Early Detection of Slight Bruises in Yellow Peaches (Amygdalus persica) Using Multispectral Structured-Illumination Reflectance Imaging and an Improved Ostu Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Multispectral SIRI System and Image Acquisition
2.3. Image Preprocessing and Demodulation
2.4. Image Enhancement
2.5. Image Segmentation
3. Results and Discussion
3.1. Image Demodulation and Background Removal
3.2. Optimal Spatial Frequency and Wavelength Selection
3.3. Ratio Image and Image Enhancement
3.4. Early Detection of Slight Bruise in Yellow Peaches
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Zhang, W.; Zhang, Q.; Li, G.; Shan, Y.; Su, D.; Zhu, X. Effects of pre-harvest bagging and non-bagging treatment on postharvest storage quality of yellow-flesh peach. J. Chin. Inst. Food Sci. Technol. 2021, 21, 231–242. [Google Scholar] [CrossRef]
- Mei, M.; Li, J. An overview on optical non-destructive detection of bruises in fruit: Technology, method, application, challenge and trend. Comput. Electron. Agric. 2023, 213, 108195. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Pandiselvam, R.; Kothakota, A.; Chakraborty, S.K.; Kumar, M.; Cozzolino, D. Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends Food Sci. Technol. 2022, 120, 418–438. [Google Scholar] [CrossRef]
- Du, Z.; Zeng, X.; Li, X.; Ding, X.; Cao, J.; Jiang, W. Recent advances in imaging techniques for bruise detection in fruits and vegetables. Trends Food Sci. Technol. 2020, 99, 133–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, M.; Mei, J.; Xie, J. Effects of Different Postharvest Precooling Treatments on Cold-Storage Quality of Yellow Peach (Amygdalus persica). Plants 2022, 11, 2334. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Huang, W. Detection of Early Bruises on Peaches (Amygdalus persica L.) Using Hyperspectral Imaging Coupled with Improved Watershed Segmentation Algorithm. Postharvest Biol. Technol. 2018, 135, 104–113. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, H.; Tu, S.; Sun, K.; Pan, L.; Tu, K. Detecting decayed peach using a rotating hyperspectral imaging testbed. LWT 2018, 87, 326–332. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, R.; Lu, Y.; Tu, K.; Pan, L. Detection of Early Decay in Peaches by Structured-Illumination Reflectance Imaging. Postharvest Biol. Technol. 2019, 151, 68–78. [Google Scholar] [CrossRef]
- Firouz, M.S.; Sardari, H. Defect Detection in Fruit and Vegetables by Using Machine Vision Systems and Image Processing. Food Eng. Rev. 2022, 14, 353–379. [Google Scholar] [CrossRef]
- Minas, I.S.; Blanco-Cipollone, F.; Sterle, D. Accurate Non-Destructive Prediction of Peach Fruit Internal Quality and Physiological Maturity with a Single Scan Using near Infrared Spectroscopy. Food Chem. 2021, 335, 127626. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Wang, Z.; Fan, S. Early Detection of Decay on Apples Using Hyperspectral Reflectance Imaging Combining Both Principal Component Analysis and Improved Watershed Segmentation Method. Postharvest Biol. Technol. 2019, 149, 235–246. [Google Scholar] [CrossRef]
- Baek, I.; Mo, C.; Eggleton, C.; Gadsden, S.A.; Cho, B.K.; Qin, J.; Chan, D.E.; Kim, M.S. Determination of spectral resolutions for multispectral detection of apple bruises using visible/near-infrared hyperspectral reflectance imaging. Front. Plant Sci. 2022, 13, 963591. [Google Scholar] [CrossRef] [PubMed]
- Pandiselvam, R.; Mayookha, V.; Kothakota, A.; Ramesh, S.V.; Thirumdas, R.; Juvvi, P. Biospeckle laser technique—A novel non-destructive approach for food quality and safety detection. Trends Food Sci. Technol. 2020, 97, 1–13. [Google Scholar] [CrossRef]
- Fu, X.; Wang, M. Detection of early bruises on pears using fluorescence hyperspectral imaging technique. Food Anal. Methods 2022, 15, 115–123. [Google Scholar] [CrossRef]
- Guo, B.; Li, B.; Huang, Y.; Hao, F.; Xu, B.; Dong, Y. Bruise detection and classification of strawberries based on thermal images. Food Bioprocess Technol. 2022, 15, 1133–1141. [Google Scholar] [CrossRef]
- Azadbakht, M.; Vahedi Torshizi, M.; Mahmoodi, M.J. The relation of pear volume and it’s bruised volume by CT scan imaging. J. Food Meas. Charact. 2019, 13, 1089–1099. [Google Scholar] [CrossRef]
- Wang, B.; Yin, J.; Liu, J.; Fang, H.; Li, J.; Sun, X.; Guo, Y.; Xia, L. Extraction and classification of apple defects under uneven illumination based on machine vision. J. Food Process Eng. 2022, 45, e13976. [Google Scholar] [CrossRef]
- Zhang, F.; Li, B.; Yin, H.; Zou, J.; Ouyang, A.A. Study on the Quantitative Assessment of Impact Damage of Yellow Peaches Using the Combined Hyperspectral Technology and Mechanical Parameters. J. Spectrosc. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Li, B.; Zhang, F.; Liu, Y.; Yin, H.; Zou, J.; Ou-yang, A. Quantitative Study on Impact Damage of Yellow Peach Based on Hyperspectral Image Information Combined with Spectral Information. J. Mol. Struct. 2023, 1272, 134176. [Google Scholar] [CrossRef]
- Li, B.; Yin, H.; Liu, Y.; Zhang, F.; Yang, A.K.; Su, C.; Ou-yang, A. Detection Storage Time of Mild Bruise’s Yellow Peaches Using the Combined Hyperspectral Imaging and Machine Learning Method. J. Anal. Sci. Technol. 2022, 13, 24. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, D.; Wang, X.; Hu, Y. Assessing and Detection of Multiple Bruises in Peaches Based on Structured Hyperspectral Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 304, 123378. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lu, Y.; Lu, R. Structured Illumination Reflectance Imaging for Enhanced Detection of Subsurface Tissue Bruising in Apples. Trans. ASABE 2018, 61, 809–819. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R. Structured-Illumination Reflectance Imaging for the Detection of Defects in Fruit: Analysis of Resolution, Contrast and Depth-Resolving Features. Biosyst. Eng. 2019, 180, 1–15. [Google Scholar] [CrossRef]
- Lu, R. Theory of Light Transfer in Food and Biological Materials. In Light Scattering Technology for Food Property, Quality and Safety Assessment; CRC Press: Abingdon, UK, 2016; pp. 43–78. [Google Scholar]
- Lu, Y.; Li, R.; Lu, R. Fast Demodulation of Pattern Images by Spiral Phase Transform in Structured-Illumination Reflectance Imaging for Detection of Bruises in Apples. Comput. Electron. Agric. 2016, 127, 652–658. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R.; Zhang, Z. Detection of Subsurface Bruising in Fresh Pickling Cucumbers Using Structured-Illumination Reflectance Imaging. Postharvest Biol. Technol. 2021, 180, 111624. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R. Development of a Multispectral Structured Illumination Reflectance Imaging (SIRI) System and Its Application to Bruise Detection of Apples. Trans. ASABE 2017, 60, 1379–1389. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, W.; Wang, Q.; Li, J. Detection of Early Decayed Oranges by Structured-Illumination Reflectance Imaging Coupling with Texture Feature Classification Models. Front. Plant Sci. 2022, 13, 952942. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Lu, R. Detection of Early Decay in Navel Oranges by Structured-Illumination Reflectance Imaging Combined with Image Enhancement and Segmentation. Postharvest Biol. Technol. 2023, 196, 112162. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Lu, R. Identification of Early Decayed Oranges Using Structured-Illumination Reflectance Imaging Coupled with Fast Demodulation and Improved Image Processing Algorithms. Postharvest Biol. Technol. 2024, 207, 112627. [Google Scholar] [CrossRef]
- Ge, Y.; Tu, S. Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling. Anal. Lett. 2023, 56, 2040–2052. [Google Scholar] [CrossRef]
- Mei, M.; Cai, Z.; Zhang, X.; Sun, C.; Zhang, J.; Peng, H.; Li, J.; Shi, R.; Zhang, W. Early Bruising Detection of “Korla” Pears by Low-Cost Visible-LED Structured-Illumination Reflectance Imaging and Feature-Based Classification Models. Front. Plant Sci. 2023, 14, 1324152. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, X.; Pan, L.; Hu, Y. Influence of Maturity on Bruise Detection of Peach by Structured Multispectral Imaging. Curr. Res. Food Sci. 2023, 6, 100476. [Google Scholar] [CrossRef] [PubMed]
- Bassi, A.; Cuccia, D.J.; Durkin, A.J.; Tromberg, B.J. Spatial Shift of Spatially Modulated Light Projected on Turbid Media. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2008, 25, 2833–2839. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, T.; Li, H.; Xia, S.; Ren, F.; Sun, Y.; Xu, X. A robust parameter-free thresholding method for image segmentation. IEEE Access 2018, 283, 3448–3458. [Google Scholar] [CrossRef]
- Yin, H.; Li, B.; Liu, Y.; Zhang, F.; Su, C.; Ou-yang, A. Detection of Early Bruises on Loquat Using Hyperspectral Imaging Technology Coupled with Band Ratio and Improved Otsu Method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 283, 121775. [Google Scholar] [CrossRef]
Algorithms | Image Style | Sample Style | Training Set (n = 150) | Testing Set (n = 150) | Total (n = 300) | ||||
---|---|---|---|---|---|---|---|---|---|
Normal | Bruised | Accuracy | Normal | Bruised | Accuracy | Accuracy | |||
Otsu | AC | Normal | 45 | 5 | 90 | 42 | 8 | 84 | 87.0 |
Bruised | 1 | 99 | 99 | 1 | 99 | 99 | 99.0 | ||
95.0 | |||||||||
RT | Normal | 44 | 6 | 88 | 42 | 8 | 84 | 86.0 | |
Bruised | 0 | 100 | 100 | 2 | 98 | 98 | 99.0 | ||
94.7 | |||||||||
I-Otsu | AC | Normal | 43 | 7 | 86 | 42 | 8 | 84 | 85.0 |
Bruised | 2 | 98 | 98 | 2 | 98 | 98 | 98.0 | ||
93.7 | |||||||||
RT | Normal | 48 | 2 | 96 | 47 | 3 | 94 | 95.0 | |
Bruised | 2 | 98 | 98 | 4 | 96 | 96 | 97.0 | ||
96.3 | |||||||||
Global thresholding | AC | Normal | 38 | 12 | 76 | 35 | 15 | 70 | 73.0 |
Bruised | 1 | 99 | 99 | 2 | 98 | 98 | 98.5 | ||
90.0 | |||||||||
RT | Normal | 44 | 6 | 88 | 42 | 8 | 84 | 86.0 | |
Bruised | 9 | 91 | 91 | 10 | 90 | 90 | 90.5 | ||
89.0 |
Article | Technology | Algorithm | Accuracy | Detection Speed |
---|---|---|---|---|
Li et al. [6] | Hyperspectral | I-WSA | 96.5% | Moderate |
Sun et al. [21] | Structured Hyperspectral | ANN-DA | 90.79% | Moderate |
Li et al. [20] | Hyperspectral | XGBoost | 95% | Slow |
This Study | SIRI | I-Otsu | 96% | Fast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Liu, C.; Ouyang, A.; Li, B.; Chen, N.; Wang, J.; Liu, Y. Early Detection of Slight Bruises in Yellow Peaches (Amygdalus persica) Using Multispectral Structured-Illumination Reflectance Imaging and an Improved Ostu Method. Foods 2024, 13, 3843. https://doi.org/10.3390/foods13233843
Wu J, Liu C, Ouyang A, Li B, Chen N, Wang J, Liu Y. Early Detection of Slight Bruises in Yellow Peaches (Amygdalus persica) Using Multispectral Structured-Illumination Reflectance Imaging and an Improved Ostu Method. Foods. 2024; 13(23):3843. https://doi.org/10.3390/foods13233843
Chicago/Turabian StyleWu, Jian, Chenlin Liu, Aiguo Ouyang, Bin Li, Nan Chen, Jing Wang, and Yande Liu. 2024. "Early Detection of Slight Bruises in Yellow Peaches (Amygdalus persica) Using Multispectral Structured-Illumination Reflectance Imaging and an Improved Ostu Method" Foods 13, no. 23: 3843. https://doi.org/10.3390/foods13233843
APA StyleWu, J., Liu, C., Ouyang, A., Li, B., Chen, N., Wang, J., & Liu, Y. (2024). Early Detection of Slight Bruises in Yellow Peaches (Amygdalus persica) Using Multispectral Structured-Illumination Reflectance Imaging and an Improved Ostu Method. Foods, 13(23), 3843. https://doi.org/10.3390/foods13233843