Antioxidant Potential Evaluation at Various Stages of Black Cumin Oil Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Screw Pressing
2.4. Soxhlet Extraction
2.5. Determination of Oil Yield and Oil Content in Black Cumin Cake
2.6. Determination of Antioxidant Properties
2.6.1. Preparation of Methanolic Extracts
2.6.2. Hydrolysis of Black Cumin Meal Extracts
Acid Hydrolysis
Alkaline Hydrolysis
2.6.3. Antioxidant Capacity and Total Phenolic Content
DPPH Method
CUPRAC Method
Folin–Ciocalteu Method
2.7. Determination of Peroxide Value
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Oil Extraction Methods on Antioxidant Capacity of Black Cumin Oils and Its By-Products
3.2. Effect of Screw Pressing Conditions on Quality and Antioxidant Properties of Cold-Pressed Black Cumin Oil and Black Cumin Cake
3.2.1. Temperature Monitoring
3.2.2. Oil Yield and Cake Residual Oil
3.2.3. Antioxidant Properties of Black Cumin Oil and Black Cumin Cake
3.3. Effect of Acid and Alkaline Hydrolysis on Antioxidant Properties of Black Cumin Meal
3.4. Greenness Evaluation of Oil Extraction Procedures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabiej-Kozioł, D.; Momot-Ruppert, M.; Stawicka, B.; Szydłowska-Czerniak, A. Health Benefits, Antioxidant Activity, and Sensory Attributes of Selected Cold-Pressed Oils. Molecules 2023, 28, 5484. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, G.; Czaplicki, S.; Konopka, I. Variation in the Composition and Quality of Nigella sativa L. Seed Oils—The Underestimated Impact on Possible Health-Promoting Properties. Molecules 2024, 29, 1360. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Alahdadi, I.; Soltani, E.; Boelt, B.; Benakashani, F. Variation of Seed Oil Content, Oil Yield, and Fatty Acids Profile in Iranian Nigella sativa L. Landraces. Ind. Crops Prod. 2020, 149, 112367. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Momot, M.; Stawicka, B.; Rabiej-Kozioł, D. Effects of the Chemical Composition on the Antioxidant and Sensory Characteristics and Oxidative Stability of Cold-Pressed Black Cumin Oils. Antioxidants 2022, 11, 1556. [Google Scholar] [CrossRef]
- Albakry, Z.; Karrar, E.; Ahmed, I.A.M.; Oz, E.; Proestos, C.; El Sheikha, A.F.; Oz, F.; Wu, G.; Wang, X. Nutritional Composition and Volatile Compounds of Black Cumin (Nigella sativa L.) Seed, Fatty Acid Composition and Tocopherols, Polyphenols, and Antioxidant Activity of Its Essential Oil. Horticulturae 2022, 8, 575. [Google Scholar] [CrossRef]
- Abedinzadeh, S.; Torbati, M.; Azadmard-Damirchi, S.; Hashempour-Baltork, F. Changes in the Quality of Oil Extracted by Hot Pressing from Black Cumin (Nigella sativa) Seeds and by Solvent from the Obtained Cake during Refining. Food Sci. Nutr. 2024, 12, 3563–3573. [Google Scholar] [CrossRef]
- D’Antuono, L.F.; Moretti, A.; Lovato, A.F.S. Seed Yield, Yield Components, Oil Content and Essential Oil Content and Composition of Nigella sativa L. and Nigella damascena L. Ind. Crops Prod. 2002, 15, 59–69. [Google Scholar] [CrossRef]
- Sarkar, C.; Jamaddar, S.; Islam, T.; Mondal, M.; Islam, M.T.; Mubarak, M.S. Therapeutic Perspectives of the Black Cumin Component Thymoquinone: A Review. Food Funct. 2021, 12, 6167–6213. [Google Scholar] [CrossRef]
- Gueffai, A.; Gonzalez-Serrano, D.J.; Christodoulou, M.C.; Orellana-Palacios, J.C.; Ortega, M.L.S.; Ouldmoumna, A.; Kiari, F.Z.; Ioannou, G.D.; Kapnissi-Christodoulou, C.P.; Moreno, A.; et al. Phenolics from Defatted Black Cumin Seeds (Nigella sativa L.): Ultrasound-Assisted Extraction Optimization, Comparison, and Antioxidant Activity. Biomolecules 2022, 12, 1311. [Google Scholar] [CrossRef]
- Sumara, A.; Stachniuk, A.; Montowska, M.; Kotecka-Majchrzak, K.; Grywalska, E.; Mitura, P.; Saftić Martinović, L.; Kraljević Pavelić, S.; Fornal, E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. Food Rev. Int. 2023, 39, 5402–5422. [Google Scholar] [CrossRef]
- Kiralan, M.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Physicochemical Properties and Stability of Black Cumin (Nigella sativa) Seed Oil as Affected by Different Extraction Methods. Ind. Crops Prod. 2014, 57, 52–58. [Google Scholar] [CrossRef]
- Wroniak, M.; Ptaszek, A.; Ratusz, K. Assessing the Effect of Pressing Conditions in Expeller Press on Quality and Chemical Composition of Rapeseed Oil. Food. Science. Technol. Qual. 2013, 1, 92–104. [Google Scholar] [CrossRef]
- Todorović, Z.B.; Mitrović, P.M.; Zlatković, V.; Grahovac, N.L.; Banković-Ilić, I.B.; Troter, D.Z.; Marjanović-Jeromela, A.M.; Veljković, V.B. Optimization of Oil Recovery from Oilseed Rape by Cold Pressing Using Statistical Modeling. J. Food Meas. Charact. 2024, 18, 474–488. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Trapani, S.; Fregapane, G.; Salvador, M.D. Phenolics, Tocopherols, and Volatiles Changes During Virgin Pistachio Oil Processing Under Different Technological Conditions. Eur. J. Lipid Sci. Technol. 2018, 120, 1800221. [Google Scholar] [CrossRef]
- Aladić, K. Cold Pressing and Supercritical CO2 Extraction of Hemp (Cannabis sativa) Seed Oil. Chem. Biochem. Eng. Q. J. 2015, 28, 481–490. [Google Scholar] [CrossRef]
- Sannino, M.; Vastolo, A.; Faugno, S.; Masucci, F.; Di Francia, A.; Sarubbi, F.; Pelosi, M.E.; Kiatti, D.D.; Serrapica, F. The Use of Small Diameter Nozzles in Temperature-Controlled Hemp Oil Extraction Allows High Oil Yields and Good Quality Residual Hemp Cake Feed. Front. Vet. Sci. 2024, 10, 1322637. [Google Scholar] [CrossRef]
- Bălțatu, C.; Biriș, S.-S.; Mateescu, M.; Marin, E.; Gheorghe, G. Determination of the Main Properties of Grape Seeds and Improving the Mechanical Oil Extraction. U.P.B. Sci. Bull. 2023, 85, 291–304. [Google Scholar]
- Zlatković, V.S.; Grahovac, N.L.; Banković Ilić, I.B.; Mitrović, P.M.; Troter, D.Z.; Todorović, Z.B.; Marjanović Jeromela, A.M.; Veljković, V.B. Effects of Screw Pressing Conditions on Fodder Radish Seed Oil Yield, Throughput, and Fatty Acid Profile. J. Food Process Eng. 2024, 47, e14588. [Google Scholar] [CrossRef]
- Kiss, T.; Mašán, V.; Híc, P. Antioxidant Capacity, Total Phenolic Compounds and Fatty Acids Composition in Walnut Oil and Bagasse Pellets Produced at Different Parameters of the Screw Press. Acta Univ. Agric. Silvic. Mendel. Brun. 2020, 68, 519–527. [Google Scholar] [CrossRef]
- Sriti, J.; Talou, T.; Faye, M.; Vilarem, G.; Marzouk, B. Oil Extraction from Coriander Fruits by Extrusion and Comparison with Solvent Extraction Processes. Ind. Crops Prod. 2011, 33, 659–664. [Google Scholar] [CrossRef]
- Deli, S.; Farah Masturah, M.; Tajul Aris, Y.; Wan Nadiah, W.A. The Effects of Physical Parameters of the Screw Press Oil Expeller on Oil Yield from Nigella sativa L Seeds. Int. Food Res. J. 2011, 18, 1367–1373. [Google Scholar]
- Albakry, Z.; Karrar, E.; Mohamed Ahmed, I.A.; Ali, A.A.; Al-Maqtari, Q.A.; Zhang, H.; Wu, G.; Wang, X. A Comparative Study of Black Cumin Seed (Nigella sativa L.) Oils Extracted with Supercritical Fluids and Conventional Extraction Methods. J. Food Meas. Charact. 2023, 17, 2429–2441. [Google Scholar] [CrossRef]
- Choudhury, M.S.; Islam, M.N.; Khan, M.M.; Ahiduzzaman, M.; Masum, M.M.I.; Ali, M.A. Effect of Extraction Methods on Physical and Chemical Properties and Shelf Life of Black Cumin (Nigella sativa L.) Oil. J. Agric. Food Res. 2023, 14, 100836. [Google Scholar] [CrossRef]
- Obeidat, B. The Inclusion of Black Cumin Meal Improves Growth Performance of Growing Awassi Lambs. Vet. Sci. 2020, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Mashhadi Abolghasem, F.; Kim, R.H.; Park, S.Y.; Lim, T.; Lee, H.; Hwang, K.T.; Kim, J. Effects of Roasting and Ultrasound-assisted Enzymatic Treatment of Nigella sativa L. Seeds on Thymoquinone in the Oil and Antioxidant Activity of Defatted Seed Meal. J. Sci. Food Agric. 2023, 103, 6208–6218. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Laukagalis, V.; Paulauskienė, A.; Baltušnikienė, A.; Meškinytė, E. Quality Changes of Cold-Pressed Black Cumin (Nigella sativa L.), Safflower (Carthamus tinctorius L.), and Milk Thistle (Silybum marianum L.) Seed Oils during Storage. Plants 2023, 12, 1351. [Google Scholar] [CrossRef] [PubMed]
- Krimer Malešević, V.; Vaštag, Ž.; Popović, L.; Popović, S.; Peričin-Starčevič, I. Characterisation of Black Cumin, Pomegranate and Flaxseed Meals as Sources of Phenolic Acids. Int. J. Food Sci. Technol. 2014, 49, 210–216. [Google Scholar] [CrossRef]
- Attard, K.; Oztop, M.H.; Lia, F. The Effect of Hydrolysis on the Antioxidant Activity of Olive Mill Waste. Appl. Sci. 2022, 12, 12187. [Google Scholar] [CrossRef]
- Dos Santos, K.I.P.; Benjamim, J.K.F.; Da Costa, K.A.D.; Dos Reis, A.S.; De Souza Pinheiro, W.B.; Santos, A.S. Metabolomics Techniques Applied in the Investigation of Phenolic Acids from the Agro-Industrial by-Product of Carapa guianensis Aubl. Arab. J. Chem. 2021, 14, 103421. [Google Scholar] [CrossRef]
- Pag, N.I.; Radu, D.G.; Drăgănescu, D.; Popa, M.I.; Sîrghie, C. Flaxseed Cake—A Sustainable Source of Antioxidant and Antibacterial Extracts. Cellul. Chem. Technol. 2014, 48, 265–273. [Google Scholar]
- Prakash, A.; Vadivel, V.; Banu, S.F.; Nithyanand, P.; Lalitha, C.; Brindha, P. Evaluation of Antioxidant and Antimicrobial Properties of Solvent Extracts of Agro-Food by-Products (Cashew Nut Shell, Coconut Shell and Groundnut Hull). Agric. Nat. Resour. 2018, 52, 451–459. [Google Scholar] [CrossRef]
- Sibhatu, H.K.; Anuradha Jabasingh, S.; Yimam, A.; Ahmed, S. Ferulic Acid Production from Brewery Spent Grains, an Agro-Industrial Waste. LWT Food Sci. Technol. 2021, 135, 110009. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.Y.; González-Martínez, B.E.; Cruz-Cansino, N.D.S.; López-Cabanillas, M.; Suárez-Jacobo, Á.; Cervantes-Elizarrarás, A.; Ramírez-Moreno, E. Effect of Ultrasound on In Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Blackberry (Rubus fruticosus) Residues Cv. Tupy. Plant Foods Hum. Nutr. 2020, 75, 608–613. [Google Scholar] [CrossRef]
- Vadivel, V.; Moncalvo, A.; Dordoni, R.; Spigno, G. Effects of an Acid/Alkaline Treatment on the Release of Antioxidants and Cellulose from Different Agro-Food Wastes. Waste Manag. 2017, 64, 305–314. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, S.; Wang, H.; Yang, J.; Li, L.; Zhu, J.; Liu, Y. Ultrasound-Alkaline Combined Extraction Improves the Release of Bound Polyphenols from Pitahaya (Hylocereus undatus ’Foo-Lon’) Peel: Composition, Antioxidant Activities and Enzyme Inhibitory Activity. Ultrason. Sonochem. 2022, 90, 106213. [Google Scholar] [CrossRef] [PubMed]
- Tubesha, Z.; Iqbal, S.; Ismail, M. Effects of Hydrolysis Conditions on Recovery of Antioxidants from Methanolic Extracts of Nigella Sativa seeds. J. Med. Plants Res. 2011, 5, 5393–5399. [Google Scholar]
- Siger, A.; Czubinski, J.; Dwiecki, K.; Kachlicki, P.; Nogala-Kalucka, M. Identification and Antioxidant Activity of Sinapic Acid Derivatives in Brassica napus L. Seed Meal Extracts. Eur. J. Lipid Sci. Technol. 2013, 115, 1130–1138. [Google Scholar] [CrossRef]
- Rabiej-Kozioł, D.; Tymczewska, A.; Szydłowska-Czerniak, A. Changes in Quality of Cold-Pressed Rapeseed Oil with Sinapic Acid Ester-Gelatin Films during Storage. Foods 2022, 11, 3341. [Google Scholar] [CrossRef]
- ISO 27107:2010; Animal and Vegetable Fats and Oils-Determination of Peroxide Value-Potentiometric End-Point Determination. ISO: Geneva, Switzerland, 2010.
- Wojnowski, W. Analytical Greenness Calculator. Available online: https://mostwiedzy.pl/pl/wojciech-wojnowski,174235-1/AGREE? (accessed on 15 September 2024).
- Tibebe, D.; Belete, A.; Kassa, Y.; Mulugeta, M.; Moges, Z.; Yenealem, D.; Fentie, T.; Amare, A. Evaluation of Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Seed Extracted from Coriander (Coriandrum sativum L.) and Black Cumin (Nigella sativa) Spices. Food Anal. Methods 2024, 17, 945–955. [Google Scholar] [CrossRef]
- Hameed, S.; Imran, A.; Nisa, M.U.; Arshad, M.S.; Saeed, F.; Arshad, M.U.; Asif Khan, M. Characterization of Extracted Phenolics from Black Cumin (Nigella sativa Linn), Coriander Seed (Coriandrum sativum L.), and Fenugreek Seed (Trigonella foenum-graecum). Int. J. Food Prop. 2019, 22, 714–726. [Google Scholar] [CrossRef]
- Hossen, J.; Ali, A. Effect of Microwave Radiation on the Antioxidant Activity of Black Cumin Seed. Acta Sci. Pol. Technol. Aliment. 2019, 18, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Terpinc, P.; Čeh, B.; Ulrih, N.P.; Abramovič, H. Studies of the Correlation between Antioxidant Properties and the Total Phenolic Content of Different Oil Cake Extracts. Ind. Crops Prod. 2012, 39, 210–217. [Google Scholar] [CrossRef]
- Lutterodt, H.; Luther, M.; Slavin, M.; Yin, J.-J.; Parry, J.; Gao, J.-M.; Yu, L. Fatty Acid Profile, Thymoquinone Content, Oxidative Stability, and Antioxidant Properties of Cold-Pressed Black Cumin Seed Oils. LWT Food Sci. Technol. 2010, 43, 1409–1413. [Google Scholar] [CrossRef]
- Soleimanifar, M.; Niazmand, R.; Jafari, S.M. Evaluation of Oxidative Stability, Fatty Acid Profile, and Antioxidant Properties of Black Cumin Seed Oil and Extract. J. Food Meas. Charact. 2019, 13, 383–389. [Google Scholar] [CrossRef]
- Rokosik, E.; Dwiecki, K.; Siger, A. Nutritional Quality and Phytochemical Contents of Cold Pressed Oil Obtained from Chia, Milk Thistle, Nigella, and White and Black Poppy Seeds. Grasas Aceites. 2020, 71, e368. [Google Scholar] [CrossRef]
- Hamed, S.F.; Shaaban, H.A.; Ramadan, A.A.; Edris, A.E. Potentials of Enhancing the Physicochemical and Functional Characteristics of Nigella sativa Oil by Using the Screw Pressing Technique for Extraction. Grasas Aceites. 2017, 68, e188. [Google Scholar] [CrossRef]
- Harivaindaran, K.V.; Hữu Tiến, N.; Nguyễn Song Đinh, T.; Samsudin, H.; Ariffin, F.; Mohammadi Nafchi, A. The effects of superheated steam roasting on proximate analysis, antioxidant activity, and oil quality of black seed (Nigella sativa). Food Sci. Nutr. 2023, 11, 7296–7310. [Google Scholar] [CrossRef]
Samples | Antioxidant Capacity | TPC * ± SD (mg GAE/100 g) | |
---|---|---|---|
DPPH * ± SD | CUPRAC * ± SD | ||
(µmol TE/100 g) | |||
Raw material | |||
BCS | 1219 ± 46 a | 871 ± 39 a | 182 ± 13 c |
Oils | |||
BCCPO | 3451 ± 89 b | 3475 ± 172 d | 259 ± 6 d |
BCEO-S | 16,500 ± 249 d | 4827 ± 144 e | 292 ± 9 e |
BCEO-C | 4041 ± 181 c | 1275 ± 44 b | 70 ± 1 a |
By-products | |||
BCC | 3305 ± 127 b | 3397 ± 131 d | 426 ± 23 f |
BCM | 3426 ± 63 b | 1514 ± 74 c | 92 ± 4 b |
Parameter | Nozzle Diameters (mm) | ||
---|---|---|---|
5 | 8 | 10 | |
Cold-Pressed Black Cumin Oil | |||
Oil yield * ± SD (%) | 48.86 ± 0.40 c | 23.79 ± 0.29 b | 20.92 ± 0.23 a |
PV * ± SD (meq O2/kg) | 74.92 ± 1.93 a | 79.77 ± 1.42 b | 84.38 ± 3.79 c |
DPPH * ± SD (µmol TE/100 g) | 2933 ± 76 a | 4880 ± 902 b | 5894 ± 98 c |
TPC * ± SD (mg GAE/100 g) | 135 ± 8 a | 145 ± 8 a | 199 ± 12 b |
Black Cumin Cake | |||
Weight of cake * ± SD (g/kg seeds) | 511.40 ± 2.26 a | 762.10 ± 1.58 b | 790.76 ± 1.75 c |
Oil in cake * ± SD (%) | 23.59 ± 0.46 a | 26.64 ± 0.44 b | 28.79 ± 0.08 c |
Water in cake * ± SD (%) | 6.70 ± 0.03 a | 6.36 ± 0.24 a | 6.48 ± 0.17 a |
DPPH * ± SD (µmol TE/100 g) | 1890 ± 151 a,b | 1958 ± 76 a,b | 2265 ± 381 b |
TPC * ± SD (mg GAE/100 g) | 341 ± 12 c | 313 ± 14 b | 284 ± 17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiej-Kozioł, D.; Szydłowska-Czerniak, A. Antioxidant Potential Evaluation at Various Stages of Black Cumin Oil Production. Foods 2024, 13, 3518. https://doi.org/10.3390/foods13213518
Rabiej-Kozioł D, Szydłowska-Czerniak A. Antioxidant Potential Evaluation at Various Stages of Black Cumin Oil Production. Foods. 2024; 13(21):3518. https://doi.org/10.3390/foods13213518
Chicago/Turabian StyleRabiej-Kozioł, Dobrochna, and Aleksandra Szydłowska-Czerniak. 2024. "Antioxidant Potential Evaluation at Various Stages of Black Cumin Oil Production" Foods 13, no. 21: 3518. https://doi.org/10.3390/foods13213518
APA StyleRabiej-Kozioł, D., & Szydłowska-Czerniak, A. (2024). Antioxidant Potential Evaluation at Various Stages of Black Cumin Oil Production. Foods, 13(21), 3518. https://doi.org/10.3390/foods13213518