Vegetable Salad Improves Lipid and Glucose Metabolism and Enhances Absorption of Specific Nutrients in Vegetables
Abstract
:1. Introduction
2. Improvement in Body Weight and Serum Cholesterol Concentration Through Vegetable Salad Consumption
3. Inhibition of Postprandial Blood Sugar (PPBS) Levels Increases by Consuming Vegetable Salad Before Rice
4. Increased Vegetable Intake and Improved Diabetes Indicators with Mayonnaise and Dressing Use
5. Mayonnaise Promotes Carotenoid Absorption
6. Calcium Absorption Enhancement Using Mayonnaise
7. Effect of Serum Cholesterol Concentrations of Mayonnaise Consumption
Study | Subjects | Test Mayonnaise | Design | Duration | Main Outcome (% vs. Before Intake) | Reference |
---|---|---|---|---|---|---|
Tohgi N et al. (1997) | Healthy (n = 9) | Egg yolk type Canola oil base 15 g/day | Open trial | 12 weeks | TC: No change LDL-C: No change | [67] |
Xu WB et al. (2012) | Healthy (n = 47) | Egg yolk type Soybean oil base 15 g/day | Open trial | 70 days | TC: 2.9% LDL-C: No change | [68] |
Matsuoka R et al. (2001) | Mildly hypercholesterolemic (n = 10) | Egg yolk type Canola oil base 15 g/day | Open trial | 12 weeks | TC: −6.3% LDL-C: −8.4% | [70] |
Karupaiah T et al. (2016) | Normal and mildly hypercholesterolemic (n = 34) | Egg yolk type Soybean oil or palm oil 20 g/day | Cross-over | 4 weeks | Palm oil base: TC: −2.7% LDL-C: −4.5% Soybean oil base: TC: −7.7% LDL-C: −9.5% | [71] |
Ishizaki T et al. (2003) | Normal and mildly hypercholesterolemic (n = 29) | Whole-egg type Oil unknown 15 g/day | RCT | 3 months | TC: No change LDL-C: No change | [72] |
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
CD | cluster of differentiation |
CVD | cardiovascular disease |
GLV | green leaf vegetable |
HDL | high-density lipoprotein |
HER | human epidermal growth factor |
IAUC | incremental area under the curve |
LDL | low-density lipoprotein |
PPBS | postprandial blood sugar |
RCT | randomized controlled study |
SEM | standard error of the mean |
TC | total cholesterol |
References
- Slavin, J.L.; Lloyd, B. Health benefit of fruit and vegetable. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Bergmann, M.M.; Boeing, H.; Capewell, S. Healthy lifestyle behaviors and all-cause mortality among adults in the United States. Prev. Med. 2012, 55, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Health Japan 21 Analysis and Assessment Project, National Institute of Health and Nutrition, Health Japan 21 (the Second Term). Available online: https://www.nibiohn.go.jp/eiken/kenkounippon21/en/kenkounippon21/ (accessed on 10 October 2024).
- National Institute of Health and Nutrition, The National Health and Nutrition Survey (NHNS) Japan, 2019 Summary. Available online: https://www.nibiohn.go.jp/eiken/kenkounippon21/download_files/eiyouchousa/2019.pdf (accessed on 10 October 2024).
- IPB University Report, Indonesia Vegetable Intake Study, Executive Summary. Available online: http://njppp.jp/wp/wp-content/uploads/ec28b2b7666cb3d52c198d75646311bd.pdf (accessed on 10 October 2024).
- Indonesia Health Survey 2023, Ministry of Health Republic of Indonesia. Available online: https://www.kemkes.go.id/id/survei-kesehatan-indonesia-ski-2023 (accessed on 10 October 2024). (In Indonesian).
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer, and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Alemany, M. The metabolic syndrome, a human disease. Int. J. Mol. Sci. 2024, 25, 2251. [Google Scholar] [CrossRef] [PubMed]
- Shirouchi, B.; Kawamura, S.; Matsuoka, R.; Baba, S.; Nagata, K.; Shiratake, S.; Tomoyori, H.; Imaizumi, K.; Sato, M. Dietary guar gum reduces lymph flow and diminishes lipid transport in thoracic duct-cannulated rats. Lipids 2011, 56, 789–793. [Google Scholar] [CrossRef]
- Wei, B.; Liu, Y.; Lin, X.; Fang, Y.; Cui, J.; Wan, J. Dietary fiber intake and risk of metabolic syndrome. Clin. Nutr. 2018, 37, 1935–1942. [Google Scholar] [CrossRef]
- Chen, J.P.; Chen, G.C.; Wang, X.P.; Qin, L.; Bai, Y. Dietary fiber and metabolic syndrome: Meta-analysis and review of related mechanisms. Nutrients 2017, 10, 24. [Google Scholar] [CrossRef]
- McLean, R.M.; Wang, N.X. Potassium. Adv. Food Nutr. Res. 2021, 96, 89–121. [Google Scholar]
- Fillippini, T.; Naska, A.; Kasdagli, M.I.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K.; et al. Potassium intake and blood pressure: Dose response meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef]
- Steinberg, D.; Parthasarathy, S.; Carew, T.E.; Khoo, J.C.; Witztum, J.L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 1989, 320, 915–924. [Google Scholar]
- Kosewski, G.; Kowalówka, M.; Drzymała-Czyż, S.; Przysławski, J. The impact of culinary processing, including sous-vide, on polyphenols, vitamin C content and antioxidant status in selected vegetables—Methods and results: A critical review. Foods 2023, 12, 2121. [Google Scholar] [CrossRef] [PubMed]
- Zeraattalab-Motlagh, S.; Ghoreishy, S.M.; Arab, A.; Mahmoodi, S.; Hemmati, A.; Mohammadi, H. Fruit and vegetable consumption and the risk of bone fracture: A Grading of Recommendations, Assessment, Development, Evaluations (GRADE)-assessed systematic review and dose-response meta-analysis. JBMR Plus 2023, 7, e10840. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Biver, E.; Brennan-Speranza, T.C. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021, 9, 606–621. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.Á.; Zafrilla, M.P.; Marhuenda, J. Cognitive function and consumption of fruit and vegetable polyphenols in a young population: Is there a relationship? Foods 2019, 8, 507. [Google Scholar] [CrossRef]
- F Fangfang, H.; Qiong, W.; Shuai, Z.; Xiao, H.; Jingya, Z.; Guodong, S.; Yan, Z. Vegetable and fruit intake, its patterns, and cognitive function: Cross-sectional findings among older adults in Anhui. China. Nutr. Health Aging 2022, 26, 529–536. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, C.; Gao, M.; Tao, Y.; Chen, X.; Chen, H.; Li, F.; Zheng, Y.; Lu, M.; Ma, Y.; et al. Associations of vegetable and fruit with cognitive function and its decline: Two longitudinal studies. J. Nutr. Health Aging 2024, 28, 100223. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare, Government of Japan, Summary Report of Comprehensive Survey of Living Conditions 2019. Available online: https://www.mhlw.go.jp/english/database/db-hss/dl/report_gaikyo_2019.pdf (accessed on 10 October 2024).
- World Health Organization. Life Expectancy and Healthy Life Expectancy, Data by Country. Available online: https://apps.who.int/gho/data/view.main.SDG2016LEXv?lang=en (accessed on 10 October 2024).
- Kumagai, K.; Kuramori, M. Effects of Dietary Habits and Parents’ Awareness of Dietary Life on Vegetable Intake of Elementary School Children. Jpn. J. Nutr. Diet. 1996, 54, 251–258. (In Japanese) [Google Scholar]
- Ministry of Education, Culture, Sports, Science and Technology, Government of Japan, Standard Tables of Food Composition in Japan 2015 (7th Revised Version). Available online: https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.htm (accessed on 10 October 2024).
- Nishida, T. A well-balanced diet that enhances QOL and the role of salads and salad dressing. J. Integr. Study Diet. Habits 2022, 33, 72–78. (In Japansese) [Google Scholar] [CrossRef]
- Kartiko Sari, I.; Utari, D.M.; Kamoshita, S.; Oktaviana, D.; Sakai, S.; Nishiyama, H.; Masuda, Y.; Yamamoto, S. Increasing vegetable intake 400 g/day to control body weight and lipid profile in overweight hyperlipidemia menopausal women. J. Public Health Res. 2020, 9, 1733. [Google Scholar] [CrossRef]
- Veluvali, A.; Snyder, M. Dietary fiber deficiency in individuals with metabolic syndrome: A review. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 564–569. [Google Scholar] [CrossRef]
- Hosseinpour-Niazi, S.; Bakhshi, B.; Betru, E.; Mirmiran, P.; Darand, M.; Azizi, F. Prospective study of total and various types of vegetables and the risk of metabolic syndrome among children and adolescents. World J. Diabetes 2019, 10, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, K.G.; Kadi, F.; Nilsson, A. Benefits of Fruit and Vegetable Consumption on Prevalence of Metabolic Syndrome Are Independent of Physical Activity Behaviors in Older Adults. Nutrients 2022, 14, 263. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Suganuma, H.; Shimizu, S.; Hayashi, H.; Sawada, K.; Tokuda, I.; Ihara, K.; Nakaji, S. Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome. Nutrients 2020, 12, 1825. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Kim, J. Association between fruit and vegetable consumption and risk of metabolic syndrome determined using the Korean Genome and Epidemiology Study (KoGES). Eur. J. Nutr. 2020, 59, 1667–1678. [Google Scholar] [CrossRef]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The Relationship between Vegetable Intake and Weight Outcomes: A Systematic Review of Cohort Studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef]
- Maruyama, C.; Kikuchi, N.; Masuya, Y.; Hirota, S.; Araki, R.; Maruyama, T. Effects of green-leafy vegetable intake on postprandial glycemic and lipidemic responses and α-tocopherol concentration in normal weight and obese men. J. Nutr. Sci. Vitaminol. 2013, 59, 264–271. [Google Scholar] [CrossRef]
- Imai, S.; Fukui, M.; Kajiyama, S. Effect of eating vegetables before carbohydrates on glucose excursions in patients with type 2 diabetes. J. Clin. Biochem. Nutr. 2014, 54, 7–11. [Google Scholar] [CrossRef]
- Kanamoto, I.; Inoue, Y.; Moriuchi, T.; Yamada, Y.; Imura, H.; Sato, S. Effect of differences in low Glycemic Index Food Intake Sequence on Plasma Glucose Profile. J. Jpn. Diab. Soc. 2010, 53, 96–101. (In Japanese) [Google Scholar]
- Tanaka, T.; Sakamoto, H.; Matsuoka, R.; Utsunomiya, K. Ingestion of vegetable salads before rice inhibits the increase in postprandial serum glucose levels in healthy subjects. Biosci. Biotech. Biochem. 2023, 87, 1212–1218. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Uenaka, S.; Yagi, M.; Takabe, W.; Yonei, Y. The effects of food materials on postprandial hyperglycemia. Glycative Stress. Res. 2020, 7, 220–231. [Google Scholar]
- Endo, M.; Matsuoka, T. The efficacy of vinegar on the suppression of postprandial glucose elevation. J. Jpn. Diab. Soc. 2011, 54, 192–199. (In Japanese) [Google Scholar]
- Kamijo, F.; Yoshimura, Y.; Takeda, Y.; Matsuoka, R.; Utsunomiya, K. Effects of the order of intake of potato salad and rice on postprandial blood glucose level in Japanese subjects. In Proceedings of the 70th Annual Meeting of Japanese Society of Nutrition and Dietetics, Nagoya, Japan, 1–3 September 2023. [Google Scholar]
- Yoshimura, Y.; Yoshida, Y.; Kamijo, F.; Takeda, Y.; Matsuoka, R.; Utsunomiya, K. Mixing potatoes with mayonnaise and cooling them suppresses postprandial blood glucose level in Japanese subjects. In Proceedings of the 70th Anniversary Annual Meeting of The Japanese Society for Food Science and Technology, Kyoto, Japan, 24–26 August 2023. [Google Scholar]
- Yamamoto, S.; Le, D.S.N.T.; Hsu, T.F.; Huang, K.C.; Nguyen, V.H.; Wong, Y.; Huang, P.C. Vietnamese may develop type 2 diabetes with smaller increases in body mass index and waist circumference than Taiwanese. Int. J. Diabetol. Vasc. Dis. Res. 2013, 1, 1–5. [Google Scholar]
- Duc Son, L.N.T.; Hanh, T.T.M.; Kusama, K.; Kunii, D.; Sakai, T.; Hung, N.T.K.; Yamamoto, S. Anthropometric characteristics, dietary patterns and risk of type 2 diabetes mellitus in Vietnam. J. Am. Coll. Nutr. 2005, 24, 229–234. [Google Scholar] [CrossRef]
- Le Nguyen, T.D.; Tran, T.M.; Kusama, K.; Ichikawa, Y.; Nguyen, T.K.; Yamamoto, S. Vietnamese type 2 diabetic subjects with normal BMI but high body fat. Diabetes Care 2003, 26, 1941–1947. [Google Scholar]
- Quang, B.T.; Phuong Pham Tran, P.P.; Thanh, C.N.; Thi, N.B.; Dinh, T.D.; Quang, T.T.; Tuan, L.D.; Thuy, N.B.T.; Anh, N.N. High incidence of type 2 diabetes in a population with normal range body mass index and individual prediction nomogram in Vietnam. Diabet. Med. 2022, 39, e14680. [Google Scholar] [CrossRef]
- Thao, T.P.; Linh, N.T.; Nishiyama, H.; Sakai, S.; Shimura, F.; Yamamoto, S. Higher vegetable intake improved blood glucose level in Vietnamese with type 2 diabetes mellitus. Int. J. Clin. Nutr. Diet. 2017, 3, 124. [Google Scholar] [CrossRef]
- P Pollock, R.L. The effect of green leafy and cruciferous vegetable intake on the incidence of cardiovascular disease: A meta-analysis. JRSM Cardiovasc. Dis. 2016, 5, 2048004016661435. [Google Scholar] [CrossRef]
- Kahlon, T.S.; Chiu, M.M.; Chapman, M.H. Steam cooking significantly improves in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage. Nutr. Res. 2008, 6, 351–357. [Google Scholar] [CrossRef]
- Milkowski, A.; Garg, H.K.; Coughlin, J.R.; Bryan, N.S. Nutritional epidemiology in the context of nitric oxide biology: A risk-benefit evaluation for dietary nitrite and nitrate. Nitric Oxide 2010, 22, 110–119. [Google Scholar] [CrossRef]
- Yiqing, S.; Ford, E.S.; Manson, J.E.; Liu, S. Relations of magnesium intake with metabolic risk factors and risks of type 2 diabetes, hypertension, and cardiovascular disease: A critical appraisal. Curr. Nutr. Food Sci. 2005, 1, 231–243. [Google Scholar]
- Philpott, M.; Ferguson, L.R. Immunonutrition and cancer. Mutat. Res. 2004, 551, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Masuda, Y.; Usuda, M.; Marushima, R.; Ueji, T.; Hasegawa, M.; Maruyama, C. Effects of mayonnaise on postprandial serum lutein/zeaxanthin and beta-carotene concentrations in humans. J. Nutr. Sci. Vitaminol. 2009, 55, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Marushima, R.; Takeuchi, A.; Masuda, Y.; Kunou, M.; Hasegawa, M.; Maruyama, C. Effect of mayonnaise on promoting β-carotene absorption in healthy adults. In Proceedings of the 59th Annual Meeting of Japan Society of Nutrition and Food Science, Tokyo, Japan, 13–15 May 2005. [Google Scholar]
- Ferreira, Y.A.M.; Jamar, G.; Estadella, D.; Pisani, L.P. Role of carotenoids in adipose tissue through the AMPK-mediated pathway. Food Funct. 2023, 14, 3454–3462. [Google Scholar] [CrossRef]
- Takeda, S.; Kimura, M.; Marushima, R.; Takeuchi, A.; Takizawa, K.; Ogino, Y.; Masuda, Y.; Kunou, M.; Hasegawa, M.; Maruyama, C. Mayonnaise contributes to increasing postprandial serum β-carotene concentration through the emulsifying property of egg yolk in rats and humans. J. Nutr. Sci. Vitaminol. 2011, 57, 209–215. [Google Scholar] [CrossRef]
- Li, C.; Masuda, Y.; Usuda, M.; Kimura, M.; Wang, W.; Xu, W.; Xi, Y. Effects of sweet mayonnaise intake on β-carotene absorption in rats. Food Sci. 2015, 36, 188–192. (In Chinese) [Google Scholar]
- Kishimoto, Y.; Taguchi, C.; Saita, E.; Suzuki-Sugihara, N.; Nishiyama, H.; Wang, W.; Masuda, Y.; Kondo, K. Additional consumption of one egg per day increases serum lutein plus zeaxanthin concentration and lowers oxidized low-density lipoprotein in moderately hypercholesterolemic males. Food Res. Int. 2017, 99, 944–949. [Google Scholar] [CrossRef]
- Uenishi, K.; Ezawa, I.; Kajimoto, M.; Tsuchiya, F. Calcium Absorption from Milk, Fish (Pond Smelt, Sardine) and Vegetables (Komatsuna-green, Jew’s Marrow, Saltwort) in Japanese Young Women. J. Jap. Soc. Food Nutr. 1998, 51, 259–266. (In Japanese) [Google Scholar] [CrossRef]
- Heaney, R.P.; Weaver, C.M. Calcium absorption from kale. Am. J. Clin. Nutr. 1990, 51, 656–657. [Google Scholar] [CrossRef]
- Heaney, R.P.; Weaver, C.M.; Recker, R.R. Calcium absorbability from spinach. Am. J. Clin. Nutr. 1988, 47, 707–709. [Google Scholar] [CrossRef]
- Kelsay, J.L.; Behall, K.M.; Prather, E.S. Effect of fiber from fruits and vegetables on metabolic responses of human subjects, II. Calcium, magnesium, iron, and silicon balances. Am. J. Clin. Nutr. 1979, 32, 1876–1880. [Google Scholar] [CrossRef] [PubMed]
- Kikunaga, S.; Takahashi, M. Determination of Oxalic Acid in Vegetables by Isotachophoresis. J. Jap. Soc. Food Nutr. 1985, 38, 123–128. (In Japanese) [Google Scholar] [CrossRef]
- Ji, S.J.; Masuda, Y.; Kimura, M.; Wang, W.; Li, C.; Xi, Y. Effects of mayonnaise on calcium absorption in rats. J. Shand. Agric. Univ. 2019, 35, 959–963. (In Chinese) [Google Scholar]
- Kimura, T.; Tanaka, T.; Umezu, T.; Ariizumi, M. New technological development for functional mayonnaise. Jpn. J. Food Eng. 2011, 12, 113–115. (In Japanese) [Google Scholar] [CrossRef]
- Mattson, F.H.; Grundy, S.M. Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acid on plasma lipids and lipoproteins in man. J. Lipid Res. 1985, 26, 194–202. [Google Scholar] [CrossRef]
- Zanjani, M.M.; Yousefi, M.; Ehsani, A. Challenges and approaches for production of a healthy and functional mayonnaise sauce. Food Sci. Nutr. 2019, 7, 2471–2484. [Google Scholar] [CrossRef]
- Tohgi, N.; Nonaka, K. Effect of mayonnaise intake on serum lipid and apolipoprotein profiles. J. New Remedies Clin. 1997, 46, 1279–1282. (In Japanese) [Google Scholar]
- Xu, W.B.; Masuda, Y.; Usuda, M.; Matsuoka, R.; Kimura, M.; Wu, J.H.; Chen, J.; Wang, X.W.; Xi, Y.C. Effect of mayonnaise intake on blood lipid profile in humans. Food Sci. 2012, 33, 301–304. (In Chinese) [Google Scholar]
- Ockene, I.S.; Chiriboga, D.E.; Stanek, E.J., 3rd; Harmatz, M.G.; Nicolosi, R.; Saperia, G.; Well, A.D.; Freedson, P.; Merriam, P.A.; Reed, G.; et al. Seasonal variation in serum cholesterol levels: Treatment implications and possible mechanisms. Arch. Intern. Med. 2004, 164, 863–870. [Google Scholar] [CrossRef]
- Matsuoka, R.; Masuda, Y.; Takamiya, M.; Kawamura, M.; Hirayama, S.; Inukai, S.; Hasegawa, M.; Tohgi, N. Effect of mayonnaise on serum lipid concentrations in hyperlipidemic subjects. J. Jpn. Soc. Clin. Nutr. 2001, 23, 21–25. (In Japanese) [Google Scholar]
- Karupaiah, T.; Chuah, K.A.; Chinna, K.; Matsuoka, R.; Masuda, Y.; Sundram, K.; Sugano, M. Comparison of soybean oil- and palm olein-based mayonnaise on the plasma lipid and lipoprotein profiles in human subjects: A double-blind randomized controlled trial with cross-over design. Lipids Health Dis. 2016, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, T.; Wakabayashi, M.; Tanimoto, H.; Shima, A.; Yabune, M.; Kajimoto, O.; Hiroshige, I. Effects of long-term intake of mayonnaise containing phytosterol ester on blood cholesterol concentration in Japanese with borderline or mild cholesterolemia. J. Clin. Biochem. Nutr. 2003, 33, 75–82. [Google Scholar] [CrossRef]
- Matsuoka, R.; Kamachi, K.; Usuda, M.; Masuda, Y.; Kunou, M.; Tanaka, A.; Utsunomiya, K. Minimal effective dose of lactic-fermented egg white on visceral fat in Japanese men: A double-blind parallel-armed pilot study. Lipids Health Dis. 2019, 18, 102. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, K.; Sakono, M.; Sugano, M.; Shigematsu, Y.; Hasegawa, M. Influence of saturated and polyunsaturated egg yolk phospholipids on hyperlipidemia in rats. Agric. Biol. Chem. 1989, 53, 2469–2474. [Google Scholar]
- Ikeda, I.; Matsuoka, R.; Hamada, T.; Mitsui, K.; Imabayashi, S.; Uchino, A.; Sato, M.; Kuwano, E.; Itamura, T.; Yamada, K.; et al. Cholesterol esterase accelerates intestinal cholesterol absorption. Biochim. Biophys. Acta 2001, 1571, 34–44. [Google Scholar] [CrossRef]
- Caporaso, N.; Genovese, A.; Burke, R.; Barry-Ryan, C.; Sacchi, R. Effect of olive mill wastewater phenolic extract, whey protein isolate and xanthan gum on the behavior of olive O/W emulsions using response surface methodology. Food Hydrocoll. 2016, 61, 66–76. [Google Scholar] [CrossRef]
- Rahmati, K.; Mazaheri Tehrani, M.; Daneshvar, K. Soy milk as an emulsifier in mayonnaise: Physico-chemical, stability and sensory evaluation. J. Food Sci. Technol. 2014, 51, 3341–3347. [Google Scholar] [CrossRef]
- Chetana, R.; Bhavana, K.P.; Babylatha, R.; Geetha, V.; Suresh Kumar, G. Studies on eggless mayonnaise from rice bran and sesame oils. J. Food Sci. Technol. 2019, 56, 3117–3125. [Google Scholar] [CrossRef]
- Karshenas, M.; Goli, M.; Zamindar, N. The effect of replacing egg yolk with sesame-peanut defatted meal milk on the physicochemical, colorimetry, and rheological properties of low-cholesterol mayonnaise. Food Sci. Nutr. 2018, 6, 824–833. [Google Scholar] [CrossRef]
- Froning, G.W.; Wehling, R.L.; Cuppett, S.L.; Pierce, M.M.; Niemann, L.; Siekman, D.K. Extraction of cholesterol and other lipids from dried egg yolk using supercritical carbon dioxide. J. Food Sci. 1990, 55, 95–98. [Google Scholar] [CrossRef]
- Matsuoka, R.; Masuda, Y.; Takeuchi, A.; Marushima, R.; Onuki, M. Minimal effective dose of plant sterol on serum cholesterol concentration in Japanese subjects and safety evaluation of plant sterol supplemented in mayonnaise. J. Oleo Sci. 2004, 53, 17–27. (In Japanese) [Google Scholar] [CrossRef]
- Matsuoka, R.; Masuda, Y.; Takeuchi, A.; Marushima, R.; Hasegawa, M.; Sakamoto, A.; Hirata, H.; Kajimoto, O.; Homma, Y. A double-blind, placebo-controlled study on the effects of mayonnaise containing free plant sterol on serum cholesterol concentration; safety evaluation for normocholesterolemic and mildly hypercholesterolemic Japanese subjects. J. Oleo Sci. 2004, 53, 79–88. (In Japanese) [Google Scholar] [CrossRef]
- Matsuoka, R. Property of phytosterols and development of its containing mayonnaise-type dressing. Foods 2022, 11, 1141. [Google Scholar] [CrossRef] [PubMed]
- Tohgi, N.; Koyama, K.; Kono, S.; Nonaka, K. Effect of low-calorie mayonnaise intake on serum lipid and apolipoprotein profiles. J. New Remedies Clin. 1997, 46, 921–924. (In Japanese) [Google Scholar]
- Tohgi, N.; Koyama, K.; Kono, S.; Nonaka, K. Effect of long-term intake of low-calorie mayonnaise on serum lipid and apolipoprotein profiles. J. New Remedies Clin. 1997, 46, 540–573. (In Japanese) [Google Scholar]
- Takeuchi, H.; Sakurai, C.; Noda, R.; Sekine, S.; Murano, Y.; Wanaka, K.; Kasai, M.; Watanabe, S.; Aoyama, T.; Kondo, K. Antihypertensive effect and safety of dietary alpha-linolenic acid in subjects with high-normal blood pressure and mild hypertension. J. Oleo Sci. 2007, 56, 347–360. [Google Scholar] [CrossRef]
- K Kubota, T.; Matsuoka, R. Emulsion containing α-linoleic acid-rich oil suppresses the rise in blood pressure in spontaneously hypertensive rats. Jpn. Pharmacol. Ther. 2019, 47, 49–55. [Google Scholar]
- Oyebode, O.; Dseau, V.G.; Walker, A.; Mindell, J. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: Analysis of Health Survey for England data. J. Epidemiol. Community Health 2014, 68, 856–862. [Google Scholar] [CrossRef]
- Yu, K.; Ke, M.Y.; Li, W.H.; Zhang, S.Q.; Fang, X.C. The impact of soluble dietary fibre on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes. Asia Pac. J. Clin. Nutr. 2014, 23, 210–218. [Google Scholar]
- Seto, Y.; Yamada, M.; Sawada, T.; Fujimoto, K. Effectiveness of ingesting shredded cabbage to fulfil the 350-g vegetable consumption quota. J. Cook. Sci. Jpn. 2014, 47, 90–96. (In Japanese) [Google Scholar]
- Kowata, H.; Harada, T.; Matsukubo, T.; Takaesu, Y. Influence of texture of processed foods on parotid salivary secretion and mastication. J. Jpn. Soc. Nutr. Food Sci. 1987, 40, 299–305. (In Japanese) [Google Scholar] [CrossRef]
- Kay, R.M. Dietary fiber. J. Lipid Res. 1982, 23, 221–242. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Leeds, A.R.; Gassull, M.A.; Haisman, P.; Dilawari, J.; Goff, D.V.; Metz, G.L.; Alberti, K.G. Dietary fibres, fibre analogues, and glucose tolerance: Importance of viscosity. Br. Med. J. 1978, 1, 1392–1394. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Yamori, M.; Asai, K.; Nakano-Araki, I.; Yamaguchi, A.; Takahashi, K.; Sekine, A.; Matsuda, F.; Kosugi, S.; Nakayama, T.; et al. Mastication and risk for diabetes in a Japanese population: A cross-sectional study. PLoS ONE 2013, 8, e64113. [Google Scholar] [CrossRef]
- Sato, A.; Ohtsuka, Y.; Yamanaka, Y. Morning mastication enhances postprandial glucose metabolism in healthy young subjects. Tohoku J. Exp. Med. 2019, 249, 193–201. [Google Scholar] [CrossRef]
- Sant, M.; Allemani, C.; Sieri, S.; Krogh, V.; Menard, S.; Tagliabue, E.; Nardini, E.; Micheli, A.; Crosignani, P.; Muti, P.; et al. Salad vegetables dietary pattern protects against HER-2-positive breast cancer: A prospective Italian study. Int. J. Cancer 2007, 121, 911–914. [Google Scholar] [CrossRef]
- Bell, E.B.; Reis, I.M.; Cohen, E.R.; Almuhaimid, T.; Smith, D.H.; Alotaibi, F.; Gordon, C.; Fernandez, C.G.; Goodwin, W.H.; Franzmann, E.J. Green salad intake is associated with improved oral cancer survival and lower soluble CD44 levels. Nutrient 2021, 13, 372. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, G.; Ma, M.; Yang, J.; Liu, X. Dietary fiber intake reduces risk for gastric cancer: A meta-analysis. Gastroenterol. 2013, 145, 113–120. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fiber, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, M.; Zhou, L.; Ling, S.; Li, Y.; Kong, B.; Huang, P. Dietary fiber intake and risk of proximal and distal colon cancer: A meta-analysis. Medicine 2018, 97, e11678. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.M.; Greenwood, D.C.; Vieira, A.R.; Navarro Rosenblatt, D.A.; Vieira, R.; Norat, T. Dietary fiber and breast cancer risk: A systematic review and meta-analysis of prospective studies. Ann. Oncol. 2012, 23, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Y.; He, K.; Wang, P.; Qin, L.Q. Dietary fiber intake and risk of breast cancer: A meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2011, 94, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, H.P.; Zhou, L.; Xu, C.F. Effects of dietary fiber on constipation: Meta-analysis. World J. Gastroenterol. 2012, 18, 7378–7383. [Google Scholar] [CrossRef] [PubMed]
- Dukas, L.; Willett, W.C.; Giovannucci, E.L. Association between physical activity, fiber intake, and other lifestyle variables and constipation in a study of women. Am. J. Gastroenterol. 2003, 98, 1790–1796. [Google Scholar] [CrossRef]
- Cui, J.; Lian, Y.; Zhao, C.; Du, H.; Han, Y.; Gao, W.; Xiao, H.; Zheng, J. Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1514–1532. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-microbiota-targeted diets modulate human immune status. Cell 2021, 184, 4137–4153. [Google Scholar] [CrossRef]
- Frankenfeld, C.L.; Hullar, M.A.J.; Maskarinec, G.; Monroe, K.R.; Shepherd, J.A.; Franke, A.A.; Randolph, T.W.; Wilkens, L.R.; Boushey, C.J.; Le Marchand, L.; et al. The Gut Microbiome Is Associated with Circulating Dietary Biomarkers of Fruit and Vegetable Intake in a Multiethnic Cohort. J. Acad. Nutr. Diet. 2022, 122, 78–98. [Google Scholar] [CrossRef]
- Shabbir, U.; Rubab, M.; Daliri, E.B.-M.; Chelliah, R.; Javed, A.; Oh, D.-H. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutrients 2021, 13, 206. [Google Scholar] [CrossRef]
- Mantegazza, G.; Gargari, G.; Duncan, R.; Consalez, F.; Taverniti, V.; Riso, P.; Guglielmetti, S. Ready-To-Eat Rocket Salads as Potential Reservoir of Bacteria for the Human Microbiome. Microbiol. Spectr. 2023, 11, e0297022. [Google Scholar] [CrossRef]
- Mantegazza, G.; Duncan, R.; Telesca, N.; Gargari, G.; Perotti, S.; Riso, P.; Guglielmetti, S. Lactic acid bacteria naturally associated with ready-to-eat rocket salad can survive the human gastrointestinal transit. Food Microbiol. 2024, 118, 104418. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, R.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 2005, 93, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Enrique F Schisterman, E.F. Self-report of fruit and vegetable intake that meets the 5 a day recommendation is associated with reduced levels of oxidative stress biomarkers and increased levels of antioxidant defense in premenopausal women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar]
- Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative stress and its role in cancer. J. Cancer. Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef]
- Consumer Affairs Agency, Government of Japan. Data Base of Food with Functional Claims. Available online: https://www.fld.caa.go.jp/caaks/cssc01/ (accessed on 10 October 2024). (In Japanese).
- Hoy, K.; Sebastian, R.S.; Goldman, J.; Enns, C.W.; Moshfegh, A. Consuming vegetable-based salad is associated with higher nutrient intakes and diet quality among US adults, What We Eat in America, National Health and Nutrition Examination Survey 2011–2014. J. Acad. Nutr. Diet. 2019, 119, 2085–2095. [Google Scholar] [CrossRef]
- Su, L.J.; Arab, L. Salad and raw vegetable consumption and nutritional status in the adult US population: Results from the Third National Health and Nutrition Examination Survey. J. Am. Diet. Assoc. 2006, 106, 1394–1404. [Google Scholar] [CrossRef]
- Lisanias, H.; Laukapitang, L.; Tessy, C. Vegetable salad as a healthy food alternative: Organoleptic test method. J. Abdimas Nusant. 2023, 1, 28–34. [Google Scholar] [CrossRef]
- Landry, M.J.; Burgermaster, M.; van den Berg, A.E.; Asigbee, F.M.; Vandyousefi, S.; Ghaddar, R.; Jeans, M.R.; Yau, A.; Davis, J.N. Barriers to Preparing and Cooking Vegetables Are Associated with Decreased Home Availability of Vegetables in Low-Income Households. Nutrients 2020, 12, 1823. [Google Scholar] [CrossRef]
Functional Component | Vegetables Containing Functional Ingredients | Functionality | Estimated Daily Intake of Functional Ingredients |
---|---|---|---|
GABA | Tomato | Function of maintaining memory and spatial cognition as part of cognitive function | 100 mg |
Paprika | Function of reducing temporary stress | 28 mg | |
Sowing | Ability to lower blood pressure | 20 mg | |
Cabbage | Ability to lower blood pressure in people with high blood pressure | 12.3 mg | |
Broccoli | |||
Paprika | |||
Kale | |||
Soybean moyashi | |||
Bean seedling | |||
Soy isoflavone | Soybean moyashi | Function of helping maintain the components of bones | 23.3 mg |
Function of maintaining skin moisture in middle-aged and elderly women who tend to have dry skin | 30 mg | ||
Lycopene | Tomato | Function of helping protect the skin from UV irritation | 16 mg |
Ability to increase HDL cholesterol | 15 mg | ||
LDL cholesterol-lowering function | 22 mg | ||
Inulin | Garlic, chrysanthemum, chicory, burdock root | Ability to regulate physical conditions | 5 g |
Ability to reduce postprandial glucose levels | 0.75 g | ||
Function of suppressing the elevation of blood triglycerides after meals | 8.1 g | ||
Quercetin | Coconut | Function of helping maintain a positive mood | 50 mg |
Sulfora glucosinolate | Broccoli | Function of lowering elevated blood levels of hepatic enzymes (ALT) | 24 mg |
Broccoli sprout | |||
Scale plout | |||
Broccoli | Ability to increase skin moisture and relieve dryness | 20 mg | |
Broccoli sprout | |||
Scale plout | |||
Corin ester (acetylcholine) from eggplant | Sowing | Ability to lower blood pressure in people with high blood pressure | 2.3 mg |
Xanthophylls from paprika | Paprika | Function of helping protect the skin from UV irritation | 9 mg |
Function of helping reduce body fatness and improve BMI | 9 mg | ||
Lutein | Spinach | Function of protecting the eye from light-induced stimulation | 10 mg |
Kale | Function of protecting the eye from light-induced stimulation | 10 mg | |
Pumpkin | Function of protecting the eye from light-induced stimulation | 10 mg | |
Komatsuna | Function of improving contrast sensitivity (clear vision to reduce blurring) | 6 mg | |
Dietary fiber derived from tomato | Tomato | Ability to reduce postprandial glucose levels | 1.6 g |
Function of suppressing the elevation of blood triglycerides after meals | 1.6 g | ||
6-gingerol, 6-gingaol | Ginger | Function of maintaining body temperature at peripheral sites | 2.35 mg |
β-carotene | Green/yellow vegetable | Function of reducing nasal discomfort caused by house dust or dust | 4.7 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utari, D.M.; Kartiko-Sari, I.; Miyazaki, T.; Umezawa, H.; Takeda, Y.; Oe, M.; Wang, W.; Kamoshita, S.; Shibasaki, M.; Matsuoka, R.; et al. Vegetable Salad Improves Lipid and Glucose Metabolism and Enhances Absorption of Specific Nutrients in Vegetables. Foods 2024, 13, 3591. https://doi.org/10.3390/foods13223591
Utari DM, Kartiko-Sari I, Miyazaki T, Umezawa H, Takeda Y, Oe M, Wang W, Kamoshita S, Shibasaki M, Matsuoka R, et al. Vegetable Salad Improves Lipid and Glucose Metabolism and Enhances Absorption of Specific Nutrients in Vegetables. Foods. 2024; 13(22):3591. https://doi.org/10.3390/foods13223591
Chicago/Turabian StyleUtari, Diah Mulyawati, Indri Kartiko-Sari, Toshitaka Miyazaki, Hiroko Umezawa, Yumi Takeda, Mariko Oe, Wei Wang, Sumiko Kamoshita, Motomi Shibasaki, Ryosuke Matsuoka, and et al. 2024. "Vegetable Salad Improves Lipid and Glucose Metabolism and Enhances Absorption of Specific Nutrients in Vegetables" Foods 13, no. 22: 3591. https://doi.org/10.3390/foods13223591
APA StyleUtari, D. M., Kartiko-Sari, I., Miyazaki, T., Umezawa, H., Takeda, Y., Oe, M., Wang, W., Kamoshita, S., Shibasaki, M., Matsuoka, R., & Yamamoto, S. (2024). Vegetable Salad Improves Lipid and Glucose Metabolism and Enhances Absorption of Specific Nutrients in Vegetables. Foods, 13(22), 3591. https://doi.org/10.3390/foods13223591