Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. UV–Vis Absorption Spectra Test Methods
2.4. Fluorescence Spectroscopy
2.5. FTIR Measurement Test Methods
2.6. Molecular Docking Simulations Test Methods
2.7. Surface Hydrophobicity Test Methods
3. Results
3.1. UV–Vis Absorption Spectra
3.2. Fluorescence Spectra
3.2.1. Fluorescence Quenching Spectrum
3.2.2. Quenching Type Analysis
3.2.3. Binding Constants and Binding Sites
3.2.4. Analysis of Acting Forces
3.2.5. Combined Distance Analysis
3.2.6. Synchronous Fluorescence Spectrum Analysis
3.2.7. Three-Dimensional Fluorescence Spectrum
3.3. FTIR Measurement
3.4. Molecular Docking Simulations
3.5. Surface Hydrophobicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, B.; Zhang, L.; Zhou, P. Comparative Proteomics of Whey Proteins: New Insights into Quantitative Differences between Bovine, Goat and Camel Species. Int. J. Biol. Macromol. 2023, 227, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, H.; Sun, X.; Sun, Y.; Guo, M. Heat-Induced Interactions between Whey Protein and Inulin and Changes in Physicochemical and Antioxidative Properties of the Complexes. Int. J. Mol. Sci. 2019, 20, 4089. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Bao, K.; Sandjaja, S.; Poh, B.; Rojroongwasinkul, N.; Huu, C.; Sumedi, E.; Aini, J.; Senaprom, S.; Deurenberg, P.; Bragt, M.; et al. The Consumption of Dairy and Its Association with Nutritional Status in the South East Asian Nutrition Surveys (Seanuts). Nutrients 2018, 10, 759. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Modifications of Whey Proteins for Emulsion Based Applications: Current Status, Issues and Prospectives. Food Res. Int. 2024, 178, 113935. [Google Scholar] [CrossRef]
- Hassanzadeh-Rostami, Z.; Abbasi, A.; Faghih, S. Effects of Biscuit Fortified with Whey Protein Isolate and Wheat Bran on Weight Loss, Energy Intake, Appetite Score, and Appetite Regulating Hormones among Overweight or Obese Adults. J. Funct. Foods 2020, 70, 103743. [Google Scholar] [CrossRef]
- Mehra, R.; Kumar, H.; Kumar, N.; Ranvir, S.; Jana, A.; Buttar, H.S.; Telessy, I.G.; Awuchi, C.G.; Okpala, C.O.R.; Korzeniowska, M.; et al. Whey Proteins Processing and Emergent Derivatives: An Insight Perspective from Constituents, Bioactivities, Functionalities to Therapeutic Applications. J. Funct. Foods 2021, 87, 104760. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X.; Wang, H.; Sun, X.; Wang, J.; Wang, C. Comparison of Dry- and Wet-Heat Induced Changes in Physicochemical Properties of Whey Protein in Absence or Presence of Inulin. Food Sci. Biotechnol. 2019, 28, 1367–1374. [Google Scholar] [CrossRef]
- Tian, X.; Li, Y.; Xu, Z.; Feng, X.; Kong, Q.; Ren, X. Efficient Binding Paradigm of Protein and Polysaccharide: Preparation of Isolated Soy Protein-Chitosan Quaternary Ammonium Salt Complex System and Exploration of Its Emulsification Potential. Food Chem. 2023, 407, 135111. [Google Scholar] [CrossRef]
- Setiowati, A.D.; Wijaya, W.; Van der Meeren, P. Whey Protein-Polysaccharide Conjugates Obtained Via Dry Heat Treatment to Improve the Heat Stability of Whey Protein Stabilized Emulsions. Trends Food Sci. Technol. 2020, 98, 150–161. [Google Scholar] [CrossRef]
- Guo, M.; Wang, H.; Wang, C. Interactions Between Whey Protein and Inulin in a Model System. J. Food Sci. Technol. 2018, 55, 4051–4058. [Google Scholar] [CrossRef]
- Reimer, R.A.; Willis, H.J.; Tunnicliffe, J.M.; Park, H.; Madsen, K.L.; Soto-Vaca, A. Inulin-Type Fructans and Whey Protein Both Modulate Appetite but Only Fructans Alter Gut Microbiota in Adults with Overweight/Obesity: A Randomized Controlled Trial. Mol. Nutr. Food Res. 2017, 61, 1700484. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Zapata, R.C.; Pezeshki, A.; Chelikani, P.K. Dietary Lactalbumin and Lactoferrin Interact with Inulin to Modulate Energy Balance in Obese Rats. Obesity 2017, 25, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sun, Y.; Cheng, J.; Zhang, X.; Guo, M. Changes in Conformation and Functionality of Whey Proteins Induced by the Interactions with Soy Isoflavones. LWT 2022, 163, 113555. [Google Scholar] [CrossRef]
- Sheng, W.; Ji, G.; Zhang, L. Immunomodulatory Effects of Inulin And Its Intestinal Metabolites. Front. Immunol. 2023, 14, 1224092. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Du, Z.; Tian, Y.; Liu, M.; Zhu, K.; Zhao, Y.; Wang, H. Inulin Accelerates Weight Loss in Obese Mice by Regulating Gut Microbiota and Serum Metabolites. Front. Nutr. 2022, 9, 980382. [Google Scholar] [CrossRef]
- Kheto, A.; Bist, Y.; Awana, A.; Kaur, S.; Kumar, Y.; Sehrawat, R. Utilization of Inulin as a Functional Ingredient in Food: Processing, Physicochemical Characteristics, Food Applications, and Future Research Directions. Food Chem. Adv. 2023, 3, 100443. [Google Scholar] [CrossRef]
- Shin, S.A.; Joo, B.J.; Lee, J.S.; Ryu, G.; Han, M.; Kim, W.Y.; Park, H.H.; Lee, J.H.; Lee, C.S. Phytochemicals as Anti-Inflammatory Agents in Animal Models of Prevalent Inflammatory Diseases. Molecules 2020, 25, 5932. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, R.; Lu, G.; Li, C.; Lian, S.; Kang, T.-W.; Jung, Y.D. Natural Phytochemicals in Bladder Cancer Prevention and Therapy. Front. Oncol. 2021, 11, 652033. [Google Scholar] [CrossRef]
- Can, B.; Sanlier, N. Alzheimer, Parkinson, Dementia, and Phytochemicals: Insight Review. Crit. Rev. Food Sci. Nutr. 2024, 1–23. [Google Scholar] [CrossRef]
- Kumar, A.; Nirmal, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, K.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Shahidi, F.; Pan, Y. Influence of Food Matrix and Food Processing on the Chemical Interaction and Bioaccessibility of Dietary Phytochemicals: A Review. Crit. Rev. Food Sci. Nutr. 2021, 62, 6421–6445. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, Y.; Zhang, Q.; Li, X.; Fu, Y.; Pei, H.; Lu, D. Comparative Effects of Flavonoids from Fructus Sophorae on Rat Osteoblasts in Vitro. Rec. Nat. Prod. 2019, 14, 65–76. [Google Scholar] [CrossRef]
- Kim, B.-H.; Lee, S. Sophoricoside from Styphnolobium Japonicum Improves Experimental Atopic Dermatitis in Mice. Phytomedicine 2021, 82, 153463. [Google Scholar] [CrossRef]
- Gao, M.; Hu, F.; Hu, M.; Hu, Y.; Shi, H.; Zhao, G.-J.; Jian, C.; Ji, Y.-X.; Zhang, X.-J.; She, Z.-G.; et al. Sophoricoside Ameliorates Cardiac Hypertrophy by Activating AMPK/mTORC1-Mediated Autophagy. Biosci. Rep. 2020, 40, BSR20200661. [Google Scholar] [CrossRef]
- Kim, B.-H.; Lee, S. Sophoricoside from Sophora Japonica Ameliorates Allergic Asthma by Preventing Mast Cell Activation and Cd4+ T Cell Differentiation in Ovalbumin-Induced Mice. Biomed. Pharmacother. 2021, 133, 111029. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, J.; Yin, L.; Huang, J.; Liu, X.; Shi, J.; Geng, Z.; Song, X.; Wang, L.; Wang, Y.; et al. Sophoricoside Improved Crohn’s Disease-Like Colitis by Inhibiting Intestinal Epithelial Cell Apoptosis through PI3K/AKT Signaling. Int. Immunopharmacol. 2024, 131, 111886. [Google Scholar] [CrossRef] [PubMed]
- Elberry, A.; Mufti, S.; Al-Maghrabi, J.; Ghareib, S.; Mosli, H.; El-Halawany, A.; Abdel-Sattar, E. The Protective Effect of Sophora Japonica on Prostatic Hypertrophy and Inflammation in Rat. Inflammopharmacology 2020, 28, 1525–1536. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, F.; Jiang, X.; Jiang, X.; Wang, Y.; Zhang, H.; Zhang, L.; Fan, S.; Xin, L.; Yang, B.; et al. Sophoricoside Is a Selective Lxrβ Antagonist with Potent Therapeutic Effects on Hepatic Steatosis of Mice. Phytother. Res. 2020, 34, 3168–3179. [Google Scholar] [CrossRef]
- Cao, Y. Study on the Effect of the Interaction Between Whey Protein and Polyphenols on the Functional Properties of Protein Under Neutral Ph Condition. Doctoral dissertation, Jiangnan University, Wuxi, China, 2017. [Google Scholar]
- Wang, Y.; Zhou, C.; Liu, S.; Tian, R.; Tian, Y.; Jiang, Z. Browning Characteristics and Antioxidant Activity of Glycosylated Complexes of Whey Protein Inulin. Food Ferment Ation Ind. 2013, 39, 49–53. [Google Scholar] [CrossRef]
- Hu, X.X.; Huang, Z.F.; Lu, G.S.; Huang, J.Y.; Tan, X.; Huang, G.T. Interaction of Emodin and Its Derivative Frangulin-a with Bovine Serum Albumin and Calf Thymus DNA. J. Appl. Spectrosc. 2020, 87, 46–53. [Google Scholar] [CrossRef]
- Duan, S.T.; Liu, B.S.; Li, T.T.; Cui, M.M. Study of the Interaction of Cefonicid Sodium with Bovine Serum Albumin by Fluorescence Spectroscopy. J. Appl. Spectrosc. 2017, 84, 431–438. [Google Scholar] [CrossRef]
- Racz, C.-P.; Racz, L.Z.; Floare, C.G.; Tomoaia, G.; Horovitz, O.; Riga, S.; Kacso, I.; Borodi, G.; Sarkozi, M.; Mocanu, A.; et al. Curcumin and Whey Protein Concentrate Binding: Thermodynamic and Structural Approach. Food Hydrocoll. 2023, 139, 108547. [Google Scholar] [CrossRef]
- Ken, Y.; Zhang, Y.; Bian, Z.; Zhang, H.; Huang, P.; Ni, J.; Huang, H. Study on the Interaction between 1,8-Ditetramethylpyrazine Based Rhein and Bovine Serum Albumin. J. Anal. Sci. 2024, 337–343. [Google Scholar] [CrossRef]
- Ding, Q.; Tian, G.; Wang, X.; Deng, W.; Mao, K.; Sang, Y. Effect of Ultrasonic Treatment on the Structure and Functional Properties of Mantle Proteins from Scallops (Patinopecten yessoensis). Ultrason. Sonochem. 2021, 79, 105770. [Google Scholar] [CrossRef] [PubMed]
- Bhimaneni, S.P.; Bhati, V.; Bhosale, S.; Kumar, A. Investigates Interaction between Abscisic Acid and Bovine Serum Albumin Using Various Spectroscopic and in-Silico Techniques. J. Mol. Struct. 2021, 1224, 129018. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, H.-M.; Wang, R.-H. Investigation of the Interaction between Colloidal TiO2 and Bovine Hemoglobin Using Spectral Methods. Colloids Surf. B Biointerfaces 2008, 65, 190–196. [Google Scholar] [CrossRef]
- Xie, W.; Wei, S.; Liu, J.; Ge, X.; Zhou, L.; Zhou, J.; Shen, J. Spectroscopic Studies on the Interaction of Ga3+-Hypocrellin a with Myoglobin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 109–115. [Google Scholar] [CrossRef]
- Lyu, S.; Wang, W. Spectroscopic Methodologies and Computational Simulation Studies on the Characterization of the Interaction between Human Serum Albumin and Astragalin. J. Biomol. Struct. Dyn. 2020, 39, 2959–2970. [Google Scholar] [CrossRef]
- Ali, M.S.; Al-Lohedan, H.A. Spectroscopic and Molecular Docking Investigation on the Noncovalent Interaction of Lysozyme with Saffron Constituent “Safranal”. ACS Omega 2020, 5, 9131–9141. [Google Scholar] [CrossRef]
- Ren, G.; Sun, H.; Guo, J.; Fan, J.; Li, G.; Xu, S. Molecular Mechanism of the Interaction between Resveratrol and Trypsin Via Spectroscopy and Molecular Docking. Food Funct. 2019, 10, 3291–3302. [Google Scholar] [CrossRef]
- Yu, S.; He, M.; Zhai, Y.; Xie, Z.; Xu, S.; Yu, S.; Xiao, H.; Song, Y. Inhibitory Activity and Mechanism of Trilobatin on Tyrosinase: Kinetics, Interaction Mechanism and Molecular Docking. Food Funct. 2021, 12, 2569–2579. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Liu, L.; Zheng, S.; Yang, G.; He, Q.; Huang, X.; Guo, C. Investigation of the Binding Interactions between 17α-Ethinylestradiol with Bovine Serum Albumin by Multispectroscopy. J. Environ. Sci. Health Part A 2020, 55, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Fan, Y.; Liu, G.; Zhang, Y.; Wang, M.; Wang, X.; Li, L. Interaction Study of Astilbin, Isoastilbin and Neoastilbin toward Cyp2d6 by Multi-Spectroscopy and Molecular Docking. Luminescence 2021, 36, 1412–1421. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Zeng, F.; Qi, J.; Qin, W.; Tan, C.; Luo, Q.; Wu, D.; Zhang, Q.; Lin, D.; et al. Functional Components, Antioxidant Activity and Hypoglycemic Ability Following Simulated Gastro-Intestinal Digestion of Pigments from Walnut Brown Shell and Green Husk. Antioxidants 2019, 8, 573. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, H.-M. Spectral Studies on the Interaction between Cu2+ and Urease. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 352–357. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Xing, Y.; Hou, C.; Zhou, Q.; Sun, Y.; Sun, Y.; Xu, H.; Gao, J. Mechanism of the Interaction between Benthiavalicarb-Isopropyl and Human Serum Albumin. Spectrosc. Lett. 2020, 53, 360–371. [Google Scholar] [CrossRef]
- Yu, X.; Cai, X.; Li, S.; Luo, L.; Wang, J.; Wang, M.; Zeng, L. Studies on the Interactions of Theaflavin-3,3′-Digallate with Bovine Serum Albumin: Multi-Spectroscopic Analysis and Molecular Docking. Food Chem. 2022, 366, 130422. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, M.-H.; Chiou, Y.-S.; Li, Z.; Wei, S.; Yin, X.; Ding, B. Mechanistic Understanding of the Effects of Ovalbumin-Nanoliposome Interactions on Ovalbumin Emulsifying Properties. LWT 2022, 157, 113067. [Google Scholar] [CrossRef]
- Fan, S.-H.; Wang, W.-Q.; Zhou, Y.-W.; Gao, X.-J.; Zhang, Q.; Zhang, M.-H. Research on the Interaction Mechanism and Structural Changes in Human Serum Albumin with Hispidin Using Spectroscopy and Molecular Docking. Molecules 2024, 29, 655. [Google Scholar] [CrossRef]
- Li, T.; Wang, C.; Li, T.; Ma, L.; Sun, D.; Hou, J.; Jiang, Z. Surface Hydrophobicity and Functional Properties of Citric Acid Cross-Linked Whey Protein Isolate: The Impact of Ph and Concentration of Citric Acid. Molecules 2018, 23, 2383. [Google Scholar] [CrossRef]
System | T/K | Ksv (104 L·mol−1) | Kq (1012 L·mol−1·s−1) | R2 |
---|---|---|---|---|
WPC-Sop | 363 | 0.75 | 0.75 | 0.99 |
368 | 0.66 | 0.66 | 0.99 | |
373 | 0.62 | 0.62 | 0.96 | |
WPC-inulin-Sop | 363 | 0.60 | 0.60 | 0.99 |
368 | 0.44 | 0.44 | 0.97 | |
373 | 0.35 | 0.35 | 0.98 |
System | T/K | Ka/L·mol−1 | N | R2 |
---|---|---|---|---|
WPC-Sop | 363 | 1.15 × 1012 | 3.31 | 0.98 |
368 | 3.16 × 109 | 2.65 | 0.95 | |
373 | 1.05 × 109 | 2.51 | 0.99 | |
WPC-inulin-Sop | 363 | 9.55 × 109 | 2.76 | 0.99 |
368 | 2.51 × 107 | 2.09 | 0.98 | |
373 | 5.01 × 105 | 1.62 | 0.99 |
System | T/K | ΔH (KJ·mol−1) | ΔS (KJ·mol−1·K−1) | ΔG (KJ·mol−1) |
---|---|---|---|---|
WPC-Sop | 363 | −787.98 | −1.94 | −83.81 |
368 | −74.06 | |||
373 | −64.41 | |||
WPC-inulin-Sop | 363 | −1109.39 | −2.87 | −69.35 |
368 | −53.23 | |||
373 | −40.70 |
System | Sop (mol/mL) | E | J (10−15 L·cm−3·mol−1) | R0/nm | r0/nm |
---|---|---|---|---|---|
WPC-Sop | 0.231 | 0.44 | 4.815.25 | 2.11 | 2.19 |
WPC-inulin-Sop | 0.37 | 2.14 | 2.34 |
System | Sop (μg/mL) | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Antiparallel β-Sheet (%) | Random Coil (%) |
---|---|---|---|---|---|---|
WPC-Sop | 0 | 15.93% | 38.44% | 22.49% | 13.56% | 9.58% |
200 | 14.91% | 40.60% | 21.65% | 14.60% | 8.25% | |
WPC-inulin-Sop | 0 | 15.83% | 42.74% | 23.93% | 9.79% | 7.71% |
200 | 14.84% | 40.79% | 23.48% | 12.42% | 7.86% |
Protein 3D Models | Detailed Surface Model |
---|---|
Receptor | Ligand | Docking Score/(kcal·mol−1) |
---|---|---|
α-La | Sop | −5.57 |
β-Lg | −4.67 | |
BSA | −4.63 | |
LF | −4.43 |
Sop Conc. (μg/mL) | 0 | 120 | 140 | 160 | 180 | 200 | |
---|---|---|---|---|---|---|---|
System | |||||||
WPC-Sop | 171.23 ± 1.00 a | 167.00 ± 3.04 a | 153.33 ± 1.80 b | 150.90 ± 1.85 b | 150.60 ± 2.00 b | 149.43 ± 1.40 b | |
WPC-inulin-Sop | 145.00 ± 2.39 a | 142.60 ± 1.55 a | 134.67 ± 1.92 b | 132.43 ± 2.11 b | 131.10 ± 2.31 b | 130.60 ± 1.61 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Xie, M.; Wu, L. Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate. Foods 2024, 13, 3601. https://doi.org/10.3390/foods13223601
Wang A, Xie M, Wu L. Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate. Foods. 2024; 13(22):3601. https://doi.org/10.3390/foods13223601
Chicago/Turabian StyleWang, Anna, Mengyang Xie, and Ligen Wu. 2024. "Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate" Foods 13, no. 22: 3601. https://doi.org/10.3390/foods13223601
APA StyleWang, A., Xie, M., & Wu, L. (2024). Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate. Foods, 13(22), 3601. https://doi.org/10.3390/foods13223601