Enhancing the Stability of Litsea Cubeba Essential Oil Emulsions Through Glycosylation of Fish Skin Gelatin via Dry Maillard Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of FSG–Dex Couplings
2.3. Browning and Degree of Grafting
2.4. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.5. FT-IR Analysis
2.6. Fluorescence Analysis of the FSG–Dex Glycoconjugates
2.7. Measurement of Surface Hydrophobicity
2.8. Emulsion Activity (EAI) and Emulsion Stability (ESI)
2.9. Scanning Electron Microscopy (SEM) Analysis
2.10. Liquid Potentiometry
2.11. Particle Size, PDI, and Zeta Potential of Emulsions
2.12. Laser Scanning Confocal Microscope
2.13. DPPH Radical Scavenging Activity
2.14. ABTS Radical Scavenging Activity
2.15. Statistical Analysis
3. Results and Discussion
3.1. Degree of Browning and Degree of Grafting
3.2. SDS-PAGE Analysis
3.3. Structural Characterization of FSG–Dex Conjugates
3.3.1. Fourier Transform Infrared (FTIR) Analysis
3.3.2. Intrinsic Fluorescence Analysis
3.3.3. Scanning Electron Microscopy (SEM)
3.4. Features of FSG–Dex Conjugate Functionality
3.4.1. Hydrophobicity Analysis
3.4.2. Zeta Potential, Particle Size, and PDI
3.4.3. Laser Scanning Confocal Microscope
3.4.4. Emulsification Performance Analysis
3.5. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sha, X.-M.; Tu, Z.-C.; Liu, W.; Wang, H.; Shi, Y.; Huang, T.; Man, Z.-Z. Effect of ammonium sulfate fractional precipitation on gel strength and characteristics of gelatin from bighead carp (Hypophthalmichthys nobilis) scale. Food Hydrocoll. 2014, 36, 173–180. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, R.; Ding, M.; Tao, L.; Liu, L.; Tao, N.; Wang, X.; Zhong, J. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chem. 2020, 328, 127114. [Google Scholar] [CrossRef] [PubMed]
- Arfat, Y.A.; Ahmed, J.; Hiremath, N.; Auras, R.; Joseph, A. Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll. 2017, 62, 191–202. [Google Scholar] [CrossRef]
- Barros, J.M.H.F.; Santos, A.A.; Stadnik, M.J.; da Costa, C. Encapsulation of eucalyptus and Litsea cubeba essential oils using zein nanopolymer: Preparation, characterization, storage stability, and antifungal evaluation. Int. J. Biol. Macromol. 2024, 278, 134690. [Google Scholar] [CrossRef]
- Sun, X.; Lv, Y.; Jia, H.; Mráz, J.; Gu, Y.; Xu, X.; Li, S.; Dong, X.; Pan, J. Improvement of flavor and gel properties of silver carp surimi product by Litsea cubeba oil high internal phase emulsions. LWT 2024, 192, 115745. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, M.; Tao, L.; Liu, L.; Tao, N.; Wang, X.; Zhong, J. Octenyl succinic anhydride modification of bovine bone and fish skin gelatins and their application for fish oil-loaded emulsions. Food Hydrocoll. 2020, 108, 106041. [Google Scholar] [CrossRef]
- Nooshkam, M.; Varidi, M. Maillard conjugate-based delivery systems for the encapsulation, protection, and controlled release of nutraceuticals and food bioactive ingredients: A review. Food Hydrocoll. 2020, 100, 105389. [Google Scholar] [CrossRef]
- Akhtar, M.; Ding, R. Covalently cross-linked proteins & polysaccharides: Formation, characterisation and potential applications. Curr. Opin. Colloid Interface Sci. 2017, 28, 31–36. [Google Scholar]
- Drapala, K.P.; Auty, M.A.; Mulvihill, D.M.; O'Mahony, J.A. Improving thermal stability of hydrolysed whey protein-based infant formula emulsions by protein-carbohydrate conjugation. Food Res. Int. 2016, 88, 42–51. [Google Scholar] [CrossRef]
- Zijia, Z.; Bo, W.; Benu, A. Maillard reaction between pea protein isolate and maltodextrin via wet-heating route for emulsion stabilisation. Future Foods 2022, 6, 100193. [Google Scholar]
- Li, Z.; Zheng, Y.; Sun, Q.; Wang, J.; Zheng, B.; Guo, Z. Structural characteristics and emulsifying properties of myofibrillar protein-dextran conjugates induced by ultrasound Maillard reaction. Ultrason. Sonochemistry 2021, 72, 105458. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Tian, L.; Fang, F.; Pan, S.; Jones, O.G. Heat-induced glycosylation with dextran to enhance solubility and interfacial properties of enzymatically hydrolyzed zein. J. Food Eng. 2022, 321, 110946. [Google Scholar] [CrossRef]
- Perusko, M.; Al-Hanish, A.; Velickovic, T.C.; Stanic-Vucinic, D. Macromolecular crowding conditions enhance glycation and oxidation of whey proteins in ultrasound-induced Maillard reaction. Food Chem. 2015, 177, 248–257. [Google Scholar] [CrossRef]
- Hong, Z.; Xiao, N.; Li, L.; Li, Y.; Xie, X. Glycation of whey protein isolate and emulsions prepared by conjugates. J. Food Eng. 2022, 316, 110852. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Jin, H.; Wang, X.; Gao, Y.; Zhao, Q.; Liu, C.; Xu, J. Effect of enzymolysis and glycosylation on the curcumin nanoemulsions stabilized by β-conglycinin: Formation, stability and in vitro digestion. Int. J. Biol. Macromol. 2020, 142, 658–667. [Google Scholar] [CrossRef]
- Lin, S.; Cai, X.; Chen, H.; Xu, Y.; Wu, J.; Wang, S. Development of fish gelatin-chitooligosaccharide conjugates through the Maillard reaction for the encapsulation of curcumin. Curr. Res. Food Sci. 2022, 5, 1625–1639. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, M.; Tao, N.; Wang, X.; Zhong, J. Effects of surfactant type and preparation pH on the droplets and emulsion forms of fish oil-loaded gelatin/surfactant-stabilized emulsions. LWT 2020, 117, 108654. [Google Scholar] [CrossRef]
- Yu-Tong, D.; Chun, C.; Yue-Ming, J.; Bao, Y.; Xiong, F. Glycosylation with bioactive polysaccharide obtained from Rosa roxburghii Tratt fruit to enhance the oxidative stability of whey protein isolate emulsion. Int. J. Biol. Macromol. 2022, 218, 259–268. [Google Scholar] [CrossRef]
- Li, Z.; Xi, J.; Chen, H.; Chen, W.; Chen, W.; Zhong, Q.; Zhang, M. Effect of glycosylation with apple pectin, citrus pectin, mango pectin and sugar beet pectin on the physicochemical, interfacial and emulsifying properties of coconut protein isolate. Food Res. Int. 2022, 156, 111363. [Google Scholar] [CrossRef]
- Yan, C.; Ding, C.; Cheng, C.; Gong, Y.; Han, S.; Xia, Z.; Kang, D. A functional analysis of the effects of the molecular weight of dextran on e-polylysine-dextran conjugate created through the maillard reaction. Food Chem. 2022, 390, 133212. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Kim, H.J.; Park, K.H.; Moon, T.W. Molecular characteristics of ovalbumin-dextran conjugates formed through the Maillard reaction. Food Chem. 2005, 92, 93–99. [Google Scholar] [CrossRef]
- Spotti, M.J.; Martinez, M.J.; Pilosof, A.M.; Candioti, M.; Rubiolo, A.C.; Carrara, C.R. Influence of Maillard conjugation on structural characteristics and rheological properties of whey protein/dextran systems. Food Hydrocoll. 2014, 39, 223–230. [Google Scholar] [CrossRef]
- Liu, J.; Ru, Q.; Ding, Y. Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Res. Int. 2012, 49, 170–183. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Y.; Feng, L. Effects of Maillard reaction conditions on the antigenicity of α-lactalbumin and β-lactoglobulin in whey protein conjugated with maltose. Eur. Food Res. Technol. 2011, 233, 387–394. [Google Scholar] [CrossRef]
- Bi, C.; Li, X.; Xin, Q.; Han, W.; Shi, C.; Guo, R.; Shi, W.; Qiao, R.; Wang, X.; Zhong, J. Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of tilapia skin collagen. J. Biosci. Bioeng. 2019, 128, 234–240. [Google Scholar] [CrossRef]
- Zheng, Y.; Chang, Y.; Luo, B.; Teng, H.; Chen, L. Molecular structure modification of ovalbumin through controlled glycosylation with dextran for its emulsibility improvement. Int. J. Biol. Macromol. 2022, 194, 1–8. [Google Scholar] [CrossRef]
- Li, H.X.; Mustapha, W.A.W.; Tian, G.; Dong, N.; Zhao, F.; Zhang, X.; Long, D.; Liu, J. Enhanced hydrophobic interaction between fish (Cyprinus carpio L.) scale gelatin and curcumin: Mechanism study. Food Chem. 2024, 431, 137102. [Google Scholar] [CrossRef]
- Cai, L.Y.; Feng, J.; Regenstein, J.; Lv, Y.; Li, J. Confectionery gels: Effects of low calorie sweeteners on the rheological properties and microstructure of fish gelatin. Food Hydrocoll. 2017, 67, 157–165. [Google Scholar] [CrossRef]
- Vanga, S.K.; Wang, J.; Orsat, V.; Raghavan, V. Effect of pulsed ultrasound, a green food processing technique, on the secondary structure and in-vitro digestibility of almond milk protein. Food Res. Int. 2020, 137, 109523. [Google Scholar] [CrossRef]
- Tang, C.H.; Ma, C.Y. Effect of high pressure treatment on aggregation and structural properties of soy protein isolate. Lwt-Food Sci. Technol. 2009, 42, 606–611. [Google Scholar] [CrossRef]
- Hu, J.Y.; Yu, B.; Yuan, C.; Tao, H.; Wu, Z.; Dong, D.; Lu, Y.; Zhang, Z.; Cao, Y.; Zhao, H.; et al. Influence of heat treatment before and/or after high-pressure homogenization on the structure and emulsification properties of soybean protein isolate. Int. J. Biol. Macromol. 2023, 253, 127411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Li, Y.; Jiang, L.; Qi, B.; Zhou, L. Relationship between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate Subjected to Heat Treatment. J. Chem. 2014, 2014, 475389. [Google Scholar] [CrossRef]
- Singh, A.; Buamard, N.; Zhou, A.; Benjakul, S. Effect of sodium bicarbonate on textural properties and acceptability of gel from unwashed Asian sea bass mince. J. Food Sci. Technol. Mysore 2022, 59, 3109–3119. [Google Scholar] [CrossRef]
- Huyst, A.M.R.; Deleu, L.J.; Luyckx, T.; Buyst, D.; Van Camp, J.; Delcour, J.A.; Van der Meeren, P. Colloidal stability of oil-in-water emulsions prepared from hen egg white submitted to dry and/or wet heating to induce amyloid-like fibril formation. Food Hydrocoll. 2022, 125, 107450. [Google Scholar] [CrossRef]
- Liu, J.; Fang, C.; Xu, X.; Su, Q.; Zhao, P.; Ding, Y. Structural changes of silver carp myosin glycated with Konjac oligo-glucomannan: Effects of deacetylation. Food Hydrocoll. 2019, 91, 275–282. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Huang, M.; Xu, L.; Xu, X.; Zhou, G. Role of polyphenols conjugation to glycated myofibrillar protein in manipulating the emulsifying behaviors of flaxseed oil emulsion. LWT Food Sci. Technol. 2024, 201, 116284. [Google Scholar] [CrossRef]
- Ma, X.; Hou, F.; Zhao, H.; Wang, D.; Chen, W.; Miao, S.; Liu, D. Conjugation of soy protein isolate (SPI) with pectin by ultrasound treatment. Food Hydrocoll. 2020, 108, 106056. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Ma, X.; Lv, R.; Watharkar, R.B.; Ding, T.; Ye, X.; Liu, D. Effect of pH-shifting treatment on structural and functional properties of whey protein isolate and its interaction with (-)-epigallocatechin-3-gallate. Food Chem. 2019, 274, 234–241. [Google Scholar] [CrossRef]
- Stanic-Vucinic, D.; Prodic, I.; Apostolovic, D.; Nikolic, M.; Velickovic, T.C. Structure and antioxidant activity of β-lactoglobulin-glycoconjugates obtained by high-intensity-ultrasound-induced Maillard reaction in aqueous model systems under neutral conditions. Food Chem. 2013, 138, 590–599. [Google Scholar] [CrossRef]
- Chen, B.; Chen, L.; Li, C.; Huang, W.; Zhao, Y.; Ai, C.; Teng, H. Ultrasound-assisted glycosylation of ovalbumin and dextran conjugate carrier for anthocyanins and their stability evaluation. Ultrason. Sonochemistry 2024, 109, 107024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chi, Y.J.J.; Li, B. Effect of ultrasound treatment on the wet heating Maillard reaction between β-conglycinin and maltodextrin and on the emulsifying properties of conjugates. Eur. Food Res. Technol. 2014, 238, 129–138. [Google Scholar] [CrossRef]
- Kato, A.; Osako, Y.; Matsudomi, N.; Kobayashi, K. Changes in the Emulsifying and Foaming Properties of Proteins during Heat Denaturation. Agric. Biol. Chem. 2014, 47, 33–37. [Google Scholar]
- Spotti, M.J.; Loyeau, P.A.; Marangón, A.; Noir, H.; Rubiolo, A.C.; Carrara, C.R. Influence of Maillard reaction extent on acid induced gels of whey proteins and dextrans. Food Hydrocoll. 2019, 91, 224–231. [Google Scholar] [CrossRef]
- Feng, J.L.; Qi, J.-R.; Yin, S.-W.; Wang, J.-M.; Guo, J.; Weng, J.-Y.; Liu, Q.-R.; Yang, X.-Q. Fabrication and Characterization of Stable Soy β-Conglycinin-Dextran Core-Shell Nanogels Prepared via a Self-Assembly Approach at the Isoelectric Point. J. Agric. Food Chem. 2015, 63, 6075–6083. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Li, B. Identification of molecular driving forces involved in the gelation of konjac glucomannan: Effect of degree of deacetylation on hydrophobic association. Carbohydr. Polym. 2011, 86, 865–871. [Google Scholar] [CrossRef]
- Sun, X.; Cui, Q.; Li, R.; Hao, L.; Liu, H.; Wang, X.; Xu, N.; Zhao, X.-H. Structural and emulsifying properties of soybean protein isolate glycated with glucose based on pH treatment. J. Sci. Food Agric. 2022, 102, 4462–4472. [Google Scholar] [CrossRef]
- Longo, M.A.; Combes, D. A novel chemoenzymatic glycosylation strategy: Application to lysozyme modification. FEBS Lett. 1995, 375, 63–66. [Google Scholar] [CrossRef]
- Zhang, Q.-T.; Tu, Z.-C.; Xiao, H.; Wang, H.; Huang, X.-Q.; Liu, G.-X.; Liu, C.-M.; Shi, Y.; Fan, L.-L.; Lin, D.-R. Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food Bioprod. Process. 2014, 92, 30–37. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Q.; Tang, C.; Luo, J.; Wu, X.; Lu, L.; Cai, Z. Study on structural, rheological and foaming properties of ovalbumin by ultrasound-assisted glycation with xylose. Ultrason. Sonochemistry 2019, 58, 104644. [Google Scholar] [CrossRef]
- Wang, P.-P.; Wang, W.-D.; Chen, C.; Fu, X.; Liu, R.-H. Effect of Fructus Mori. bioactive polysaccharide conjugation on improving functional and antioxidant activity of whey protein. Int. J. Biol. Macromol. 2020, 148, 761–767. [Google Scholar]
- Lu, F.; Ma, Y.; Zang, J.; Qing, M.; Ma, Z.; Chi, Y.; Chi, Y. High-temperature glycosylation modifies the molecular structure of ovalbumin to improve the freeze-thaw stability of its high internal phase emulsion. Int. J. Biol. Macromol. 2023, 233, 123560. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, J.; Li, X.; Chang, C.; Zhang, M.; Gu, L.; Su, Y.; Yang, Y. Emulsifying properties of glycation or glycation-heat modified egg white protein. Food Res. Int. 2019, 119, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shi, K.; Qin, X.; Zhang, H.; Chen, H.; Hayes, D.G.; Wu, Q.; Hu, Z.; Liu, G. Effect of interactions between glycosylated protein and tannic acid on the physicochemical stability of Pickering emulsions. LWT 2021, 152, 112383. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, X.; Jiang, Y.; Ban, Q.; Wang, X. Effect of Maillard reaction conditions on the gelation and thermal stability of whey protein isolate/d-tagatose conjugates. Food Chem. 2023, 405, 134928. [Google Scholar] [CrossRef]
- Niu, H.; Hou, K.; Chen, H.; Fu, X. A review of sugar beet pectin-stabilized emulsion: Extraction, structure, interfacial self-assembly and emulsion stability. Crit. Rev. Food Sci. Nutr. 2024, 64, 852–872. [Google Scholar] [CrossRef]
- Hou, K.; Fu, X.; Chen, H.; Niu, H. Characterization and emulsifying ability evaluation of whey protein-pectin conjugates formed by glycosylation. Carbohydr. Polym. 2024, 329, 121790. [Google Scholar] [CrossRef]
- Qu, W.; Zhang, X.; Chen, W.; Wang, Z.; He, R.; Ma, H. Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates. Ultrason. Sonochemistry 2018, 42, 250–259. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Liu, J.; Cui, Q.; Wang, X.; Chen, S.; Jiang, L. Relationship between Molecular Flexibility and Emulsifying Properties of Soy Protein Isolate-Glucose Conjugates. J. Agric. Food Chem. 2019, 67, 4089–4097. [Google Scholar] [CrossRef]
- Feng, J.; Wu, S.; Wang, H.; Liu, S. Improved bioavailability of curcumin in ovalbumin-dextran nanogels prepared by Maillard reaction. J. Funct. Foods 2016, 27, 55–68. [Google Scholar] [CrossRef]
- O'Mahony, J.A.; Drapala, K.P.; Mulcahy, E.M.; Mulvihill, D.M. Controlled glycation of milk proteins and peptides: Functional properties. Int. Dairy J. 2017, 67, 16–34. [Google Scholar] [CrossRef]
- Pham, L.B.; Wang, B.; Zisu, B.; Adhikari, B. Covalent modification of flaxseed protein isolate by phenolic compounds and the structure and functional properties of the adducts. Food Chem. 2019, 293, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Li, Y.; Qiao, Y.; Li, F.; Peng, D.; Shen, W.; Jin, W.; Huang, Q. In-situ grafting of dextran on oil body associated proteins at the oil-water interface through maillard glycosylation: Effect of dextran molecular weight. Food Hydrocoll. 2024, 146, 109154. [Google Scholar] [CrossRef]
- Tang, X.; Wu, Q.; Le, G.; Shi, Y. Effects of heat treatment on structural modification and in vivo antioxidant capacity of soy protein. Nutrition 2012, 28, 1180–1185. [Google Scholar] [CrossRef]
- Naik, R.R.; Ye, Q.; Wang, Y.; Selomulya, C. Assessing the effect of Maillard reaction products on the functionality and antioxidant properties of Amaranth-red seaweed blends. Food Res. Int. 2024, 175, 113759. [Google Scholar] [CrossRef]
- Fu, J.-J.; He, F.-Y.; Zhu, X.-T.; Wang, Z.; Huang, Y.-N.; Yu, J.-X.; Wu, Z.-P.; Chen, Y.-W. Structural characteristics and antioxidant activity of Chinese giant salamander enzymatic hydrolysate-glucose conjugates induced by ultrasound Maillard reaction. Food Biosci. 2024, 58, 103654. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, H.; Guo, Y.; Liu, H.; Zhang, C. Preparation, characterization and antioxidant activity analysis of three Maillard glycosylated bone collagen hydrolysates from chicken, porcine and bovine. Food Sci. Hum. Wellness 2024, 13, 2002–2013. [Google Scholar] [CrossRef]
Dex | Pre/Post | Secondary Structure % | ||||
---|---|---|---|---|---|---|
β-Folding | Irregularly Curled | α-Helix | β-Corner | β-Antiparallel | ||
FSG | / | 40.62 ± 0.36 Da | 24.48 ± 0.41 Ab | / | 20.66 ± 0.28 Ab | 14.41 ± 0.67 Ab |
10 K | Pre | 41.25 ± 2.38 Da | 23.80 ± 0.01 Ab | / | 20.57 ± 1.66 Ab | 14.36 ± 0.72 Ac |
post | 64.61 ± 1.02 Ca | / | 21.61 ± 0.11 Ab | 10.05 ± 0.91 BCc | 3.71 ± 0.23 Cd | |
100 K | Pre | 40.84 ± 0.45 Da | 24.38 ± 0.25 Ab | / | 20.80 ± 0.55 Ab | 13.96 ± 0.35 Ac |
post | 71.56 ± 1.51 BCa | / | 19.23 ± 0.09 Bb | 6.98 ± 1.09 Cc | 2.21 ± 0.23 Dd | |
200 K | Pre | 47.43 ± 0.96 Da | 23.31 ± 1.54 Ab | / | 17.45 ± 0.60 Ac | 11.80 ± 0.02 Bd |
post | 77.16 ± 3.16 ABa | / | 15.50 ± 2.58 Cb | 5.39 ± 0.64 Cc | 1.94 ± 0.05 Dcd | |
500 K | Pre | 41.78 ± 2.00 Da | 24.07 ± 0.58 Ab | / | 20.06 ± 1.12 Ab | 14.07 ± 1.46 Ac |
post | 79.34 ± 1.49 Aa | / | 14.89 ± 0.6 Cb | 4.11 ± 0.84 Cc | 1.65 ± 0.04 Dd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, N.; Tang, S.; Wang, X.; Guo, C.; Hu, X.; Yi, J. Enhancing the Stability of Litsea Cubeba Essential Oil Emulsions Through Glycosylation of Fish Skin Gelatin via Dry Maillard Reaction. Foods 2024, 13, 3847. https://doi.org/10.3390/foods13233847
Xing N, Tang S, Wang X, Guo C, Hu X, Yi J. Enhancing the Stability of Litsea Cubeba Essential Oil Emulsions Through Glycosylation of Fish Skin Gelatin via Dry Maillard Reaction. Foods. 2024; 13(23):3847. https://doi.org/10.3390/foods13233847
Chicago/Turabian StyleXing, Naiwen, Shikang Tang, Xuejiao Wang, Chaofan Guo, Xiaosong Hu, and Junjie Yi. 2024. "Enhancing the Stability of Litsea Cubeba Essential Oil Emulsions Through Glycosylation of Fish Skin Gelatin via Dry Maillard Reaction" Foods 13, no. 23: 3847. https://doi.org/10.3390/foods13233847
APA StyleXing, N., Tang, S., Wang, X., Guo, C., Hu, X., & Yi, J. (2024). Enhancing the Stability of Litsea Cubeba Essential Oil Emulsions Through Glycosylation of Fish Skin Gelatin via Dry Maillard Reaction. Foods, 13(23), 3847. https://doi.org/10.3390/foods13233847