.; Variava, E.; Naidoo, K.; Rohitlall, N.; Sekhuthe, L.; Pauly, B. Health Care Resource Utilization in Adults Living with Type 1 Diabetes Mellitus in the South African Public Health Sector: Protocol for a 1-Year Retrospective Analysis With a 5-, 10-, and 25-Year Projection. JMIR Res. Protoc. 2023, 12, e44308. [Google Scholar] [CrossRef] [PubMed]
- Scioli, M.G.; Storti, G.; D’Amico, F.; Rodriguez Guzman, R.; Centofanti, F.; Doldo, E.; Cespedes Miranda, E.M.; Orlandi, A. Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J. Clin. Med. 2020, 9, 1995. [Google Scholar] [CrossRef]
- Jin, S.; Kang, P.M. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants 2024, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Forstermann, U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 2010, 459, 923–939. [Google Scholar] [CrossRef]
- Chen, W.; Zhong, Y.; Feng, N.; Guo, Z.; Wang, S.; Xing, D. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases. Mol. Med. 2021, 27, 123. [Google Scholar] [CrossRef]
- Park, S.H.; Belcastro, E.; Hasan, H.; Matsushita, K.; Marchandot, B.; Abbas, M.; Toti, F.; Auger, C.; Jesel, L.; Ohlmann, P.; et al. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: Protective effect of gliflozins. Cardiovasc. Diabetol. 2021, 20, 65. [Google Scholar] [CrossRef]
- Ekholm, M.; Kahan, T. The Impact of the Renin-Angiotensin-Aldosterone System on Inflammation, Coagulation, and Atherothrombotic Complications, and to Aggravated COVID-19. Front. Pharmacol. 2021, 12, 640185. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Ling, Z.N.; Jiang, Y.F.; Ru, J.N.; Lu, J.H.; Ding, B.; Wu, J. Amino acid metabolism in health and disease. Signal Transduct. Target. Ther. 2023, 8, 345. [Google Scholar] [CrossRef]
- Bifari, F.; Ruocco, C.; Decimo, I.; Fumagalli, G.; Valerio, A.; Nisoli, E. Amino acid supplements and metabolic health: A potential interplay between intestinal microbiota and systems control. Genes. Nutr. 2017, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Blaj, L.A.; Cucu, A.I.; Tamba, B.I.; Turliuc, M.D. The Role of the NF-kB Pathway in Intracranial Aneurysms. Brain Sci. 2023, 13, 1660. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, J.; Luo, Y.; Ran, D.; Xia, R.; Zheng, Q.; Yao, P.; Wang, H. Nrf1 Reduces COX-2 Expression and Maintains Cellular Homeostasis After Cerebral Ischemia/Reperfusion by Targeting IL-6/TNF-alpha Protein Production. J. Neuroimmune Pharmacol. 2024, 19, 41. [Google Scholar] [CrossRef]
- Wang, Y.; Hill, E.R.; Campbell, W.W.; O’Connor, L.E. Plant- and Animal-Based Protein-Rich Foods and Cardiovascular Health. Curr. Atheroscler. Rep. 2022, 24, 197–213. [Google Scholar] [CrossRef]
- Price, D.; Jackson, K.G.; Lovegrove, J.A.; Givens, D.I. The effects of whey proteins, their peptides and amino acids on vascular function. Nutr. Bull. 2022, 47, 9–26. [Google Scholar] [CrossRef]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef]
- Tome-Carneiro, J.; Visioli, F. Plant-Based Diets Reduce Blood Pressure: A Systematic Review of Recent Evidence. Curr. Hypertens. Rep. 2023, 25, 127–150. [Google Scholar] [CrossRef]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Berry Phenolic Antioxidants—Implications for Human Health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef]
- Wattanathorn, J.; Kawvised, S.; Thukham-Mee, W. Encapsulated Mulberry Fruit Extract Alleviates Changes in an Animal Model of Menopause with Metabolic Syndrome. Oxid. Med. Cell Longev. 2019, 2019, 5360560. [Google Scholar] [CrossRef]
- Wattanathorn, J.; Palachai, N.; Thukham-Mee, W.; Muchimapura, S. Memory-Enhancing Effect of a Phytosome Containing the Combined Extract of Mulberry Fruit and Ginger in an Animal Model of Ischemic Stroke with Metabolic Syndrome. Oxid. Med. Cell Longev. 2020, 2020, 3096826. [Google Scholar] [CrossRef] [PubMed]
- Silveira, E.A.; Castro, M.C.R.; Rezende, A.T.O.; Dos Santos Rodrigues, A.P.; Delpino, F.M.; Oliveira, E.S.; Corgosinho, F.C.; de Oliveira, C. Body composition assessment in individuals with class II/III obesity: A narrative review. BMC Nutr. 2024, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Matemu, A.; Nakamura, S.; Katayama, S. Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants 2021, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, Y.T.; Feng, Y.C.; Wang, C.Y.; Zhang, D.J. Potential effects of mung bean protein and a mung bean protein-polyphenol complex on oxidative stress levels and intestinal microflora in aging mice. Food Funct. 2022, 13, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, N.; Yadav, M.; Sharma, A.K.; Sharma, V.; Chandran, D.; Chakraborty, S.; Dey, A.; Chauhan, S.C.; Dhama, K. Dietary mung bean as promising food for human health: Gut microbiota modulation and insight into factors, regulation, mechanisms and therapeutics-an update. Food Sci. Biotechnol. 2024, 33, 2035–2045. [Google Scholar] [CrossRef]
- Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 2014, 8, 4. [Google Scholar] [CrossRef]
- Nahar, K.; Hasanuzzaman, M.; Alam, M.M.; Fujita, M. Glutathione-induced drought stress tolerance in mung bean: Coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 2015, 7, plv069. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 2017, 23, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Rawat, C.; Kukal, S.; Dahiya, U.R.; Kukreti, R. Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management. J. Neuroinflamm. 2019, 16, 197. [Google Scholar] [CrossRef]
- Scarpa, E.S.; Antonelli, A.; Balercia, G.; Sabatelli, S.; Maggi, F.; Caprioli, G.; Giacchetti, G.; Micucci, M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024, 14, 836. [Google Scholar] [CrossRef]
- Juarez-Chairez, M.F.; Meza-Marquez, O.G.; Marquez-Flores, Y.K.; Jimenez-Martinez, C. Potential anti-inflammatory effects of legumes: A review. Br. J. Nutr. 2022, 128, 2158–2169. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Fu, S.; Yang, R.; Yang, K.; Lei, W.; Yang, Y.; Zhang, Q.; Zhao, Y.; Yu, J.; Yu, L.; et al. Advances in the study of macrophage polarization in inflammatory immune skin diseases. J. Inflamm. 2023, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Srivastava, N.; Bhagyawant, S.S. Vicilin-A major storage protein of mungbean exhibits antioxidative potential, antiproliferative effects and ACE inhibitory activity. PLoS ONE 2018, 13, e0191265. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, R.; Carresi, C.; Mollace, R.; Macri, R.; Scarano, F.; Oppedisano, F.; Maiuolo, J.; Serra, M.; Ruga, S.; Nucera, S.; et al. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front. Cardiovasc. Med. 2024, 11, 1345218. [Google Scholar] [CrossRef]
Phytochemical Contents | A Functional Protein Derived from MB |
---|---|
Total phenolic content | 450.47 ± 2.138 μg Gallic acid/g |
Total flavonoid content | 392.56 ± 0.663 μg Quercetin/g |
Amino Acid | Functional Protein Derived from MB (mg/g) | Soy Protein Concentrate (mg/g) | Whey Protein Concentrate (mg/g) |
---|---|---|---|
EAAs | |||
Threonine | 31.557 | 24.740 | 72.000 |
Methionine | 12.036 | 8.140 | 19.000 |
Phenylalanine | 70.010 | 32.780 | 33.000 |
Histidine | 96.407 | 15.780 | 22.000 |
Lysine | 71.856 | 39.290 | 96.000 |
Valine | 47.904 | 30.640 | 58.000 |
Isoleucine | 36.527 | 29.420 | 58.000 |
Leucine | 94.611 | 49.170 | 102.390 |
Tryptophan | 6.826 | 8.350 | 21.000 |
Arginine | 117.365 | 46.420 | 21.000 |
Total EAAs | 585.150 | 284.730 | 502.390 |
NEAAs | |||
Serine | 60.480 | 33.690 | 47.000 |
Glycine | 17.844 | 26.880 | 18.000 |
Glutamic acid | 144.311 | 120.130 | 167.000 |
Proline | 58.683 | 32.980 | 58.000 |
Cysteine | 0.916 | 8.860 | 20.890 |
Alanine | 42.695 | 26.770 | 49.000 |
Tyrosine | 27.066 | 23.010 | 18.000 |
Aspartic acid | 131.747 | 72.490 | 108.000 |
Total NEAAs | 483.730 | 344.810 | 485.890 |
Parameters | A Functional Protein Powder Derived from MB | |
---|---|---|
IC50 (mg/mL) | % Inhibition (1 mg/mL of MB) | |
DPPH inhibition | 6.557 ± 0.026 | 20.32 ± 0.15 |
ABTS inhibition | 4.950 ± 0.008 | 18.03 ± 0.15 |
COX-2 inhibition | 5.622 ± 0.28 | 10.60 ± 0.06 |
ACE inhibition | 4.061 ± 0.005 | 13.72 ± 0.28 |
Ingredient/Amino Acid | MB10 Protein Drink (g/mg) | Placebo (g/mg) | Calories (kcal) |
---|---|---|---|
Ingredients | |||
Mung bean powder | 3.00 | 3.00 | 12 |
Soy powder | 3.00 | 3.00 | 12 |
Mung bean protein concentrate | 10.00 | - | 40 |
Maltodextrin | 3.80 | 13.80 | 55.2 |
Brown sugar | 5.00 | 5.00 | 20 |
Salt | 0.40 | 0.40 | 0 |
Total | 25.20 | 25.20 | 99.2 kcal |
Amino acids | |||
Tryptophan | 6.83 | 1.12 | |
Threonine | 31.56 | 3.14 | |
Isoleucine | 36.53 | 4.25 | |
Leucine | 94.61 | 6.78 | |
Lysine | 71.86 | 5.33 | |
Methionine | 12.04 | 1.13 | |
Phenylalanine | 70.01 | 4.59 | |
Valine | 47.90 | 4.10 | |
Histidine | 96.41 | 2.30 | |
Total EAAs | 585.15 | 34.79 | |
Arginine | 117.37 | 6.67 | |
Cystine | 0.92 | 1.05 | |
Tyrosine | 27.07 | 3.22 | |
Alanine | 42.70 | 3.59 | |
Aspartic acid | 131.74 | 10.20 | |
Glutamic acid | 144.31 | 17.50 | |
Glycine | 36.00 | 3.60 | |
Proline | 58.68 | 4.96 | |
Serine | 60.48 | 4.59 | |
Total NEAAs | 603.70 | 55.79 |
Parameters | Placebo | MB10 Protein Drink | MB15 Protein Drink |
---|---|---|---|
DPPH inhibition (IC50: mg/mL) | 7.75 ± 0.01 | 5.68 ± 0.02 a | 4.33 ± 0.01 a,b |
ABTS inhibition (IC50: mg/mL) | 4.71 ± 0.03 | 3.32 ± 0.01 a | 2.35 ± 0.00 a,b |
COX-2 inhibition (IC50: mg/mL) | 6.34 ± 0.02 | 5.35 ± 0.02 a | 4.92 ± 0.01 a,b |
ACE inhibition (IC50: mg/mL) | 6.62 ± 0.02 | 4.94 ± 0.02 a | 4.87 ± 0.02 a |
General Characteristics | Baseline | ||
Placebo (n = 9) | MB10 (n = 9) | MB15 (n = 9) | |
Age (year) | 49.44 ± 1.04 | 50.22 ± 1.74 (p = 0.929) | 51.67 ± 1.68 (p = 0.307) |
Gender (male/female) | 0/9 | 1/8 | 1/8 |
Blood temperature (°C) | 36.54 ± 0.06 | 36.61 ± 0.06 (p = 0.407) | 36.56 ± 0.05 (p = 0.889) |
Heart rate (beats/min) | 71.33 ± 2.58 | 67.33 ± 3.36 (p = 0.353) | 70.89 ± 2.96 (p = 0.917) |
Respiratory rate (breaths/min) | 17.22 ± 0.22 | 16.78 ± 0.28 (p = 0.219) | 17.33 ± 0.24 (p = 0.696) |
Systolic blood pressure (mmHg) | 113.67 ± 3.14 | 110.56 ± 3.86 (p = 0.554) | 109.22 ± 3.95 (p = 0.400) |
Diastolic blood pressure (mmHg) | 74.22 ± 2.37 | 69.22 ± 2.19 (p = 0.122) | 71.67 ± 2.05 (p = 0.421) |
Body weight (kg) | 56.71 ± 2.88 | 53.32 ± 1.79 (p = 0.270) | 52.77 ± 1.43 (p = 0.201) |
Body height (cm) | 158.11 ± 1.39 | 155.56 ± 2.32 (p = 0.348) | 156.56 ± 1.83 (p = 0.565) |
BMI (kg/m2) | 22.59 ± 0.87 | 22.06 ± 0.67 (p = 0.624) | 21.59 ± 0.75 (p = 0.363) |
General Characteristics | After 6 Weeks Consume | ||
Placebo (n = 9) | MB10 (n = 9) | MB15 (n = 9) | |
Age (year) | 49.44 ± 1.04 | 50.22 ± 1.74 (p = 0.929) | 51.67 ± 1.68 (p = 0.307) |
Gender (male/female) | 0/9 | 1/8 | 1/8 |
Blood temperature (°C) | 36.58 ± 0.05 | 36.61 ± 0.03 (p = 0.703) | 36.59 ± 0.07 (p = 0.963) |
Heart rate (beats/min) | 69.56 ± 2.48 | 69.56 ± 3.13 (p = 0.790) | 70.11 ± 2.08 (p = 0.929) |
Respiratory rate (breaths/min) | 17.33 ± 0.29 | 17.33 ± 0.17 (p = 0.771) | 17.44 ± 0.18 (p = 0.961) |
Systolic blood pressure (mmHg) | 110.22 ± 3.40 | 106.00 ± 2.94 (p = 0.378) | 107.33 ± 3.60 (p = 0.545) |
Diastolic blood pressure (mmHg) | 69.22 ± 2.53 | 65.78 ± 2.44 (p = 0.306) | 68.67 ± 1.99 (p = 0.868) |
Body weight (kg) | 56.60 ± 2.88 | 52.99 ± 1.94 (p = 0.258) | 52.92 ± 1.58 (p = 0.250) |
Body height (cm) | 158.11 ± 1.39 | 155.56 ± 2.32 (p = 0.348) | 156.56 ± 1.83 (p = 0.565) |
BMI (kg/m2) | 22.55 ± 0.87 | 21.92 ± 0.75 (p = 0.582) | 21.65 ± 0.78 (p = 0.433) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muchimapura, S.; Thukhammee, W.; Phuthong, S.; Potue, P.; Khamseekaew, J.; Tong-un, T.; Sangartit, W. Mung Bean Functional Protein Enhances Endothelial Function via Antioxidant Activity and Inflammation Modulation in Middle-Aged Adults: A Randomized Double-Blind Trial. Foods 2024, 13, 3427. https://doi.org/10.3390/foods13213427
Muchimapura S, Thukhammee W, Phuthong S, Potue P, Khamseekaew J, Tong-un T, Sangartit W. Mung Bean Functional Protein Enhances Endothelial Function via Antioxidant Activity and Inflammation Modulation in Middle-Aged Adults: A Randomized Double-Blind Trial. Foods. 2024; 13(21):3427. https://doi.org/10.3390/foods13213427
Chicago/Turabian StyleMuchimapura, Supaporn, Wipawee Thukhammee, Sophida Phuthong, Prapassorn Potue, Juthamas Khamseekaew, Terdthai Tong-un, and Weerapon Sangartit. 2024. "Mung Bean Functional Protein Enhances Endothelial Function via Antioxidant Activity and Inflammation Modulation in Middle-Aged Adults: A Randomized Double-Blind Trial" Foods 13, no. 21: 3427. https://doi.org/10.3390/foods13213427
APA StyleMuchimapura, S., Thukhammee, W., Phuthong, S., Potue, P., Khamseekaew, J., Tong-un, T., & Sangartit, W. (2024). Mung Bean Functional Protein Enhances Endothelial Function via Antioxidant Activity and Inflammation Modulation in Middle-Aged Adults: A Randomized Double-Blind Trial. Foods, 13(21), 3427. https://doi.org/10.3390/foods13213427