Detection of Pear Quality Using Hyperspectral Imaging Technology and Machine Learning Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Imaging System
2.3. Image Acquisition and Correction
2.4. Quality Index Measurement
2.5. Data Analysis
2.5.1. Spectral Extraction
2.5.2. Data Preprocessing
2.5.3. Wavelength Selection
2.5.4. Model Establishment and Evaluation
3. Results and Discussion
3.1. Quality Parameters Analysis
3.2. Spectral Characteristics
3.3. Establishment of LS-SVM Model for Quality and Color Indicators
3.3.1. Spectral Preprocessing
3.3.2. Feature Wavelength Selection Results
3.3.3. Modeling Analysis Based on Feature Wavelength
3.3.4. Development of a Joint Model to Predict Different Indicators for the Six Pear Varieties
3.3.5. The Development of a Classification Model for the Six Pear Varieties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.; Panjaitan, B.; Ujiie, K.; Wann, J.; Chen, D. Comparison of food values for consumers’ preferences on imported fruits and vegetables within Japan, Taiwan, and Indonesia. Food Qual. Prefer. 2021, 87, 104042. [Google Scholar] [CrossRef]
- Wang, T.T.; Li, G.H.; Dai, C.L. Soluble Solids Content prediction for Korla fragrant pears using hyperspectral imaging and GsMIA. Infrared Phys. Technol. 2022, 123, 104119. [Google Scholar] [CrossRef]
- XU, M.; Sun, J.; Cheng, J.H.; Yao, K.N.; Wu, X.H.; Zhou, X. Non-destructive prediction of total soluble solids and titratable acidity in Kyoho grape using hyperspectral imaging and deep learning algorithm. Int. J Food Sci. Tech. 2023, 58, 9–21. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Ji, S.H.; Xuan, G.; Wang, K.L.; Xu, L.Q.; Shao, J. Soluble solids content monitoring and shelf life analysis of winter jujube at different maturity stages by Vis-NIR hyperspectral imaging. Postharvest Biol. Technol. 2024, 210, 112773. [Google Scholar] [CrossRef]
- Kim, M.J.; Yu, W.H.; Song, D.-J.; Chun, S.-W.; Kim, M.S.; Lee, A.; Kim, G.; Shin, B.-S.; Mo, C. Prediction of soluble-solid content in citrus fruit using visible–near-infrared hyperspectral imaging based on effective-wavelength selection algorithm. Sensors 2024, 24, 1512. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Hu, Q.; Li, B.; Xie, Y.; Lu, H.; Xu, S. Research on an improved non-destructive detection method for the Soluble Solids Content in Bunch-Harvested grapes nased on deep learning and hyperspectral imaging. Appl. Sci. 2023, 13, 6776. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Morgan, N.K.; Hosseini Bai, S.; Dunlop, M.W.; Moss, A.F. Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat. Remote Sens. 2021, 13, 1128. [Google Scholar] [CrossRef]
- Weng, S.; Yu, S.; Guo, B.Q.; Tang, P.; Liang, D. Non-destructive detection of strawberry quality using multi-features of hyperspectral imaging and multivariate methods. Sensors 2020, 20, 3074. [Google Scholar] [CrossRef]
- Gao, S.; Xu, J. Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes. Comput. Electron. Agric. 2022, 196, 106822. [Google Scholar] [CrossRef]
- Che, J.; Liang, Q.; Xia, Y.; Liu, Y.; Li, H.; Hu, N.; Cheng, W.; Zhang, H.; Zhang, H.; Lan, H. The study on nondestructive detection methods for internal quality of Korla fragrant pears based on Near-Infrared Spectroscopy and Machine Learning. Foods 2024, 13, 3522. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, L.; Liang, D.; Xu, C.; Jin, X.; Weng, S. Fast prediction of sugar content in Dangshan pear (Pyrus spp.) using hyper-spectral imagery data. Food Anal. Methods 2018, 11, 2336–2345. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Sun, D.; Zeng, X.; Qu, J.; Ma, J. Lychee variety discrimination by hyperspectral imaging coupled with multivariate classification. Food Anal. Methods 2014, 7, 1848–1857. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, B.; Kumar, Y.; Kumar, M. Fruit quality evaluation using machine learning techniques: Review, motivation and future perspectives. Multimed. Tools Appl. 2022, 81, 16255–16277. [Google Scholar] [CrossRef]
- Khort, D.O.; Kutyrev, A.; Smirnov, I.; Andriyanov, N.; Filippov, R.; Chilikin, A.; Astashev, M.E.; Molkova, E.A.; Sarimov, R.M.; Matveeva, T.A.; et al. Enhancing sustainable automated fruit sorting: Hyperspectral analysis and machine learning algorithms. Sustainability 2024, 16, 10084. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Tzani, M.; Aznaouridis, S.I. A General machine learning model for assessing fruit quality using deep image features. AI 2023, 4, 812–830. [Google Scholar] [CrossRef]
- Vali Zade, S.; Kia, R. Determination of moisture content in corn samples: A critical evaluation of standard normal variate preprocessing for NIR spectral data. Hum. Health Halal Metr. 2024, 5, 17–33. [Google Scholar] [CrossRef]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Yu, M.; Bai, X.; Bao, J.; Wang, Z.; Tang, Z.; Zheng, Q.; Zhi, J. The prediction model of total nitrogen content in leaves of Korla fragrant pear was established based on near infrared spectroscopy. Agronomy 2024, 14, 1284. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, Z.; Cheng, Y.; Guan, J. Potential of hyperspectral imaging for nondestructive determination of α-farnesene and conjugated trienol content in ‘Yali’ pear. Spectrochim Acta A Mol Biomol Spectrosc. 2024, 321, 124688. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X. Quantitative analysis of near infrared spectroscopic data based on dual-band transformation and competitive adaptive reweighted sampling. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121924. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Kalita, D.; Ahmed, M.T.; ElMasry, G.; Makino, Y. Effect of variable selection algorithms on model performance for predicting moisture content in biological materials using spectral data. Anal. Chim. Acta 2022, 1202, 339390. [Google Scholar] [CrossRef] [PubMed]
- Galvão, R.K.; Araujo, M.C.; José, G.E.; Pontes, M.J.; Silva, E.C.; Saldanha, T.C. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Tan, Z.-H.; Matsunaga, T.; Shirai, T. Generalization of parameter selection of SVM and LS-SVM for regression. Mach. Learn. Knowl. Extr. 2019, 1, 745–755. [Google Scholar] [CrossRef]
- Cao, Z.; Kühn, P.; He, J.-S.; Bauhus, J.; Guan, Z.-H.; Scholten, T. Calibration of near-infrared spectra for phosphorus fractions in grassland soils on the Tibetan plateau. Agronomy 2022, 12, 783. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.; Wang, S.H.; Zhang, Y.D. A review on extreme learning machine. Multimed. Tools Appl. 2022, 81, 41611–41660. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, A.; Wang, X.; Zhang, H. Identification of grape diseases using image analysis and BP neural networks. Multimed. Tools Appl. 2020, 79, 14539–14551. [Google Scholar] [CrossRef]
- Demidova, L.A. Two-Stage Hybrid Data Classifiers Based on SVM and KNN Algorithms. Symmetry 2021, 13, 615. [Google Scholar] [CrossRef]
- Becker, T.; Rousseau, A.J.; Geubbelmans, M.; Burzykowski, T.; Valkenborg, D. Decision trees and random forests. American J. Orthod. Dentofac. Orthop. 2023, 164, 894–897. [Google Scholar] [CrossRef]
- Shi, Q.; Li, Y.; Zhang, F.; Ma, Q.; Sun, J.; Liu, Y.; Mu, J.; Wang, W.; Tang, Y. Whale optimization algorithm-based multi-task convolutional neural network for predicting quality traits of multi-variety pears using near-infrared spectroscopy. Postharvest Biol. Technol. 2024, 215, 113018. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H.; Zhou, J.; Fang, X.; Shuai, S.; Yang, X. Analysis of vegetation canopy spectral features and species discrimination in reclamation mining area using in situ hyperspectral data. Remote Sens. 2024, 16, 2372. [Google Scholar] [CrossRef]
- Jin, H.; Peng, J.; Bi, R.; Tian, H.; Zhu, H.; Ding, H. Comparing laboratory and satellite hyperspectral predictions of soil organic carbon in farmland. Agronomy 2024, 14, 175. [Google Scholar] [CrossRef]
- Mancini, M.; Mazzoni, L.; Leoni, E.; Tonanni, V.; Gagliardi, F.; Qaderi, R.; Capocasa, F.; Toscano, G.; Mezzetti, B. Application of near infrared spectroscopy for the rapid assessment of nutritional quality of different strawberry cultivars. Foods 2023, 12, 3253. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Gao, J.; Lou, F.; Tuo, Y.; Tan, S.; Shan, Y.; Luo, L.; Xu, Z.; Zhang, Z.; Huang, X. Rapid estimation of soil water content based on hyperspectral reflectance combined with continuous wavelet transform, feature extraction, and extreme learning machine. Peer J. 2024, 12, e17954. [Google Scholar] [CrossRef]
- Falcioni, R.; Oliveira, R.B.d.; Chicati, M.L.; Antunes, W.C.; Demattê, J.A.M.; Nanni, M.R. Fluorescence and hyperspectral sensors for nondestructive analysis and prediction of biophysical compounds in the green and purple leaves of Tradescantia plants. Sensors 2024, 24, 6490. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Y.; Xuan, G.; Wang, Y.; Gao, Z.; Hu, Z.; Han, X.; Gao, C.; Wang, K. Application of hyperspectral imaging for spatial prediction of soluble solid content in sweet potato. RSC Adv. 2020, 10, 33148–33154. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, C.; Liu, H.; Meng, X.; Luo, C.; Han, Y.; Ai, H. Methodology for regional soil organic matter prediction with spectroscopy: Optimal sample grouping, input variables, and prediction model. Remote Sens. 2024, 16, 565. [Google Scholar] [CrossRef]
- Zhu, W.D.; Kong, Y.X.; He, N.-Y.; Qiu, Z.-G.; Lu, Z.-G. Prediction and analysis of chlorophyll a concentration in the western waters of Hong Kong based on BP neural network. Sustainability 2023, 15, 10441. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, W.; Zhang, H.; Xu, J.; Jin, X.; Zhang, X.; Ye, Z.; Tang, X.; Liu, L.; Heng, W.; et al. Nondestructive detection of corky disease in symptomless ‘Akizuki’ pears via Raman spectroscopy. Sensors 2024, 24, 6324. [Google Scholar] [CrossRef]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: A review. J. Data Anal. Inf. Process. 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Rajput, B.S.; Roy, P.; Soni, S.; Raghuwanshi, B.S. ELM-Based Imbalanced Data Classification—A Review. Informatica 2024, 48, 185–204. [Google Scholar] [CrossRef]
Variety | Collection Date | Origin | Coordinates |
---|---|---|---|
Sucui No.1 | 10 July 2023 | Ningjin, Hebei | N: 37.77°, E: 114.53° |
Huanggua | 3 August 2023 | Xinji, Hebei | N: 37.28°, E: 115.11° |
Zaojinxiang | 11 August 2023 | Fucheng, Hebei | N: 38.01°, E: 115.96° |
Akizuki | 5 September 2023 | Zhaoxian, Hebei | N: 37.76°, E: 114.96° |
Yali | 19 September 2023 | Zhaoxian, Hebei | N: 37.76°, E: 114.96° |
Hongli No.1 | 19 October 2023 | Shahe, Hebei | N: 37.80°, E: 114.99° |
Variety | Parameter | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|---|
Sucui | Firmness (N) | 37.53 | 93.16 | 60.18 | 11.38 |
No.1 | SSC (%) | 9.65 | 14.45 | 12.66 | 0.95 |
pH | 4.99 | 5.82 | 5.32 | 0.14 | |
L* | 53.08 | 73.65 | 65.72 | 3.32 | |
a* | −19.19 | −1.68 | 14.96 | 3.44 | |
b* | 47.76 | 58.43 | 53.99 | 1.84 | |
IAD | 0 | 1.7 | 1.01 | 0.38 | |
Huangguan | Firmness (N) | 57.72 | 91.73 | 72.08 | 7.02 |
SSC (%) | 9.40 | 12.95 | 11.19 | 0.79 | |
pH | 4.12 | 4.82 | 4.56 | 0.11 | |
L* | 52.20 | 69.93 | 65.64 | 2.07 | |
a* | −17.13 | −11.67 | −14.47 | 1.00 | |
b* | 34.01 | 47.37 | 41.56 | 1.77 | |
IAD | 0.83 | 1.61 | 1.19 | 0.15 | |
Zaojinxiang | Firmness (N) | 25.97 | 214.42 | 123.95 | 49.29 |
SSC (%) | 7.75 | 14.90 | 11.85 | 1.18 | |
pH | 4.02 | 4.82 | 4.39 | 0.16 | |
L* | 57.19 | 76.38 | 64.82 | 3.77 | |
a* | −19.53 | −4.39 | −14.46 | 3.53 | |
b* | 35.74 | 48.80 | 42.48 | 2.79 | |
IAD | 0.22 | 2.00 | 1.43 | 0.44 | |
Akizuki | Firmness (N) | 38.51 | 77.62 | 56.46 | 8.51 |
SSC (%) | 8.05 | 15.35 | 11.70 | 1.71 | |
pH | 4.73 | 5.17 | 4.94 | 0.09 | |
L* | 57.75 | 64.73 | 61.75 | 1.59 | |
a* | −8.61 | −1.39 | −5.87 | 1.10 | |
b* | 30.78 | 39.17 | 34.21 | 1.57 | |
IAD | 0.00 | 0.55 | 0.02 | 0.05 | |
Yali | Firmness (N) | 55.76 | 77.13 | 64.38 | 4.49 |
SSC (%) | 8.20 | 14.30 | 11.53 | 0.94 | |
pH | 4.13 | 4.88 | 4.49 | 0.15 | |
L* | 63.84 | 76.97 | 70.78 | 2.43 | |
a* | −18.07 | −10.04 | −14.41 | 1.49 | |
b* | 38.49 | 48.08 | 42.61 | 1.68 | |
IAD | 0.50 | 1.40 | 0.95 | 0.20 | |
Hongli | Firmness (N) | 74.28 | 187.87 | 120.35 | 27.62 |
No.1 | SSC (%) | 8.95 | 16.50 | 11.72 | 1.47 |
pH | 4.08 | 4.88 | 4.57 | 0.14 | |
L* | 36.38 | 64.81 | 46.12 | 5.48 | |
a* | 3.14 | 40.40 | −21.95 | 6.36 | |
b* | 15.66 | 37.92 | 23.68 | 4.30 | |
IAD | 0.04 | 1.54 | 0.91 | 0.22 |
Variety | Parameter | Calibration Set | Prediction Set | RPD | ||
---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |||
Sucui | Firmness (N) | 0.951 | 0.302 | 0.839 | 0.496 | 1.7 |
No. 1 | SSC (%) | 0.940 | 0.312 | 0.935 | 0.373 | 2.8 |
pH | 0.743 | 0.088 | 0.579 | 0.123 | 0.7 | |
L* | 0.888 | 1.539 | 0.875 | 1.594 | 1.8 | |
a* | 0.925 | 1.257 | 0.897 | 1.714 | 2.1 | |
b* | 0.893 | 1.622 | 0.903 | 1.410 | 2.2 | |
IAD | 0.959 | 0.105 | 0.964 | 0.104 | 3.5 | |
Huangguan | Firmness (N) | 0.741 | 5.018 | 0.462 | 5.217 | 0.9 |
SSC (%) | 0.985 | 0.142 | 0.984 | 0.156 | 5.4 | |
pH | 0.737 | 0.074 | 0.474 | 0.096 | 0.7 | |
L* | 0.782 | 1.348 | 0.743 | 1.219 | 1.2 | |
a* | 0.994 | 0.163 | 0.733 | 0.601 | 1.3 | |
b* | 0.756 | 1.213 | 0.622 | 1.231 | 1.0 | |
IAD | 0.947 | 0.048 | 0.939 | 0.052 | 2.8 | |
Zaojinxiang | Firmness (N) | 0.945 | 16.609 | 0.946 | 14.559 | 2.8 |
SSC (%) | 0.964 | 0.303 | 0.934 | 0.430 | 2.4 | |
pH | 0.825 | 0.104 | 0.475 | 0.153 | 0.5 | |
L* | 0.939 | 1.360 | 0.946 | 1.013 | 2.9 | |
a* | 0.926 | 1.333 | 0.958 | 1.051 | 3.0 | |
b* | 0.903 | 1.199 | 0.848 | 1.506 | 1.6 | |
IAD | 0.956 | 0.129 | 0.969 | 0.115 | 3.4 | |
Akizuki | Firmness (N) | 0.788 | 5.667 | 0.784 | 4.705 | 1.1 |
SSC (%) | 0.928 | 0.643 | 0.891 | 0.726 | 1.9 | |
pH | 0.862 | 0.048 | 0.622 | 0.062 | 0.9 | |
L* | 0.842 | 0.845 | 0.872 | 0.847 | 1.7 | |
a* | 0.851 | 0.565 | 0.892 | 0.558 | 1.7 | |
b* | 0.817 | 0.928 | 0.839 | 0.832 | 1.5 | |
IAD | 0.920 | 0.023 | 0.884 | 0.021 | 2.0 | |
Yali | Firmness (N) | 0.623 | 3.585 | 0.533 | 3.911 | 0.6 |
SSC (%) | 0.954 | 0.267 | 0.948 | 0.361 | 2.8 | |
pH | 0.753 | 0.133 | 0.559 | 0.135 | 1.0 | |
L* | 0.899 | 1.066 | 0.871 | 1.120 | 1.9 | |
a* | 0.819 | 0.862 | 0.827 | 0.810 | 1.6 | |
b* | 0.842 | 0.965 | 0.813 | 0.801 | 1.4 | |
IAD | 0.945 | 0.066 | 0.942 | 0.066 | 2.7 | |
Hongli | Firmness (N) | 0.945 | 8.903 | 0.926 | 9.025 | 2.6 |
No.1 | SSC (%) | 0.989 | 0.218 | 0.973 | 0.386 | 3.7 |
pH | 0.779 | 0.094 | 0.770 | 0.094 | 0.8 | |
L* | 0.834 | 3.367 | 0.826 | 2.816 | 1.6 | |
a* | 0.751 | 4.182 | 0.830 | 3.798 | 1.3 | |
b* | 0.902 | 1.855 | 0.815 | 2.510 | 1.5 | |
IAD | 0.927 | 0.086 | 0.922 | 0.10 | 2.5 |
Variety | Parameter | Calibration | Prediction | RPD | ||
---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |||
Sucui | Firmness (N) | 0.783 | 6.967 | 0.813 | 7.083 | 1.6 |
No. 1 | SSC (%) | 0.929 | 0.337 | 0.940 | 0.364 | 2.9 |
pH | 0.764 | 0.089 | 0.687 | 0.10 | 0.8 | |
L* | 0.860 | 1.683 | 0.825 | 1.837 | 1.7 | |
a* | 0.901 | 1.454 | 0.891 | 1.716 | 2.1 | |
b* | 0.904 | 1.472 | 0.903 | 1.560 | 2.1 | |
IAD | 0.965 | 0.097 | 0.967 | 0.094 | 3.9 | |
Huangguan | Firmness (N) | 0.718 | 4.934 | 0.60 | 5.763 | 1.0 |
SSC (%) | 0.930 | 0.279 | 0.951 | 0.264 | 3.0 | |
pH | 0.718 | 0.075 | 0.604 | 0.084 | 0.7 | |
L* | 0.80 | 1.170 | 0.820 | 1.194 | 1.7 | |
a* | 0.814 | 0.583 | 0.749 | 0.676 | 1.3 | |
b* | 0.904 | 1.019 | 0.903 | 1.167 | 1.1 | |
IAD | 0.965 | 0.097 | 0.967 | 0.093 | 3.9 | |
Zaojinxiang | Firmness (N) | 0.947 | 15.823 | 0.947 | 16.609 | 3.1 |
SSC (%) | 0.961 | 0.322 | 0.911 | 0.466 | 2.5 | |
pH | 0.718 | 0.120 | 0.604 | 0.122 | 0.7 | |
L* | 0.946 | 1.249 | 0.944 | 1.178 | 3.0 | |
a* | 0.921 | 1.315 | 0.749 | 1.234 | 3.1 | |
b* | 0.881 | 1.327 | 0.905 | 1.222 | 2.3 | |
IAD | 0.944 | 0.148 | 0.967 | 0.106 | 4.1 | |
Akizuki | Firmness (N) | 0.886 | 4.083 | 0.711 | 6.322 | 1.4 |
SSC (%) | 0.909 | 0.731 | 0.895 | 0.712 | 2.0 | |
pH | 0.866 | 0.047 | 0.626 | 0.058 | 1.0 | |
L* | 0.817 | 0.921 | 0.845 | 0.830 | 1.6 | |
a* | 0.856 | 0.577 | 0.856 | 0.556 | 1.8 | |
b* | 0.863 | 0.808 | 0.811 | 0.909 | 1.5 | |
IAD | 0.907 | .024 | 0.872 | 0.018 | 2.0 | |
Yali | Firmness (N) | 0.886 | 4.083 | 0.711 | 3.445 | 0.8 |
SSC (%) | 0.990 | 0.271 | 0.956 | 0.326 | 3.3 | |
pH | 0.697 | 0.141 | 0.621 | 0.121 | 1.1 | |
L* | 0.880 | 1.167 | 0.892 | 1.039 | 2.1 | |
a* | 0.850 | 0.773 | 0.867 | 0.762 | 1.7 | |
b* | 0.810 | 0.988 | 0.816 | 0.975 | 1.6 | |
IAD | 0.957 | 0.057 | 0.967 | 0.078 | 2.7 | |
Hongli | Firmness (N) | 0.950 | 8.367 | 0.934 | 10.765 | 2.7 |
No.1 | SSC (%) | 0.977 | 0.305 | 0.953 | 0.430 | 3.8 |
pH | 0.697 | 0.141 | 0.621 | 0.122 | 0.9 | |
L* | 0.811 | 3.325 | 0.836 | 3.441 | 1.7 | |
a* | 0.767 | 3.899 | 0.767 | 3.890 | 1.3 | |
b* | 0.862 | 2.259 | 0.823 | 2.164 | 1.6 | |
IAD | 0.926 | 0.086 | 0.935 | 0.078 | 2.7 |
Parameter | No. of Original Samples | Selected Variables | Calibration | Prediction | RPD | ||
---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | ||||
Firmness (N) | 1200 | 31 | 0.959 | 10.864 | 0.959 | 10.805 | 3.4 |
SSC (%) | 1200 | 49 | 0.901 | 0.556 | 0.915 | 0.584 | 2.2 |
pH | 1200 | 53 | 0.950 | 0.107 | 0.929 | 0.135 | 2.6 |
L* | 1200 | 53 | 0.980 | 1.680 | 0.974 | 1.919 | 4.3 |
a* | 1200 | 30 | 0.991 | 1.923 | 0.989 | 2.146 | 6.9 |
b* | 1200 | 41 | 0.988 | 1.499 | 0.974 | 2.031 | 4.4 |
IAD | 1200 | 27 | 0.981 | 0.099 | 0.987 | 0.085 | 6.0 |
Model Category | Parameter | Calibration | Prediction | ||
---|---|---|---|---|---|
Samples | Accuracy (%) | Samples | Accuracy (%) | ||
BP Neural Network | Sucui. No 1 | 150 | 100 | 50 | 100 |
Huangguan | 150 | 100 | 50 | 100 | |
Zaojinxiang | 150 | 100 | 50 | 100 | |
Akizuki | 150 | 100 | 50 | 100 | |
Yali | 150 | 99.3 | 50 | 100 | |
Hongli | 150 | 100 | 50 | 98.0 | |
SVM | Sucui. No 1 | 150 | 97.0 | 50 | 94.1 |
Huangguan | 150 | 49.6 | 50 | 50.0 | |
Zaojinxiang | 150 | 80.4 | 50 | 76.5 | |
Akizuki | 150 | 98.0 | 50 | 96.1 | |
Yali | 150 | 84.8 | 50 | 77.6 | |
Hongli | 150 | 100 | 50 | 97.9 | |
RF | Sucui. No 1 | 150 | 100 | 50 | 90.6 |
Huangguan | 150 | 100 | 50 | 50.0 | |
Zaojinxiang | 150 | 100 | 50 | 76.5 | |
Akizuki | 150 | 100 | 50 | 96.1 | |
Yali | 150 | 100 | 50 | 77.6 | |
Hongli | 150 | 100 | 50 | 97.9 | |
ELM | Sucui. No 1 | 150 | 98.0 | 50 | 96.0 |
Huangguan | 150 | 90.2 | 50 | 95.8 | |
Zaojinxiang | 150 | 99.3 | 50 | 93.6 | |
Akizuki | 150 | 100 | 50 | 98.0 | |
Yali | 150 | 98.0 | 50 | 87.7 | |
Hongli | 150 | 100 | 50 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Cheng, H.; Chen, M.; Zhang, L.; Cheng, Y.; Geng, W.; Guan, J. Detection of Pear Quality Using Hyperspectral Imaging Technology and Machine Learning Analysis. Foods 2024, 13, 3956. https://doi.org/10.3390/foods13233956
Zhang Z, Cheng H, Chen M, Zhang L, Cheng Y, Geng W, Guan J. Detection of Pear Quality Using Hyperspectral Imaging Technology and Machine Learning Analysis. Foods. 2024; 13(23):3956. https://doi.org/10.3390/foods13233956
Chicago/Turabian StyleZhang, Zishen, Hong Cheng, Meiyu Chen, Lixin Zhang, Yudou Cheng, Wenjuan Geng, and Junfeng Guan. 2024. "Detection of Pear Quality Using Hyperspectral Imaging Technology and Machine Learning Analysis" Foods 13, no. 23: 3956. https://doi.org/10.3390/foods13233956
APA StyleZhang, Z., Cheng, H., Chen, M., Zhang, L., Cheng, Y., Geng, W., & Guan, J. (2024). Detection of Pear Quality Using Hyperspectral Imaging Technology and Machine Learning Analysis. Foods, 13(23), 3956. https://doi.org/10.3390/foods13233956