Characteristics and Biological Activities of a Novel Polysaccharide R1 Isolated from Rubus chingii Hu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction and Purification of Polysaccharides
2.3. Physical and Chemical Property Analysis
2.4. Characterization of Polysaccharides
2.4.1. Determination of Molecular Weight
2.4.2. Analysis of Monosaccharide Composition
2.4.3. IR Spectroscopy
2.4.4. Methylation Analysis
2.4.5. NMR Spectroscopy
2.4.6. Congo Red Experiment
2.4.7. Microstructure Observation
2.5. Antioxidant Activities of Polysaccharides
2.5.1. Determination of Hydroxyl Radical Scavenging Capacity
2.5.2. Determination of Superoxide Anion Scavenging Capacity
2.5.3. DPPH Free Radical Scavenging Capacity
2.6. Cellular Activity of Polysaccharides
2.6.1. Cytotoxicity Test
2.6.2. ELISA Test
2.6.3. Anti-Cancer Cell Proliferation Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Purification
3.2. Results of Polysaccharide Characterization
3.2.1. Molecular Weight
3.2.2. Monosaccharide Composition
3.2.3. FT-IR Analysis of R1
3.2.4. Methylation Results
3.2.5. NMR
3.2.6. Congo Red Experiment
3.2.7. SEM
3.3. Analysis of Antioxidant Activities of R1
3.4. ELISA Anti-Inflammatory Assay
3.5. Anti-Cancer Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davik, J.; Røen, D.; Lysøe, E.; Buti, M.; Rossman, S.; Alsheikh, M.; Aiden, E.L.; Dudchenko, O.; Sargent, D.J. A Chromosome-Level Genome Sequence Assembly of the Red Raspberry (Rubus idaeus L.). PLoS ONE 2022, 17, e0265096. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Chim, J.F. Nutritional and Bioactive Value of Rubus Berries. Food Biosci. 2019, 31, 100438. [Google Scholar] [CrossRef]
- Bourmaud, M.; Zarka, M.; Le Cozannet, R.; Hay, E.; Cohen-Solal, M. Rubus idaeus Reduces Inflammation and Prevents Chondrocyte Catabolism and Cartilage Loss. Osteoarthr. Cartil. 2020, 28, S211. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Zhou, N.; Zhao, M.; Lang, S.; Ren, Q.; Wang, D.; Fu, H. Rubochingosides A—J, Labdane-Type Diterpene Glycosides from Leaves of Rubus chingii. Phytochemistry 2023, 210, 113670. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. The Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2020; p. 599. ISBN 9787506700778. [Google Scholar]
- Dujmović Purgar, D.; Duralija, B.; Voća, S.; Vokurka, A.; Ercisli, S. A Comparison of Fruit Chemical Characteristics of Two Wild Grown Rubus Species from Different Locations of Croatia. Molecules 2012, 17, 10390–10398. [Google Scholar] [CrossRef]
- Qu, J.; Huang, P.; Zhang, L.; Qiu, Y.; Qi, H.; Leng, A.; Shang, D. Hepatoprotective Effect of Plant Polysaccharides from Natural Resources: A Review of the Mechanisms and Structure-Activity Relationship. Int. J. Biol. Macromol. 2020, 161, 24–34. [Google Scholar] [CrossRef]
- Guan, X.; Wang, F.; Zhou, B.; Sang, X.; Zhao, Q. The Nutritional Function of Active Polysaccharides from Marine Animals: A Review. Food Biosci. 2024, 58, 103693. [Google Scholar] [CrossRef]
- Ju, H.; Liu, Y.; Gong, J.; Gong, P.-X.; Wang, Z.-X.; Wu, Y.-C.; Li, H.-J. Revolutionizing Cancer Treatment: Harnessing the Power of Terrestrial Microbial Polysaccharides. Int. J. Biol. Macromol. 2024, 274, 133171. [Google Scholar] [CrossRef]
- Albuquerque, P.B.S.; De Oliveira, W.F.; Dos Santos Silva, P.M.; Dos Santos Correia, M.T.; Kennedy, J.F.; Coelho, L.C.B.B. Skincare Application of Medicinal Plant Polysaccharides—A Review. Carbohydr. Polym. 2022, 277, 118824. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Yang, M.; Ding, J.; Huang, Y.; Zhu, Y.; Zhou, M.; Yan, B. Antiviral Activity of a Polysaccharide from Sargassum fusiforme against Respiratory Syncytial Virus. Int. J. Biol. Macromol. 2024, 279, 135267. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, M.; Zhang, M.; Hao, L.; Wu, C. Ultrasound-Assisted Enzymatic Extraction, Structural Characterization, and Anticancer Activity of Polysaccharides from Rosa roxburghii Tratt Fruit. Int. J. Biol. Macromol. 2024, 259, 127926. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Deng, R.; Wang, Y.; Qu, M.; Liu, P.; Gao, J. Extraction, Separation, and Antioxidant Activity of Polysaccharides from Peony Seed Shell. Ind. Crops Prod. 2024, 222, 119843. [Google Scholar] [CrossRef]
- Liu, H.-X.; Ding, L.-L.; Chen, Y.-Y.; Wen, S.-Y. Exploring the Therapeutic Potential of Polysaccharide from Portulaca Oleracea L.: A Review of Phytochemistry and Immunomodulatory Effect. Carbohydr. Res. 2024, 545, 109298. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Cheng, N.; Fang, D.; Wang, H.; Rahman, F.-U.; Hao, H.; Zhang, Y. Recent Advances on Application of Polysaccharides in Cosmetics. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100004. [Google Scholar] [CrossRef]
- Kong, Y.; Hu, Y.; Li, J.; Cai, J.; Qiu, Y.; Dong, C. Anti-Inflammatory Effect of a Novel Pectin Polysaccharide from Rubus chingii Hu on Colitis Mice. Front. Nutr. 2022, 9, 868657. [Google Scholar] [CrossRef]
- Wu, D.; Chen, S.; Ye, X.; Ahmadi, S.; Hu, W.; Yu, C.; Zhu, K.; Cheng, H.; Linhardt, R.J.; He, Q. Protective Effects of Six Different Pectic Polysaccharides on DSS-Induced IBD in Mice. Food Hydrocoll. 2022, 127, 107209. [Google Scholar] [CrossRef]
- Wu, D.; Chen, S.; Ye, X.; Zheng, X.; Ahmadi, S.; Hu, W.; Yu, C.; Cheng, H.; Linhardt, R.J.; Chen, J. Enzyme-Extracted Raspberry Pectin Exhibits a High-Branched Structure and Enhanced Anti-Inflammatory Properties than Hot Acid-Extracted Pectin. Food Chem. 2022, 383, 132387. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Lu, C.-L.; Jiang, J.-G.; Wang, M.; Wang, D.-M.; Zhu, W. Bioactivities and Extraction Optimization of Crude Polysaccharides from the Fruits and Leaves of Rubus chingii Hu. Carbohydr. Polym. 2015, 130, 307–315. [Google Scholar] [CrossRef]
- Luo, H.; Ying, N.; Zhao, Q.; Chen, J.; Xu, H.; Jiang, W.; Wu, Y.; Wu, Y.; Gao, H.; Zheng, H. A Novel Polysaccharide from Rubus chingii Hu Unripe Fruits: Extraction Optimization, Structural Characterization and Amelioration of Colonic Inflammation and Oxidative Stress. Food Chem. 2023, 421, 136152. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, X.; Zhang, D.; Lu, J.; Wang, X. Isolation, Structural Characterization and Macrophage Activation Activity of an Acidic Polysaccharide from Raspberry Pulp. Molecules 2022, 27, 1674. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, M.; Fu, X.; Hou, J.; Wang, Y.; Shi, F.; Hu, S. Molecular Mechanisms Underlying Macrophage Immunomodulatory Activity of Rubus chingii Hu Polysaccharides. Int. J. Biol. Macromol. 2021, 185, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cui, Y.; Wang, X.; Yue, F.; Shan, Y.; Liu, B.; Zhou, Y.; Yi, Y.; Lü, X. Purification, Characterization and Bioactivity of Exopolysaccharides Produced by Lactobacillus Plantarum KX. Int. J. Biol. Macromol. 2019, 128, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yin, X.; Zhang, D.; Zhang, B.; Lu, J.; Wang, X. Structural Characteristics, Antioxidant, and Immunostimulatory Activities of an Acidic Polysaccharide from Raspberry Pulp. Molecules 2022, 27, 4385. [Google Scholar] [CrossRef]
- Ke, H.; Bao, T.; Chen, W. Polysaccharide from Rubus chingii Hu Affords Protection against Palmitic Acid-Induced Lipotoxicity in Human Hepatocytes. Int. J. Biol. Macromol. 2019, 133, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.; Bao, T.; Chen, W. New Function of Polysaccharide from Rubus chingii Hu: Protective Effect against Ethyl Carbamate Induced Cytotoxicity. J. Sci. Food Agric. 2021, 101, 3156–3164. [Google Scholar] [CrossRef]
- Son, S.-U.; Lee, S.J.; Choi, E.H.; Shin, K.-S. Clarification of the Structural Features of Rhamnogalacturonan-I Type Polysaccharide Purified from Radish Leaves. Int. J. Biol. Macromol. 2022, 209, 923–934. [Google Scholar] [CrossRef]
- Tran, T.V.T.; Tran, V.K.; Ho, X.A.V.; Le, L.S.; Le, T.H.; Nguyen, T.H.C.; Nguyen, C.C.; Kim, S.Y.; Le, Q.V. Chemical Structure of a Novel Heteroglycan Polysaccharide Isolated from the Biomass of Ophiocordyceps sobolifera. J. Mol. Struct. 2021, 1232, 129986. [Google Scholar] [CrossRef]
- Tang, W.; Liu, C.; Liu, J.; Hu, L.; Huang, Y.; Yuan, L.; Liu, F.; Pan, S.; Chen, S.; Bian, S.; et al. Purification of Polysaccharide from Lentinus Edodes Water Extract by Membrane Separation and Its Chemical Composition and Structure Characterization. Food Hydrocoll. 2020, 105, 105851. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.-F.; Feng, X.; Cheng, L.; Ibrahim, S.A.; Wang, C.-T.; Huang, W. Isolation, Characterization and Antioxidant of Polysaccharides from Stropharia rugosoannulata. Int. J. Biol. Macromol. 2020, 155, 883–889. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G.; Yang, Z.; Hou, Y. Antioxidant Activity of Momordica charantia Polysaccharide and Its Derivatives. Int. J. Biol. Macromol. 2019, 138, 673–680. [Google Scholar] [CrossRef]
- Xiang, R.; Xie, F.; Li, Z.; Sun, X. Study on Basic Structure and Antioxidant Activity of Polysaccharides from Three Edible Fungi. Sci. Technol. Food Ind. 2022, 43, 69–76. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, L.; Xu, Y.; Wang, L.; Teng, X.; Li, X.; Dai, J. Characterization and Biological Activities of a Novel Polysaccharide Isolated from Raspberry (Rubus idaeus L.) Fruits. Carbohydr. Polym. 2015, 132, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, S.; Gao, M.; Peng, S.; Chen, L.; Lao, F.; Liao, X.; Wu, J. Profiling the Water Soluble Pectin in Clear Red Raspberry (Rubus idaeus L. Cv. Heritage) Juice: Impact of High Hydrostatic Pressure and High-Temperature Short-Time Processing on the Pectin Properties. Food Hydrocoll. 2022, 125, 107439. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.-M.; Qin, G.-Y. Structure Characterization and Antioxidant Activity of Polysaccharides from Chinese Quince Seed Meal. Food Chem. 2017, 234, 314–322. [Google Scholar] [CrossRef]
- Nep, E.I.; Carnachan, S.M.; Ngwuluka, N.C.; Kontogiorgos, V.; Morris, G.A.; Sims, I.M.; Smith, A.M. Structural Characterisation and Rheological Properties of a Polysaccharide from Sesame Leaves (Sesamum radiatum Schumach. & Thonn.). Carbohydr. Polym. 2016, 152, 541–547. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, S.; Wang, Q.; Lu, X.; Lin, L.; Tian, Y.; Xiao, J.; Zheng, B. Characterization and Hypoglycemic Activity of a β-Pyran Polysaccharides from Bamboo Shoot (Leleba oldhami Nakal) Shells. Carbohydr. Polym. 2016, 144, 438–446. [Google Scholar] [CrossRef]
- Farhadi, N. Structural Elucidation of a Water-Soluble Polysaccharide Isolated from Balangu Shirazi (Lallemantia royleana) Seeds. Food Hydrocoll. 2017, 72, 263–270. [Google Scholar] [CrossRef]
- Huang, Z.; Zong, M.-H.; Lou, W.-Y. Preparation, Structural Elucidation and Immunomodulatory Activity of a Polysaccharide from Millettia Speciosa Champ. Ind. Crops Prod. 2022, 182, 114889. [Google Scholar] [CrossRef]
- Huo, Z.; Tian, J. Comment on Recent Article “Extraction, Structural Analysis, Derivatization and Antioxidant Activity of Polysaccharide from Chinese Yam”, Published in Food Chemistry (2021): The Need to Consider Residue Ethanol Solvent Signals in the NMR Spectra Interpretation of Polysaccharides. Food Chem. 2022, 368, 130867. [Google Scholar] [CrossRef]
- Guo, X.; Kang, J.; Xu, Z.; Guo, Q.; Zhang, L.; Ning, H.; Cui, S.W. Triple-Helix Polysaccharides: Formation Mechanisms and Analytical Methods. Carbohydr. Polym. 2021, 262, 117962. [Google Scholar] [CrossRef]
- Ogawa, K.; Wanatabe, T.; Tsurugi, J.; Ono, S. Conformational Behavior of a Gel-Forming (1→3)-β-D-Glucan in Alkaline Solution. Carbohydr. Res. 1972, 23, 399–405. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, H.; Fu, Q.; Feng, Y.; Duan, Y.; Ma, H. Effects of Ultrasound Modification with Different Frequency Modes on the Structure, Chain Conformation, and Immune Activity of Polysaccharides from Lentinus edodes. Foods 2022, 11, 2470. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, J.; Xiao, C.; Harqin, C.; Ma, M.; Long, T.; Li, Z.; Yang, Y.; Liu, J.; Zhao, L. Structural Characterization of a Low-Molecular-Weight Polysaccharide from Angelica pubescens Maxim. f. Biserrata Shan et Yuan Root and Evaluation of Its Antioxidant Activity. Carbohydr. Polym. 2020, 236, 116047. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.-M.; Chen, C.; Huang, Q.; Fu, X. Comparative Study on the Effect of Extraction Solvent on the Physicochemical Properties and Bioactivity of Blackberry Fruit Polysaccharides. Int. J. Biol. Macromol. 2021, 183, 1548–1559. [Google Scholar] [CrossRef]
- He, P.; Zhang, A.; Zhang, F.; Linhardt, R.J.; Sun, P. Structure and Bioactivity of a Polysaccharide Containing Uronic Acid from Polyporus umbellatus Sclerotia. Carbohydr. Polym. 2016, 152, 222–230. [Google Scholar] [CrossRef]
- Su, Y.; Li, L. Structural Characterization and Antioxidant Activity of Polysaccharide from Four Auriculariales. Carbohydr. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. Oxid. Med. Cell. Longev. 2016, 2016, 5692852. [Google Scholar] [CrossRef]
- Huang, G.; Mei, X.; Hu, J. The Antioxidant Activities of Natural Polysaccharides. Curr. Drug Targets 2017, 18, 1296–1300. [Google Scholar] [CrossRef]
- Hifney, A.F.; Fawzy, M.A.; Abdel-Gawad, K.M.; Gomaa, M. Industrial Optimization of Fucoidan Extraction from Sargassum sp. and Its Potential Antioxidant and Emulsifying Activities. Food Hydrocoll. 2016, 54, 77–88. [Google Scholar] [CrossRef]
- Saravanakumar, A.; Periyasamy, P.; Jang, H.T. In Vitro Assessment of Three Different Artemisia Species for Their Antioxidant and Anti-Fibrotic Activity. Biocatal. Agric. Biotechnol. 2019, 18, 101040. [Google Scholar] [CrossRef]
- Ketha, K.; Gudipati, M. Immunomodulatory Activity of Non Starch Polysaccharides Isolated from Green Gram (Vigna radiata). Food Res. Int. 2018, 113, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhu, L. Update on the Role of Alternatively Activated Macrophages in Asthma. J. Asthma Allergy 2016, 9, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.; Martinez, F.O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Zou, X.-B.; Chai, Y.-F.; Yao, Y.-M. Macrophage Polarization in Inflammatory Diseases. Int. J. Biol. Sci. 2014, 10, 520–529. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.; Yang, X.; Li, Y.; Yao, Y.; Lui, E.M.K.; Ren, G. Structural and Anti-Inflammatory Characterization of a Novel Neutral Polysaccharide from North American Ginseng (Panax quinquefolius). Int. J. Biol. Macromol. 2015, 74, 12–17. [Google Scholar] [CrossRef]
- Pavlovic, M.; Balint, B. Different Approaches for Anticancer/Antitumor Therapy. In Bioengineering and Cancer Stem Cell Concept; Springer International Publishing: Cham, Switzerland, 2015; pp. 103–121. ISBN 978-3-319-25668-9. [Google Scholar]
- Zhang, W.; Hu, Y.; He, J.; Guo, D.; Zhao, J.; Li, P. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide from Lycopi herba. Front. Pharmacol. 2021, 12, 691995. [Google Scholar] [CrossRef]
- Meng, X.; Liang, H.; Luo, L. Antitumor Polysaccharides from Mushrooms: A Review on the Structural Characteristics, Antitumor Mechanisms and Immunomodulating Activities. Carbohydr. Res. 2016, 424, 30–41. [Google Scholar] [CrossRef]
- Pandya, U.; Dhuldhaj, U.; Sahay, N.S. Bioactive Mushroom Polysaccharides as Antitumor: An Overview. Nat. Prod. Res. 2019, 33, 2668–2680. [Google Scholar] [CrossRef]
Methylation Products | Linkage Pattern | Percentage (%, Area-Based Ratios) |
---|---|---|
1,4,5-Tri-O-acetyl-1-deuterio-2,3-di-O-methyl-D-arabinitol | 5-Araf | 17.23 |
1,4-Di-O-acetyl-1-deuterio-2,3,5-tri-O-methyl-D-arabinitol | T-Araf | 16.02 |
1,2,3,4,5-Penta-O-acetyl-1-deuterio-D-arabinitol | 2,3,5-Araf | 7.55 |
1,3,4,5-Tetra-O-acetyl-1-deuterio-2-O-methyl-D-arabinitol | 3,5-Araf | 5.94 |
1,2,4,5-Tetra-O-acetyl-1-deuterio-3-O-methyl-D-arabinitol | 2,5-Araf | 5.6 |
1,3,4-Tri-O-acetyl-1-deuterio-2,5-di-O-methyl-D-arabinitol | 3-Araf | 4.47 |
1,3,5,6-Tetra-O-acetyl-1-deuterio-2,4-di-O-methyl-D-galactitol | 3,6-Galp | 11.12 |
1,3,5-Tri-O-acetyl-1-deuterio-2,4,6-tri-O-methyl-D-galactitol | 3-Galp | 4.83 |
1,5-Di-O-acetyl-1-deuterio-2,3,4,6-tetra-O-methyl-D-galactitol | T-Galp | 2.21 |
1,5,6-Tri-O-acetyl-1-deuterio-2,3,4-tri-O-methyl-D-galactitol | 6-Galp | 1.99 |
1,4,5-Tri-O-acetyl-1-deuterio-2,3-di-O-methyl-D-xylitol | 4-Xylp | 8.18 |
1,5-Di-O-acetyl-1-deuterio-2,3,4-tri-O-methyl-D-xylitol | T-Xylp | 2.26 |
1,3,5-Tri-O-acetyl-1-deuterio-2,4,6-tri-O-methyl-D-glucitol | 3-Glcp | 3.89 |
1,5-Di-O-acetyl-1-deuterio-2,3,4,6-tetra-O-methyl-D-glucitol | T-Glcp | 2.15 |
1,2,3,5,6-Penta-O-acetyl-1-deuterio-4-O-methyl-D-glucitol | 2,3,6-Glc | 0.46 |
1,4,5-Tri-O-acetyl-2-(acetylmethylamino)-2-deoxy-1-deuterio-3,6-di-O-methyl-D-mannitol | 4-Manp | 2.88 |
1,2,5-Tri-O-acetyl-1-deuterio-3,4,6-tri-O-methyl-D-mannitol | 2-Manp | 1.77 |
1,5-Di-O-acetyl-1-deuterio-2,3,4,6-tetra-O-methyl-D-mannitol | T-Manp | 1.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Liu, S.; Wang, Y.; Chen, J.; Huang, J.; Huang, R. Characteristics and Biological Activities of a Novel Polysaccharide R1 Isolated from Rubus chingii Hu. Foods 2024, 13, 3791. https://doi.org/10.3390/foods13233791
Lin Z, Liu S, Wang Y, Chen J, Huang J, Huang R. Characteristics and Biological Activities of a Novel Polysaccharide R1 Isolated from Rubus chingii Hu. Foods. 2024; 13(23):3791. https://doi.org/10.3390/foods13233791
Chicago/Turabian StyleLin, Zhier, Sisi Liu, Yi Wang, Jianfang Chen, Jihong Huang, and Ruqiang Huang. 2024. "Characteristics and Biological Activities of a Novel Polysaccharide R1 Isolated from Rubus chingii Hu" Foods 13, no. 23: 3791. https://doi.org/10.3390/foods13233791
APA StyleLin, Z., Liu, S., Wang, Y., Chen, J., Huang, J., & Huang, R. (2024). Characteristics and Biological Activities of a Novel Polysaccharide R1 Isolated from Rubus chingii Hu. Foods, 13(23), 3791. https://doi.org/10.3390/foods13233791