Water-Soluble Intracellular Polysaccharides (IPSW-2 to 4) from Phellinus igniarius Mycelia: Fractionation, Structural Elucidation, and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction, Fractionation, and Purification of Polysaccharides
2.3. Molecular Characterization Analysis
2.3.1. Determination of Polysaccharide and Protein Content
2.3.2. FT-IR Spectroscopy
2.3.3. Periodate Oxidation
2.3.4. Smith Degradation Using Gas Chromatography Flame Ionization Detector (GC-FID)
2.3.5. Methylation Analysis Using GC-MS
2.3.6. NMR Spectroscopy
2.4. Antioxidant Activity Assays of IPS30, IPS60, and IPS80
2.4.1. Superoxide Radical Scavenging Capacity Assay (SRSCA)
2.4.2. Hydroxyl Radical Scavenging Capacity (HRSA)
2.4.3. Reducing Power
2.4.4. 2,2-diphenyl-1-picryl-hydrazyl Scavenging Capability (DPPH-SC)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Extraction, Purification, and Composition of Polysaccharides
3.2. Structure Characterization of Homogeneous Polysaccharides
3.2.1. Periodate Oxidation and Smith Degradation
3.2.2. Methylation Analysis Using FTIR and GC-MS Analysis
3.3. NMR Analysis
3.4. Conformational Characteristics of Polysaccharides in Sodium Hydroxide Solution
3.5. Antioxidant Activity of IPS30, IPS60, and IPS80
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, J.; Zhang, M.; Wang, X.; Ren, Y.; Yue, T.; Wang, Z.; Gao, Z. Edible Fungal Polysaccharides, the Gut Microbiota, and Host Health. Carbohydr. Polym. 2021, 273, 118558. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xie, W.; Sun, H.; Cao, K.; Yang, X. Effect of the Structural Characterization of the Fungal Polysaccharides on Their Immunomodulatory Activity. Int. J. Biol. Macromol. 2020, 164, 3603–3610. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Okoro, O.V.; Milan, P.B.; Khalili, M.R.; Samadian, H.; Nie, L.; Shavandi, A. Fungal Exopolysaccharides: Properties, Sources, Modifications, and Biomedical Applications. Carbohydr. Polym. 2022, 284, 119152. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, T.; Gan, B.; Wasser, S.P.; Zhang, Z.; Zhao, J.; Duan, X.; Cao, L.; Feng, R.; Miao, R.; et al. Antioxidant Activity of Phellinus Igniarius Fermentation Mycelia Contributions of Different Solvent Extractions and Their Inhibitory Effect on α-Amylase. Heliyon 2023, 10, e23370. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Zhao, L.; Li, Z.; Harqin, C.; Peng, Y.; Liu, J. Physicochemical Analysis, Structural Elucidation and Bioactivities of a High-Molecular-Weight Polysaccharide from Phellinus Igniarius Mycelia. Int. J. Biol. Macromol. 2018, 120, 1855–1864. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, R.; Su, X.; Shang, K.; Tan, C.; Ma, J.; Zhang, Y.; Lin, D.; Ma, Y.; Zhou, M.; et al. Immune-Enhancing Activity of Polysaccharides and Flavonoids Derived from Phellinus Igniarius. Front. Pharmacol. 2023, 14, 1124607. [Google Scholar] [CrossRef]
- He, P.; Zhang, Y.; Li, N. The Phytochemistry and Pharmacology of Medicinal Fungi of the Genus: Phellinus: A Review. Food Funct. 2021, 12, 1856–1881. [Google Scholar] [CrossRef]
- Liu, S.; Mo, J.K.; Pan, D.Y.; Liu, G.Q. Research Progress on Pharmacological Actions and Extraction Methods of Polysaccharide from Phellinus Igniarius. Biotechnol. Bull. 2018, 34, 63. [Google Scholar]
- Wang, H.; Wu, G.; Park, H.J.; Jiang, P.P.; Sit, W.H.; van Griensven, L.J.; Wan, J.M.F. Protective Effect of Phellinus Linteus Polysaccharide Extracts against Thioacetamide-Induced Liver Fibrosis in Rats: A Proteomics Analysis. Chin. Med. 2012, 7, 23. [Google Scholar] [CrossRef]
- Wu, S.H.; Dai, Y.C. Species Clarification of the Medicinal Fungus Sanghuang. Mycosystema 2020, 39, 781–794. [Google Scholar]
- Chen, H.; Tian, T.; Miao, H.; Zhao, Y.Y. Traditional Uses, Fermentation, Phytochemistry and Pharmacology of Phellinus Linteus: A Review. Fitoterapia 2016, 113, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Sułkowska-Ziaja, K.; Balik, M.; Muszyńska, B. Selected Species of the Genus Phellinus–Chemical Composition, Biological Activity, and Medicinal Applications. Chem. Biodivers. 2021, 18, e2100609. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiang, F.; Li, L.; Liu, X.; Yan, J.K. Recent Advances in the Bioactive Polysaccharides and Other Key Components from Phellinus Spp. and Their Pharmacological Effects: A Review. Int. J. Biol. Macromol. 2022, 222, 3108–3128. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Ma, H.; Yan, J.; Guo, D. Purification, Characterization and Antitumor Activity of Polysaccharides Extracted from Phellinus Igniarius Mycelia. Carbohydr. Polym. 2015, 133, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zou, X.; Sun, M. Optimization of Extraction Process by Response Surface Methodology and Preliminary Characterization of Polysaccharides from Phellinus Igniarius. Carbohydr. Polym. 2010, 80, 344–349. [Google Scholar] [CrossRef]
- Leong, Y.K.; Yang, F.C.; Chang, J.S. Extraction of Polysaccharides from Edible Mushrooms: Emerging Technologies and Recent Advances. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Hu, X.; Goff, H.D. Fractionation of Polysaccharides by Gradient Non-Solvent Precipitation: A Review. Trends Food Sci. Technol. 2018, 81, 108–115. [Google Scholar] [CrossRef]
- Wu, M.J.; Jiang, D.Z.; Liu, T.M.; Zhang, L.P. Structural Analysis of Water-Soluble Polysaccharide PIP1 Extracted from the Cultured Mycelium of Phellinus Igniarius. Chem. Res. Chin. Univ. 2006, 22, 708–711. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, W.; Hu, D.; Lin, G.; Wang, J.; Xue, F.; Wang, Q.; Zhao, H.; Dou, X.; Zhang, L. Study on Extraction, Physicochemical Properties, and Bacterio-Static Activity of Polysaccharides from Phellinus Linteus. Molecules 2023, 28, 5102. [Google Scholar] [CrossRef]
- Suabjakyong, P.; Nishimura, K.; Toida, T.; Van Griensven, L.J.L.D. Structural Characterization and Immunomodulatory Effects of Polysaccharides from Phellinus Linteus and Phellinus Igniarius on the IL-6/IL-10 Cytokine Balance of the Mouse Macrophage Cell Lines (RAW 264.7). Food Funct. 2015, 6, 2834–2844. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, Y.; Zhao, R.; Huang, T.; Tian, Y.; Zhu, L.; Qin, J.; Liu, H. Structural Characterization of Extracellular Polysaccharides from Phellinus Igniarius SH-1 and Their Therapeutic Effects on DSS Induced Colitis in Mice. Int. J. Biol. Macromol. 2024, 275, 133654. [Google Scholar] [CrossRef] [PubMed]
- Boateng, I.D.; Guo, Y.Z.; Yang, X.M. Extraction, Purification, Structural Characterization, and Antitumor Effects of Water-Soluble Intracellular Polysaccharide (IPSW-1) from Phellinus Igniarius Mycelia. J. Agric. Food Chem. 2024, 72, 19721–19732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, H.; Liu, W.; Pei, J.; Wang, Z.; Zhou, H.; Yan, J. Ultrasound Enhanced Production and Antioxidant Activity of Polysaccharides from Mycelial Fermentation of Phellinus Igniarius. Carbohydr. Polym. 2014, 113, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Premarathna, A.D.; Ahmed, T.A.E.; Kulshreshtha, G.; Humayun, S.; Shormeh Darko, C.N.; Rjabovs, V.; Hammami, R.; Critchley, A.T.; Tuvikene, R.; Hincke, M.T. Polysaccharides from Red Seaweeds: Effect of Extraction Methods on Physicochemical Characteristics and Antioxidant Activities. Food Hydrocoll. 2024, 147, 109307. [Google Scholar] [CrossRef]
- Karimi, F.; Hamidian, Y.; Behrouzifar, F.; Mostafazadeh, R.; Ghorbani-HasanSaraei, A.; Alizadeh, M.; Mortazavi, S.M.; Janbazi, M.; Naderi Asrami, P. An Applicable Method for Extraction of Whole Seeds Protein and Its Determination through Bradford’s Method. Food Chem. Toxicol. 2022, 164, 113053. [Google Scholar] [CrossRef]
- Li, F.; Boateng, I.D.; Chen, S.; Yang, X.M.; Soetanto, D.A.; Liu, W. Pulsed Light Irradiation Improves Degradation of Ginkgolic Acids and Retainment of Ginkgo Flavonoids and Terpene Trilactones in Ginkgo Biloba Leaves. Ind. Crops Prod. 2023, 204, 117297. [Google Scholar] [CrossRef]
- Mei, Y.; Zhu, H.; Hu, Q.; Liu, Y.; Zhao, S.; Peng, N.; Liang, Y. A Novel Polysaccharide from Mycelia of Cultured Phellinus Linteus Displays Antitumor Activity through Apoptosis. Carbohydr. Polym. 2015, 124, 90–97. [Google Scholar] [CrossRef]
- Shi, H.; Bi, S.; Li, H.; Li, J.; Li, C.; Yu, R.; Song, L.; Zhu, J. Purification and Characterization of a Novel Mixed-Linkage α,β-D-Glucan from Arca Subcrenata and Its Immunoregulatory Activity. Int. J. Biol. Macromol. 2021, 182, 207–216. [Google Scholar] [CrossRef]
- Mutaillifu, P.; Bobakulov, K.; Abuduwaili, A.; Huojiaaihemaiti, H.; Nuerxiati, R.; Aisa, H.A.; Yili, A. Structural Characterization and Antioxidant Activities of a Water Soluble Polysaccharide Isolated from Glycyrrhiza Glabra. Int. J. Biol. Macromol. 2020, 144, 751–759. [Google Scholar] [CrossRef]
- Cordeiro, A.R.; de Lacerda Bezerra, I.; Santana-Filho, A.P.; Benedetti, P.R.; Ingberman, M.; Sassaki, G.L. Wine Fermentation Process Evaluation through NMR Analysis: Polysaccharides, Ethanol Quantification and Biological Activity. Food Chem. 2024, 451, 139531. [Google Scholar] [CrossRef]
- Gharib, F.A.E.L.; Osama, K.; Sattar, A.M.A.E.; Ahmed, E.Z. Impact of Chlorella Vulgaris, Nannochloropsis Salina, and Arthrospira Platensis as Bio-Stimulants on Common Bean Plant Growth, Yield and Antioxidant Capacity. Sci. Rep. 2024, 14, 1398. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Liu, J.; Tang, N.; Deng, J.; Liu, C.; Kan, H.; Zhao, P.; Zhang, X.; Shi, Z.; Liu, Y. Sequential Extraction, Structural Characterization, and Antioxidant Activity of Polysaccharides from Dendrocalamus Brandisii Bamboo Shoot Shell. Food Chem. X 2023, 17, 100621. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Huang, G.; Chen, G. Extraction, Structural Analysis, Derivatization and Antioxidant Activity of Polysaccharide from Chinese Yam. Food Chem. 2021, 361, 130089. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qian, K.; Si, J.; Cui, B.K. Research Advances on Polysaccharides from Sanghuang. Mycosystema 2021, 40, 895–911. (In Chinese) [Google Scholar]
- Li, R.X.; Wang, Y.T.; Xia, J.F.; Lou, D.Q.; Wang, T.C. Optimization of Extraction Process of Polysaccharides of Phellinus Igniarius Mycelia and Analysis of Its Antioxidant Activity in Vitro. Chin. Agric. Sci. Bull. 2019. [Google Scholar]
- Zhou, H.J.; Ma, H.L.; Guo, D.Z.; Wang, B. Physicochemical Properties and Antioxidant Activity of Intracellular Polysaccharides from Phellinus Igniarius Precipitated by Different Ethanol Concentrations. Food Sci. 2015, 36, 34–38. (In Chinese) [Google Scholar]
- Dou, Z.M.; Chen, C.; Huang, Q.; Fu, X. Comparative Study on the Effect of Extraction Solvent on the Physicochemical Properties and Bioactivity of Blackberry Fruit Polysaccharides. Int. J. Biol. Macromol. 2021, 183, 1548–1559. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Deng, Y.; Chen, G. Effect of Extraction Method on the Structure and Bioactivity of Polysaccharides from Activated Sludge. Water Res. 2024, 253, 121196. [Google Scholar] [CrossRef]
- Zhan, Y.; An, X.; Wang, S.; Sun, M.; Zhou, H. Basil Polysaccharides: A Review on Extraction, Bioactivities and Pharmacological Applications. Bioorganic Med. Chem. 2020, 28, 115179. [Google Scholar] [CrossRef]
- Antunes, E.C.; Cintra, B.; Bredel, M.; Temmink, H.; Schuur, B. Fractionation of Extracellular Polymeric Substances by Aqueous Three-Phase Partitioning Systems. Ind. Eng. Chem. Res. 2024, 63, 10748–10760. [Google Scholar] [CrossRef]
- Tang, W.; Liu, D.; Yin, J.Y.; Nie, S.P. Consecutive and Progressive Purification of Food-Derived Natural Polysaccharide: Based on Material, Extraction Process and Crude Polysaccharide. Trends Food Sci. Technol. 2020, 99, 76–87. [Google Scholar] [CrossRef]
- Chen, C.; Wang, P.P.; Huang, Q.; You, L.J.; Liu, R.H.; Zhao, M.M.; Fu, X.; Luo, Z.G. A Comparison Study on Polysaccharides Extracted from: Fructus Mori Using Different Methods: Structural Characterization and Glucose Entrapment. Food Funct. 2019, 10, 3684–3695. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Jiang, C.; Huang, Q.; Sun, F. A Comb-like Branched β-d-Glucan Produced by a Cordyceps Sinensis Fungus and Its Protective Effect against Cyclophosphamide-Induced Immunosuppression in Mice. Carbohydr. Polym. 2016, 142, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Yuan, L.; Huang, G.; Wang, X.; Li, X.; Jiao, L.; Zhang, L. Structural Properities and Immunoenhancement of an Exopolysaccharide Produced by Phellinus Pini. Int. J. Biol. Macromol. 2016, 93, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.C.; Zhu, Z.Y.; Tang, Y.L.; Wang, M.F.; Wang, Z.; Liu, A.J.; Zhang, Y.M. Structural Properties of Polysaccharides from Cultivated Fruit Bodies and Mycelium of Cordyceps Militaris. Carbohydr. Polym. 2016, 142, 63–72. [Google Scholar] [CrossRef]
- Li, F.; Boateng, I.D.; Yang, X.; Li, Y. Extraction, Purification, and Elucidation of Six Ginkgol Homologs from Ginkgo Biloba Sarcotesta and Evaluation of Their Anticancer Activities. Molecules 2022, 27, 7777. [Google Scholar] [CrossRef]
- Fan, X.; Xiao, X.; Yu, W.; Yu, B.; He, J.; Zheng, P.; Yu, J.; Luo, J.; Luo, Y.; Yan, H.; et al. Yucca Schidigera Purpurea-Sourced Arabinogalactan Polysaccharides Augments Antioxidant Capacity Facilitating Intestinal Antioxidant Functions. Carbohydr. Polym. 2024, 326, 121613. [Google Scholar] [CrossRef]
- El Halmouch, Y.; Ibrahim, H.A.H.; Dofdaa, N.M.; Mabrouk, M.E.M.; El-Metwally, M.M.; Nehira, T.; Ferji, K.; Ishihara, Y.; Matsuo, K.; Ibrahim, M.I.A. Complementary Spectroscopy Studies and Potential Activities of Levan-Type Fructan Produced by Bacillus Paralicheniformis ND2. Carbohydr. Polym. 2023, 311, 120743. [Google Scholar] [CrossRef]
- Ou-Yang, J.; Wang, F.; Li, W.; Li, Q.; Su, X. Structure Characterization of Polysaccharide from Chinese Yam (Dioscorea Opposite Thunb.) and Its Growth-Promoting Effects on Streptococcus Thermophilus. Foods 2021, 10, 2698. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, W.; Tang, T.; Chen, H.; Zhou, X. Structural Characteristics, Antioxidant and Hypoglycemic Activities of Polysaccharides from Mori Fructus Based on Different Extraction Methods. Front. Nutr. 2023, 10, 1125831. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Jiang, H.; Zhou, H.; Li, P.; Wang, F. Isolation, Structural Characterization and Neurotrophic Activity of a Polysaccharide from Phellinus Ribis. Carbohydr. Polym. 2015, 127, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zuofa, Z.; Tingting, S.; Guoying, L.; Jie, L.; Qunli, J. Structural Properties and Immunomodulatory Activity of an α-Glucan Purified from the Fruiting Body of Stropharia Rugosoannulata. Chem. Biol. Technol. Agric. 2023, 10, 100. [Google Scholar] [CrossRef]
- Zhan, H.; Yu, G.; Zheng, M.; Zhu, Y.; Ni, H.; Oda, T.; Jiang, Z. Inhibitory Effects of a Low-Molecular-Weight Sulfated Fucose-Containing Saccharide on α-Amylase and α-Glucosidase Prepared from Ascophyllan. Food Funct. 2022, 13, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.Y.Y.; Wang, J.Q.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. A Review of NMR Analysis in Polysaccharide Structure and Conformation: Progress, Challenge and Perspective. Food Res. Int. 2021, 143, 110290. [Google Scholar] [CrossRef] [PubMed]
- Aburas, H.; İspirli, H.; Taylan, O.; Yilmaz, M.T.; Dertli, E. Structural and Physicochemical Characterisation and Antioxidant Activity of an α-D-Glucan Produced by Sourdough Isolate Weissella Cibaria MED17. Int. J. Biol. Macromol. 2020, 161, 648–655. [Google Scholar] [CrossRef]
- Ishurd, O.; Zgheel, F.; Elghazoun, M.; Elmabruk, M.; Kermagi, A.; Kennedy, J.F.; Knill, C.J. A Novel (1 → 4)-α-d-Glucan Isolated from the Fruits of Opuntia Ficus indica (L.) Miller. Carbohydr. Polym. 2010, 82, 848–853. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Wang, Z.; Kan, J. A Comparison of a Polysaccharide Extracted from Ginger (Zingiber officinale) Stems and Leaves Using Different Methods: Preparation, Structure Characteristics, and Biological Activities. Int. J. Biol. Macromol. 2020, 151, 635–649. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Guo, S.; Wen, L.; Yu, M.; Feng, L.; Jia, X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front. Nutr. 2022, 9, 908175. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, H.; Wen, C.; Zhang, J.; He, Y.; Ma, H.; Duan, Y. Purification, Characterization, Antioxidant and Immunological Activity of Polysaccharide from Sagittaria sagittifolia L. Food Res. Int. 2020, 136, 109345. [Google Scholar] [CrossRef]
- Fu, Y.L.; Shi, L. Methods of Study on Conformation of Polysaccharides from Natural Products: A Review. Int. J. Biol. Macromol. 2024, 263, 130275. [Google Scholar] [CrossRef]
- Dong, X.; Zhu, C.P.; Huang, G.Q.; Xiao, J.X. Fractionation and Structural Characterization of Polysaccharides Derived from Red Grape Pomace. Process Biochem. 2021, 109, 37–45. [Google Scholar] [CrossRef]
- Lee, H.H.; Lee, J.S.; Cho, J.Y.; Kim, Y.E.; Hong, E.K. Structural Characteristics of Immunostimulating Polysaccharides from Lentinus Edodes. J. Microbiol. Biotechnol. 2009, 19, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, L.; Chen, W.; Wang, J.; Wang, S. Influence of Ultrasound-Assisted Ionic Liquid Pretreatments on the Functional Properties of Soy Protein Hydrolysates. Ultrason. Sonochem. 2021, 73, 105546. [Google Scholar] [CrossRef] [PubMed]
- Hu, J. Extraction, Purification and Antioxidant Activity of Burdock Polysaccharides. Diploma Thesis, Yangzhou University, Yangzhou, China, 2011. [Google Scholar]
- Xing, R.; Liu, S.; Guo, Z.; Yu, H.; Wang, P.; Li, C.; Li, Z.; Li, P. Relevance of Molecular Weight of Chitosan and Its Derivatives and Their Antioxidant Activities in Vitro. Bioorganic Med. Chem. 2005, 13, 1573–1577. [Google Scholar] [CrossRef]
- Xie, W.; Xu, P.; Liu, Q. Antioxidant Activity of Water-Soluble Chitosan Derivatives. Bioorganic Med. Chem. Lett. 2001, 11, 1699–1701. [Google Scholar] [CrossRef]
- Yu, R.; Yang, W.; Song, L.; Yan, C.; Zhang, Z.; Zhao, Y. Structural Characterization and Antioxidant Activity of a Polysaccharide from the Fruiting Bodies of Cultured Cordyceps Militaris. Carbohydr. Polym. 2007, 70, 430–436. [Google Scholar] [CrossRef]
Standard/Samples | Consumption of Periodate (mol/mol Glc) | Yield of Formic Acid (mol/mol Glc) | Retention Time in GC of Products of Smith Degradation (min) | Products of Smith Degradation |
---|---|---|---|---|
Glycerol | n | n | 27.135 | / |
Erythritol | n | n | 18.233 | / |
IPSW-2 | 0.346 | 0.0075 | 27.170 | Glycerol |
IPSW-3 | 0.306 | 0.114 | 27.183 | Glycerol |
IPSW-4 | 0.408 | 0.048 | 27.179 | Glycerol |
Methylated Sugar | Molar Ratio (mol%) | Linkage Type | Major Mass Fragments (m/z) | |
---|---|---|---|---|
IPSW-2 | 2,3,4,6-Me4-Glcp | 3.09 | Terminal | 43,71,87,101,117,129,145,161,205 |
2,4-Me2-Glcp | 1.00 | 1,3,6-linked-Glcp | 43,71,89,101,117,162,261 | |
2,3,4-Me3-Glcp | 3.39 | 1,6-linked-Glcp | 43,71,87,101,117,129,161,189,233 | |
2,6-Me2-Glcp | 1.78 | 1,3,4-linked-Glcp | 43,71,87,101,117,129,143,231,305 | |
IPSW-3 | 2,3,4,6-Me4-Glcp | 3.56 | Terminal | 43,71,87,101,117,129,145,161,205 |
2,4-Me2-Glcp | 1.00 | 1,3,6-linked-Glcp | 43,71,89,101,117,162,261 | |
2,3,4-Me3-Glcp | 7.94 | 1,6-linked-Glcp | 43,71,87,101,117,129,161,189,233 | |
2,6-Me2-Glcp | 3.63 | 1,3,4-linked-Glcp | 43,71,87,101,117,129,143,231,305 | |
IPSW-4 | 2,3,4,6-Me4-Glcp | 2.59 | Terminal | 43,71,87,101,117,129,145,161,205 |
2,3,4-Me3-Glcp | 3.87 | 1,6-linked-Glcp | 43,71,87,101,117,129,161,189,233 | |
2,6-Me2-Glcp | 3.18 | 1,3,4-linked-Glcp | 43,71,87,101,117,129,143,231,305 | |
3,4-Me2-Rhap | 1 | 1,2-linked-Rhap | 57,71,87,131,284,328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boateng, I.D.; Yang, X. Water-Soluble Intracellular Polysaccharides (IPSW-2 to 4) from Phellinus igniarius Mycelia: Fractionation, Structural Elucidation, and Antioxidant Activity. Foods 2024, 13, 3581. https://doi.org/10.3390/foods13223581
Boateng ID, Yang X. Water-Soluble Intracellular Polysaccharides (IPSW-2 to 4) from Phellinus igniarius Mycelia: Fractionation, Structural Elucidation, and Antioxidant Activity. Foods. 2024; 13(22):3581. https://doi.org/10.3390/foods13223581
Chicago/Turabian StyleBoateng, Isaac Duah, and Xiaoming Yang. 2024. "Water-Soluble Intracellular Polysaccharides (IPSW-2 to 4) from Phellinus igniarius Mycelia: Fractionation, Structural Elucidation, and Antioxidant Activity" Foods 13, no. 22: 3581. https://doi.org/10.3390/foods13223581
APA StyleBoateng, I. D., & Yang, X. (2024). Water-Soluble Intracellular Polysaccharides (IPSW-2 to 4) from Phellinus igniarius Mycelia: Fractionation, Structural Elucidation, and Antioxidant Activity. Foods, 13(22), 3581. https://doi.org/10.3390/foods13223581