Production of Pectic Oligosaccharides from Citrus Peel via Steam Explosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Static Steam Explosion
2.2. Pectin Recovery
2.3. Compositional Analysis of Recovered Pectin
2.4. Macromolecular Characterization of Recovered Pectin
2.5. Data Analysis
3. Results and Discussion
3.1. Pectin Yield and Sugar Composition
3.2. Macromolecular Characterization and Architecture
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Note
References
- Jarvis, M.C. Structure and properties of pectin gels in plant cell walls. Plant Cell Environ. 1984, 7, 153–164. [Google Scholar] [CrossRef]
- Jarvis, M.C.; Forsyth, W.; Duncan, H.J. A survey of the pectic content of nonlignified monocot cell walls. Plant Physiol. 1988, 88, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Choo, W.S.; Young, D.J.; Loh, X.J. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr. Polym. 2017, 161, 118–139. [Google Scholar] [CrossRef] [PubMed]
- Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Atmodjo, M.A.; Hao, Z.; Mohnen, D. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 2013, 64, 747–779. [Google Scholar] [CrossRef]
- Shi, D.C.; Wang, J.; Hu, R.B.; Zhou, G.K.; O’Neill, M.A.; Kong, Y.Z. Boron-bridged RG-II and calcium are required to maintain the pectin network of the Arabidopsis seed mucilage ultrastructure. Plant Mol. Biol. 2017, 94, 267–280. [Google Scholar] [CrossRef]
- Tanhatan-Nasseri, A.; Crépeau, M.-J.; Thibault, J.-F.; Ralet, M.-C. Isolation and characterization of model homogalacturonans of tailored methylesterification patterns. Carbohydr. Polym. 2011, 86, 1236–1243. [Google Scholar] [CrossRef]
- Utku, A.; Peña, M.J.; O’Neill, M.A. Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. Planta 2018, 247, 953–971. [Google Scholar]
- Peaucelle, A.; Louvet, R.; Johansen, J.N.; Höfte, H.; Laufs, P.; Pelloux, J.; Mouille, G. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 2008, 18, 1943–1948. [Google Scholar] [CrossRef]
- Pérez, S.; Karim Mazeau, K.; Catherine Hervé du Penhoat, C. The three-dimensional structures of the pectic polysaccharides. Plant Physiol. Biochem. 2000, 38, 37–55. [Google Scholar] [CrossRef]
- May, C.D. Industrial pectins: Sources, production and applications. Carbohydr. Polym. 1990, 12, 79–99. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Delisi, R.; Ilharco, L.M.; Pagliaro, M. Pectin production and global market. Agro Food Ind. Hi-Tech 2016, 27, 17–20. [Google Scholar]
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Maxwell, E.G.; Colquhoun, I.J.; Chau, H.K.; Hotchkiss, A.T.; Waldron, K.W.; Morris, V.J.; Belshaw, N.J. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. Carbohydr. Polym. 2016, 20, 923–929. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2018, 244, 232–237. [Google Scholar] [CrossRef]
- Gao, M.; Wang, X.; Lin, J.; Liu, X.Y.; Qi, D.; Luo, Y.; Aheyeli-Kai, Y.; Ma, H. Separation, structural identification and antibacterial activity of pectin oligosaccharides derived from seed melon. Food Biosci. 2023, 53, 102616. [Google Scholar] [CrossRef]
- Martínez-Gómez, S.; Fernández-Bautista, M.; Rivas, S.; Yáñez, R.; Alonso, J.L. Recent advances in the production of oligogalacturonides and their biological properties. Food Funct. 2023, 14, 4507–4521. [Google Scholar] [CrossRef]
- Wang, T.; Tao, Y.; Lai, C.; Huang, C.; Ling, Z.; Yong, Q. Influence of glycosyl composition on the immunological activity of pectin and pectin-derived oligosaccharide. Int. J. Biol. Macromol. 2022, 222 Pt A, 671–679. [Google Scholar] [CrossRef]
- Olano-Martin, E.; Gibson, G.R.; Rastall, R.A. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J. Appl. Microbiol. 2002, 93, 505–511. [Google Scholar] [CrossRef]
- Manderson, K.; Pinart, M.; Tuohy, K.M.; Grace, W.E.; Hotchkiss, A.T.; Widmer, W.; Yadav, M.P.; Gibson, G.R.; Rastall, R.A. In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl. Environ. Microbiol. 2005, 71, 8383–8389. [Google Scholar] [CrossRef] [PubMed]
- Mandalari, G.; Nueno Palop, C.; Tuohy, K.; Gibson, G.R.; Bennett, R.N.; Waldron, K.W.; Bisignano, G.; Narbad, A.; Faulds, C.B. In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel. Appl. Microbiol. Biotechnol. 2007, 73, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Onumpai, C.; Kolida, S.; Bonnin, E.; Rastall, R.A. Microbial utilization and selectivity of pectin fractions with various structures. Appl. Environ. Microbiol. 2011, 77, 5747–5754. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, A.T.; Nunez, A.; Gibson, G.; Rastall, R.A. Methods of Promoting the Growth of Beneficial Bacteria in the Gut. U.S. Patent 8,313,789, 20 November 2012. [Google Scholar]
- Di, R.; Vakkalanka, M.S.; Onumpai, C.; Chau, H.K.; White, A.; Rastall, R.A.; Yam, K.; Hotchkiss, A.T., Jr. Pectic oligosaccharide structure-function relationships: Prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells. Food Chem. 2017, 227, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Tingirikari, J.M.R. Agro waste derived pectin poly and oligosaccharides: Synthesis and functional characterization. Biocatal. Agric. Biotechnol. 2021, 31, 101910. [Google Scholar] [CrossRef]
- Olano-Martin, E.; Rimbach, G.H.; Gibson, G.R.; Rastall, R.A. Pectin and pectic oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res. 2003, 23, 341–346. [Google Scholar]
- Yan, J.; Katz, A. PectaSol-C modified citrus pectin induces apoptosis and inhibition of proliferation in human and mouse androgen-dependent and-independent prostate cancer cells. Integr. Cancer 2010, 9, 197–203. [Google Scholar] [CrossRef]
- Eliaz, I.; Raz, A. Pleiotropic effects of modified citrus pectin. Nutrients 2019, 11, 2619. [Google Scholar] [CrossRef]
- Watts, P.; Smith, A. PecSys: In situ gelling system for optimised nasal drug delivery. Expert Opin. Drug Deliv. 2009, 6, 543–552. [Google Scholar] [CrossRef]
- Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules 2009, 14, 2602–2620. [Google Scholar] [CrossRef]
- Martău, G.A.; Mihai, M.; Vodnar, D.C. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Cervone, F.; Hahn, M.G.; De Lorenzo, G.; Darvill, A.; Albersheim, P. Host-pathogen interactions: XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol. 1989, 90, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Patel, D. Production, Purification, and Characterization of Carbohydrate Elicitor: Pectic Oligomers. In Biotic Elicitors; Amin, D., Amaresan, N., Ray, S., Eds.; Springer Protocols Handbooks; Humana: New York, NY, USA, 2022; pp. 79–86. [Google Scholar] [CrossRef]
- Udchumpisai, W.; Uttapap, D.; Wandee, Y.; Kotatha, D.; Rungsardthong, V. Promoting effect of pectic-oligosaccharides produced from pomelo peel on rice seed germination and early seedling growth. J. Plant Growth Regul. 2023, 42, 2176–2188. [Google Scholar] [CrossRef]
- Cano, M.E.; García-Martin, A.; Comendador Morales, P.; Wojtusik, M.; Santos, V.E.; Kovensky, J.; Ladero, M. Production of oligosaccharides from agrofood wastes. Fermentation 2020, 6, 31. [Google Scholar] [CrossRef]
- Cameron, R.G.; Chau, H.K.; Manthey, J.A. Continuous process for enhanced release and recovery of pectic hydrocolloids and phenolics from citrus biomass. J. Chem. Technol. Biotechnol. 2016, 91, 2597–2606. [Google Scholar] [CrossRef]
- Dorado, C.; Cameron, R.G.; Manthey, J.A.; Bai, J.; Ferguson, K.L. Analysis and potential value of compounds extracted from Star Ruby, Rio Red, and Ruby Red grapefruit, and grapefruit juice processing residues via steam explosion. Front. Nutr. 2021, 8, 691663. [Google Scholar] [CrossRef]
- Cameron, R.G.; Branca, E.; Dorado, C.; Kim, Y. Pectic hydrocolloids from steam-exploded lime pectin peel: Effect of temperature and time on macromolecular and functional properties. Food Sci. Nutr. 2021, 9, 1939–1948. [Google Scholar] [CrossRef]
- The United States Pharmacopeia. 24th Rev. The National Formulary, 19th ed.; United States Pharmacopeial Convention, Inc.: Rockville, MD, USA, 1995. [Google Scholar]
- Yuliarti, O.; Goh, K.K.; Matia-Merino, L.; Mawson, J.; Brennan, C. Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis). Food Chem. 2015, 187, 290–296. [Google Scholar] [CrossRef]
- Noguchi, M.; Hasegawa, Y.; Suzuki, S.; Nakazawa, M.; Ueda, M.; Sakamoto, T. Determination of chemical structure of pea pectin by using pectinolytic enzymes. Carbohydr. Polym. 2020, 231, 115738. [Google Scholar] [CrossRef]
- Houben, K.; Jolie, R.P.; Fraeye, I.; Van Loey, A.M.; Hendrickx, M.E. Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydr. Res. 2011, 346, 1105–1111. [Google Scholar] [CrossRef]
- Fishman, M.L.; Walker, P.N.; Chau, H.K.; Hotchkiss, A.T. Flash extraction of pectin from orange albedo by steam injection. Biomacromolecules 2003, 4, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Thibault, J.-F.; Renard, C.M.G.C.; Axelos, M.A.V.; Roger, P.; Crépeau, M.-J. Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydr. Res. 1993, 238, 271–286. [Google Scholar] [CrossRef]
- Shpigelman, A.; Kyomugasho, C.; Christiaens, S.; Van Loey, A.M. The effect of high pressure homogenization on pectin: Importance of pectin source and pH. Food Hydrocoll. 2015, 43, 189–198. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Bi, J.; Yi, J.; Peng, J.; Ning, C.; Wellala, C.K.D.; Zhang, B. Effects of high pressure homogenization on pectin structural characteristics and carotenoid bioaccessibility of carrot juice. Carbohydr. Polym. 2019, 203, 176–184. [Google Scholar] [CrossRef]
- Harding, S.E. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog. Biophys. Mol. Biol. 1997, 68, 207–262. [Google Scholar] [CrossRef]
- Tanford, C. Physical Chemistry of Macromolecules; Wiley: New York, NY, USA, 1961; pp. 407–411. [Google Scholar]
- Lin, Z.; Pattathil, S.; Hahn, M.G.; Wicker, L. Blueberry cell wall fractionation, characterization and glycome profiling. Food Hydrocoll. 2019, 90, 385–393. [Google Scholar] [CrossRef]
- Hellin, P.; Ralet, M.-C.; Bonnin, E.; Thibault, J.-F. Homogalacturonans from lime pectins exhibit homogeneous charge density and molar mass distribution. Carbohydr. Polym. 2005, 60, 307–317. [Google Scholar] [CrossRef]
- Hotchkiss, A.T., Jr.; Hicks, K.B. Analysis of oligogalacturonic acids with 50 or fewer residues by high-performance anion-exchange chromatography and pulsed amperometric detection. Anal. Biochem. 1990, 184, 200–206. [Google Scholar] [CrossRef]
- Wong, K.S.; Jane, J. Quantitative analysis of debranched amylopectin by HPAEC-PAD with a postcolumn enzyme reactor. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 297–310. [Google Scholar] [CrossRef]
Date | Start Material (g) | Average Temperature (°C) | Average Pressure (PSI) | Pectin Extracted (mg) | Percent Yield (%) | |
---|---|---|---|---|---|---|
Hamlin | 1/24/22 | 601 | 140.9 | 41.7 | 298.5 | 16.05 |
Valencia 1 | 3/10/22 | 602 | 141.3 | 42.3 | 272.8 | 14.56 |
Valencia 2 | 4/26/22 | 598 | 142.0 | 44.3 | 171.1 | 9.23 |
Hamlin | Valencia 1 | Valencia 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SE | % | Mean | SE | % | Mean | SE | % | |
Rha | 0.0014 | 0.0004 | 2.1898 | 0.0002 | 0.0003 | 0.2604 | ND | ||
Ara | 0.0004 | 0.0001 | 0.6125 | 0.0001 | 0.0000 | 0.1322 | 0.0003 | 0.0000 | 0.368526 |
Gal | 0.0036 | 0.0003 | 5.8578 | ND | 0.0027 | 0.0006 | 3.040671 | ||
GalA | 0.0564 | 0.0011 | 91.3399 | 0.0844 | 0.0059 | 99.6074 | 0.0848 | 0.0045 | 96.5908 |
GalA/Rha | 20.3560 | 190.7948 | |||||||
DBr (Gal + Ara/Rha) | 2.9548 | 0.5079 | |||||||
%GalA | 89.1502 | 99.6074 | 96.5908 |
Sample | Integrated Peak Range | Weight Fraction% 2 | Mw/Mn | Mw × 10−3 | ηw (dL/g) | Rgz (nm) | M-H (a) |
---|---|---|---|---|---|---|---|
Hamlin | |||||||
TC 1 | 18.7–26.6 | 100 | 2.52 ± 0.02 | 30.7 ± 0.1 | 0.45 ± 0.001 | 24.0 ± 2 | 0.819 ± 0.01 |
Peak 1 | 18.7–22.1 | 1.0 ± 0.1 | 2.99 ± 0.3 | 1656 ± 160 | 6.1 ± 0. 4 | 30.0 ± 1 | 0.586 ± 0.04 |
Peak 2 | 22.1–26.6 | 99 ± 0.1 | 1.23 ± 0.01 | 14.9 ± 0.2 | 0.39 ± 0.001 | ND | 0.865 ± 0.01 |
Valencia 1 | |||||||
TC1 | 18.7–26.6 | 100 | 2.14 ± 0.03 | 25.4 ± 0.5 | 0.44 ± 0.002 | 23.0 ± 2 | 0.843 ± 0.05 |
Peak 1 | 18.7–22.1 | 0.90 ± 0.1 | 2.22 ± 0.08 | 1264 ± 196 | 5.9 ± 0. 8 | 30.0 ± 2 | 0.520 ± 0.01 |
Peak 2 | 22.1–26.6 | 99± 0.1 | 1.24 ± 0.01 | 14.5 ± 0.1 | 0.40 ± 0.01 | ND | 0.887 ± 0.03 |
Sample | Average | SD | SE |
---|---|---|---|
Hamlin | 69.64 a | 6.360306 | 3.180153 |
Valencia V1 | 65.51 a | 3.212808 | 1.606404 |
Valencia V2 | 65.11 a | 4.59405 | 2.297025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martorano, T.-A.; Ferguson, K.L.; Cameron, R.G.; Zhao, W.; Hotchkiss, A.T.; Chau, H.K.; Dorado, C. Production of Pectic Oligosaccharides from Citrus Peel via Steam Explosion. Foods 2024, 13, 3738. https://doi.org/10.3390/foods13233738
Martorano T-A, Ferguson KL, Cameron RG, Zhao W, Hotchkiss AT, Chau HK, Dorado C. Production of Pectic Oligosaccharides from Citrus Peel via Steam Explosion. Foods. 2024; 13(23):3738. https://doi.org/10.3390/foods13233738
Chicago/Turabian StyleMartorano, Toni-Ann, Kyle L. Ferguson, Randall G. Cameron, Wei Zhao, Arland T. Hotchkiss, Hoa K. Chau, and Christina Dorado. 2024. "Production of Pectic Oligosaccharides from Citrus Peel via Steam Explosion" Foods 13, no. 23: 3738. https://doi.org/10.3390/foods13233738
APA StyleMartorano, T.-A., Ferguson, K. L., Cameron, R. G., Zhao, W., Hotchkiss, A. T., Chau, H. K., & Dorado, C. (2024). Production of Pectic Oligosaccharides from Citrus Peel via Steam Explosion. Foods, 13(23), 3738. https://doi.org/10.3390/foods13233738