Effect of Opuntia ficus-indica Extract in Pro-Healthy Chicken Patties: Physicochemical Properties and Oxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extract Preparation
2.2. Total Phenolic Content and Antioxidant Activity of the Prickly Pear Extract (PPE)
2.2.1. Determination of the Total Phenolic Content (TPC)
2.2.2. Ferric Reducing/Antioxidant Power (FRAP)
2.2.3. DPPH (2,2-Diphenyl-1-Pcrylhydrazyl) Radical Scavenging Activity
2.2.4. ABTS Radical Cation Decolorization (ABTS) Assay
2.2.5. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.3. Chicken Patty Formulation and Manufacture
2.4. Proximate Composition
2.5. Color Parameters and pH
2.6. Lipid Oxidation
2.7. Fatty Acid Composition Analysis
2.8. Statistical Analysis
3. Results
3.1. Total Phenolic Content and Antioxidant Activity of the Prickly Pear Extract (PPE)
3.2. Proximate Composition of Chicken Patties
3.3. Color Parameters and pH
3.4. Lipid Oxidation
3.5. Fatty Acid Composition of Chicken Patties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organisation for Economic Co-operation and Development (OECD). Meat Consumption (Indicator); OECD: Paris, France, 2024.
- Krepper, G.; Romeo, F.; Fernandes, D.D.d.S.; Diniz, P.H.G.D.; de Araújo, M.C.U.; Di Nezio, M.S.; Pistonesi, M.F.; Centurión, M.E. Determination of Fat Content in Chicken Hamburgers Using NIR Spectroscopy and the Successive Projections Algorithm for Interval Selection in PLS Regression (ISPA-PLS). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. CHOLESTEROL|Factors Determining Blood Cholesterol Levels. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; pp. 1237–1243. [Google Scholar] [CrossRef]
- Guo, J.; Cui, L.; Meng, Z. Oleogels/Emulsion Gels as Novel Saturated Fat Replacers in Meat Products: A Review. Food Hydrocoll. 2023, 137, 108313. [Google Scholar] [CrossRef]
- WHO. World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals; WHO: Geneva, Switzerland, 2022.
- Bennett, J.E.; Stevens, G.A.; Mathers, C.D.; Bonita, R.; Rehm, J.; Kruk, M.E.; Riley, L.M.; Dain, K.; Kengne, A.P.; Chalkidou, K.; et al. NCD Countdown 2030: Worldwide Trends in Non-Communicable Disease Mortality and Progress towards Sustainable Development Goal Target 3.4. Lancet 2018, 392, 1072–1088. [Google Scholar] [CrossRef] [PubMed]
- Iacoviello, L.; Bonaccio, M.; Cairella, G.; Catani, M.V.; Costanzo, S.; D’Elia, L.; Giacco, R.; Rendina, D.; Sabino, P.; Savini, I.; et al. Diet and Primary Prevention of Stroke: Systematic Review and Dietary Recommendations by the Ad Hoc Working Group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 309–334. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Healthy Diet; WHO: Geneva, Switzerland, 2020.
- Botella-Martínez, C.; Pérez-Álvarez, J.Á.; Sayas-Barberá, E.; Navarro Rodríguez de Vera, C.; Fernández-López, J.; Viuda-Martos, M. Healthier Oils: A New Scope in the Development of Functional Meat and Dairy Products: A Review. Biomolecules 2023, 13, 778. [Google Scholar] [CrossRef]
- da Veiga, C.P.; Moreira, M.N.B.; Veiga, C.R.P.d.; Souza, A.; Su, Z. Consumer Behavior Concerning Meat Consumption: Evidence from Brazil. Foods 2023, 12, 188. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Pletsch-Borba, L.; Feindt, P.H.; Stokes, C.S.; Pohrt, A.; Meyer, N.M.T.; Wernicke, C.; Sommer-Ballarini, M.; Apostolopoulou, K.; Hornemann, S.; et al. The Effect of Individual Attitude toward Healthy Nutrition on Adherence to a High-UFA and High-Protein Diet: Results of a Randomized Controlled Trial. Nutrients 2024, 16, 3044. [Google Scholar] [CrossRef]
- Badar, I.H.; Liu, H.; Chen, Q.; Xia, X.; Kong, B. Future Trends of Processed Meat Products Concerning Perceived Healthiness: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4739–4778. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef]
- Pușcaș, A.; Mureșan, V.; Socaciu, C.; Muste, S. Oleogels in Food: A Review of Current and Potential Applications. Foods 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Cao, S.; Yang, L.; Li, Z. Flavor Formation Based on Lipid in Meat and Meat Products: A Review. J. Food Biochem. 2022, 46, e14439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Luo, J.; Quan, W.; Lou, A.; Shen, Q. Antioxidant Activity and Sensory Quality of Bacon. Foods 2022, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Liu, K.; Zhang, H. Lipid Oxidation in Foods and Its Implications on Proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; da Silva Lannes, S.C.; da Silva, M.V. Natural Antioxidants Used in Meat Products: A Brief Review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef]
- Sharma, H.; Mendiratta, S.K.; Agarwal, R.K.; Kumar, S.; Soni, A. Evaluation of Anti-Oxidant and Anti-Microbial Activity of Various Essential Oils in Fresh Chicken Sausages. J. Food Sci. Technol. 2017, 54, 279–292. [Google Scholar] [CrossRef]
- Nadeem, H.R.; Akhtar, S.; Ismail, T.; Qamar, M.; Sestili, P.; Saeed, W.; Azeem, M.; Esatbeyoglu, T. Antioxidant Effect of Ocimum basilicum Essential Oil and Its Effect on Cooking Qualities of Supplemented Chicken Nuggets. Antioxidants 2022, 11, 1882. [Google Scholar] [CrossRef]
- Das, J.K.; Chatterjee, N.; Pal, S.; Nanda, P.K.; Das, A.; Das, L.; Dhar, P.; Das, A.K. Effect of Bamboo Essential Oil on the Oxidative Stability, Microbial Attributes and Sensory Quality of Chicken Meatballs. Foods 2023, 12, 218. [Google Scholar] [CrossRef]
- Sharma, H.; Mendiratta, S.K.; Agarwal, R.K.; Gurunathan, K. Bio-Preservative Effect of Blends of Essential Oils: Natural Anti-Oxidant and Anti-Microbial Agents for the Shelf Life Enhancement of Emulsion Based Chicken Sausages. J. Food Sci. Technol. 2020, 57, 3040–3050. [Google Scholar] [CrossRef]
- Zakynthinos, G.; Varzakas, T. Lipid Profile and Antioxidant Properties of Selected Pear Cactus (Opuntia ficus-indica) Ecotypes From Southern Greece. Curr. Res. Nutr. Food Sci. J. 2016, 4, 54–57. [Google Scholar] [CrossRef]
- Osuna-Martínez, U.; Reyes-Esparza, J.; Rodríguez-Fragoso, L. Cactus (Opuntia ficus-indica): A Review on Its Antioxidants Properties and Potential Pharmacological Use in Chronic Diseases. Nat. Prod. Chem. Res. 2014, 2, 153–160. [Google Scholar] [CrossRef]
- Wang, J.; Rani, N.; Jakhar, S.; Redhu, R.; Kumar, S.; Kumar, S.; Kumar, S.; Devi, B.; Simal-Gandara, J.; Shen, B.; et al. Opuntia ficus-indica (L.) Mill.—Anticancer Properties and Phytochemicals: Current Trends and Future Perspectives. Front. Plant Sci. 2023, 14, 1236123. [Google Scholar] [CrossRef] [PubMed]
- Sabtain, B.; Farooq, R.; Shafique, B.; Ranjha, A.N.; Mahmood, S.; Mueen-Ud-Din, G.; Irfan, S.; Shehzadi, K.; Rubab, Q.; Asad, L.; et al. A Narrative Review on the Phytochemistry, Nutritional Profile and Properties of Prickly Pear Fruit. Open Access J. Biog. Sci. Res. 2021, 7, 1–12. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Sobeh, M.; Badr, W.K.; Abdelfattah, M.A.O.; Ali, Z.Y.; El-Tantawy, M.E.; Rabeh, M.A.; Wink, M. HPLC-PDA-MS/MS Profiling of Secondary Metabolites from Opuntia ficus-indica Cladode, Peel and Fruit Pulp Extracts and Their Antioxidant, Neuroprotective Effect in Rats with Aluminum Chloride Induced Neurotoxicity. Saudi J. Biol. Sci. 2020, 27, 2829–2838. [Google Scholar] [CrossRef]
- El-Mostafa, K.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef]
- Silva, M.A.; Albuquerque, T.G.; Pereira, P.; Ramalho, R.; Vicente, F.; Oliveira, M.B.P.P.; Costa, H.S. Opuntia ficus-indica (L.) Mill.: A Multi-Benefit Potential to Be Exploited. Molecules 2021, 26, 951. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Schieber, A.; Carle, R. Phytochemical and Nutritional Significance of Cactus Pear. Eur. Food Res. Technol. 2001, 212, 396–407. [Google Scholar] [CrossRef]
- Kuti, J.O. Antioxidant Compounds from Four Opuntia Cactus Pear Fruit Varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
- Melgar, B.; Pereira, E.; Oliveira, M.B.P.P.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Sokovic, M.; Barros, L.; Ferreira, I.C.F.R. Extensive Profiling of Three Varieties of Opuntia spp. Fruit for Innovative Food Ingredients. Food Res. Int. 2017, 101, 259–265. [Google Scholar] [CrossRef]
- Salem, N.; Lamine, M.; Damergi, B.; Ezahra, F.; Feres, N.; Jallouli, S.; Hammami, M.; Khammassi, S.; Selmi, S.; Elkahoui, S.; et al. Natural Colourants Analysis and Biological Activities. Association to Molecular Markers to Explore the Biodiversity of Opuntia Species. Phytochem. Anal. 2020, 31, 892–904. [Google Scholar] [CrossRef]
- Carreón-Hidalgo, J.P.; Román-Guerrero, A.; Navarro-Ocaña, A.; Gómez-Linton, D.R.; Franco-Vásquez, D.C.; Franco-Vásquez, A.M.; Arreguín-Espinosa, R.; Pérez-Flores, L.J. Chemical Characterization of Yellow-orange and Purple Varieties of Opuntia ficus-indica Fruits and Thermal Stability of Their Betalains. J. Food Sci. 2023, 88, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Aruwa, C.E.; Amoo, S.O.; Kudanga, T. Opuntia (Cactaceae) Plant Compounds, Biological Activities and Prospects—A Comprehensive Review. Food Res. Int. 2018, 112, 328–344. [Google Scholar] [CrossRef]
- Yeddes, N.; Chérif, J.; Guyot, S.; Sotin, H.; Ayadi, M. Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Cano, M.P.; Gómez-Maqueo, A.; García-Cayuela, T.; Welti-Chanes, J. Characterization of Carotenoid Profile of Spanish Sanguinos and Verdal Prickly Pear (Opuntia ficus-indica spp.) Tissues. Food Chem. 2017, 237, 612–622. [Google Scholar] [CrossRef]
- Msaddak, L.; Abdelhedi, O.; Kridene, A.; Rateb, M.; Belbahri, L.; Ammar, E.; Nasri, M.; Zouari, N. Opuntia ficus-indica Cladodes as a Functional Ingredient: Bioactive Compounds Profile and Their Effect on Antioxidant Quality of Bread. Lipids Health Dis. 2017, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Liguori, G.; Gentile, C.; Gaglio, R.; Perrone, A.; Guarcello, R.; Francesca, N.; Fretto, S.; Inglese, P.; Settanni, L. Effect of Addition of Opuntia ficus-indica Mucilage on the Biological Leavening, Physical, Nutritional, Antioxidant and Sensory Aspects of Bread. J. Biosci. Bioeng. 2020, 129, 184–191. [Google Scholar] [CrossRef]
- Sciacca, F.; Palumbo, M.; Pagliaro, A.; Di Stefano, V.; Scandurra, S.; Virzì, N.; Melilli, M.G. Opuntia Cladodes as Functional Ingredient in Durum Wheat Bread: Rheological, Sensory, and Chemical Characterization. CyTA-J. Food 2021, 19, 96–104. [Google Scholar] [CrossRef]
- Bouazizi, S.; Montevecchi, G.; Antonelli, A.; Hamdi, M. Effects of Prickly Pear (Opuntia ficus-indica L.) Peel Flour as an Innovative Ingredient in Biscuits Formulation. LWT 2020, 124, 109155. [Google Scholar] [CrossRef]
- Msaddak, L.; Siala, R.; Fakhfakh, N.; Ayadi, M.A.; Nasri, M.; Zouari, N. Cladodes from Prickly Pear as a Functional Ingredient: Effect on Fat Retention, Oxidative Stability, Nutritional and Sensory Properties of Cookies. Int. J. Food Sci. Nutr. 2015, 66, 851–857. [Google Scholar] [CrossRef]
- Aparicio-Ortuño, R.; Jiménez-González, O.; Lozada-Ramírez, J.D.; Ortega-Regules, A.E. Cladodes of Opuntia ficus indica as a Functional Ingredient in the Production of Cookies: Physical, Antioxidant and Sensory Properties. Sustain. Food Technol. 2024, 2, 816–825. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Wójtowicz, A.; Oniszczuk, T.; Matwijczuk, A.; Dib, A.; Markut-Miotła, E. Opuntia Fruits as Food Enriching Ingredient, the First Step towards New Functional Food Products. Molecules 2020, 25, 916. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, M.A.; Abdelmaksoud, W.; Ennouri, M.; Attia, H. Cladodes from Opuntia Ficus Indica as a Source of Dietary Fiber: Effect on Dough Characteristics and Cake Making. Ind. Crops Prod. 2009, 30, 40–47. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.; Kudanga, T. Phenolic Compound Profile and Biological Activities of Southern African Opuntia ficus-indica Fruit Pulp and Peels. LWT-Food Sci. Technol. 2019, 111, 337–344. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of Tiger Nut (Cyperus esculentus L.) Oil Emulsion as Animal Fat Replacement in Beef Burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef]
- ISO 1442; International Standards Meat and Meat Products—Determination of Moisture Content. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 937; International Standards Meat and Meat Products—Determination of Nitrogen Content. International Organization for Standardization: Geneva, Switzerland, 1978.
- ISO 936; International Standards Meat and Meat Products—Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 1998.
- AOCS. AOCS Official Procedure Am 5–04. Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction. In Sampling and Analysis of Vegetable Oil Source Materials AOCS; American Oil Chemists Society: Urbana, IL, USA, 2005. [Google Scholar]
- Vyncke, W. Evaluation of the Direct Thiobarbituric Acid Extraction Method for Determining Oxidative Rancidity in Mackerel (Scomber scombrus L.). Fette Seifen Anstrichm. 1975, 77, 239–240. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Crecente, S.; Borrajo, P.; Agregán, R.; Lorenzo, J.M. Effect of Slaughter Age on Foal Carcass Traits and Meat Quality. Animal 2015, 9, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameed, E.-S.S.; Nagaty, M.A.; Salman, M.S.; Bazaid, S.A. Phytochemicals, Nutritionals and Antioxidant Properties of Two Prickly Pear Cactus Cultivars (Opuntia ficus indica Mill.) Growing in Taif, KSA. Food Chem. 2014, 160, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- MacDonald-Wicks, L.K.; Wood, L.G.; Garg, M.L. Methodology for the Determination of Biological Antioxidant Capacity in Vitro: A Review. J. Sci. Food Agric. 2006, 86, 2046–2056. [Google Scholar] [CrossRef]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; De Bellis, L.; Blando, F. Betalains, Phenols and Antioxidant Capacity in Cactus Pear [Opuntia ficus-indica (L.) Mill.] Fruits from Apulia (South Italy) Genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; da Silva Barretto, A.C. Red Pitaya Extract as Natural Antioxidant in Pork Patties with Total Replacement of Animal Fat. Meat Sci. 2021, 171, 108284. [Google Scholar] [CrossRef]
- Romero, M.C.; Fogar, R.A.; Fernández, C.L.; Doval, M.M.; Romero, A.M.; Judis, M.A. Effects of Freeze-Dried Pulp of Eugenia uniflora L. and Opuntia ficus-indica Fruits on Quality Attributes of Beef Patties Enriched with n-3 Fatty Acids. J. Food Sci. Technol. 2021, 58, 1918–1926. [Google Scholar] [CrossRef]
- Bernardino-Nicanor, A.; Montañez-Soto, J.L.; Vivar-Vera, M.d.l.Á.; Juárez-Goiz, J.M.; Acosta-García, G.; González-Cruz, L. Effect of Drying on the Antioxidant Capacity and Concentration of Phenolic Compounds in Different Parts of the Erythrina Americana Tree. Bioresources 2016, 11, 9741–9755. [Google Scholar] [CrossRef]
- Gallegos-Infante, J.-A.; Rocha-Guzman, N.-E.; González-Laredo, R.-F.; Reynoso-Camacho, R.; Medina-Torres, L.; Cervantes-Cardozo, V. Effect of Air Flow Rate on the Polyphenols Content and Antioxidant Capacity of Convective Dried Cactus Pear Cladodes (Opuntia ficus indica). Int. J. Food Sci. Nutr. 2009, 60, 80–87. [Google Scholar] [CrossRef]
- Abou-Elella, F.M.; Ali, R.F.M. Antioxidant and Anticancer Activities of Different Constituents Extracted from Egyptian Prickly Pear Cactus (Opuntia ficus-indica) Peel. Biochem. Anal. Biochem. 2014, 3, 1000158. [Google Scholar] [CrossRef]
- Jorge, P.; Troncoso, L. Capacidad Antioxidante Del Fruto de La Opuntia apurimacensis (Ayrampo) y de La Opuntia ficus-indica (Tuna). An. Fac. Med. 2016, 77, 105–109. [Google Scholar] [CrossRef]
- Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by Spray Drying of Bioactive Compounds from Cactus Pear (Opuntia ficus-indica). Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Corral-Aguayo, R.D.; Yahia, E.M.; Carrillo-Lopez, A.; González-Aguilar, G. Correlation between Some Nutritional Components and the Total Antioxidant Capacity Measured with Six Different Assays in Eight Horticultural Crops. J. Agric. Food Chem. 2008, 56, 10498–10504. [Google Scholar] [CrossRef]
- Smeriglio, A.; Bonasera, S.; Germanò, M.P.; D’Angelo, V.; Barreca, D.; Denaro, M.; Monforte, M.T.; Galati, E.M.; Trombetta, D. Opuntia ficus-indica (L.) Mill. Fruit as Source of Betalains with Antioxidant, Cytoprotective, and Anti-angiogenic Properties. Phytother. Res. 2019, 33, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Coria Cayupán, Y.S.; Ochoa, M.J.; Nazareno, M.A. Health-Promoting Substances and Antioxidant Properties of Opuntia Sp. Fruits. Changes in Bioactive-Compound Contents during Ripening Process. Food Chem. 2011, 126, 514–519. [Google Scholar] [CrossRef]
- de Carvalho, F.A.L.; Munekata, P.E.S.; Lopes de Oliveira, A.; Pateiro, M.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Turmeric (Curcuma longa L.) Extract on Oxidative Stability, Physicochemical and Sensory Properties of Fresh Lamb Sausage with Fat Replacement by Tiger Nut (Cyperus esculentus L.) Oil. Food Res. Int. 2020, 136, 109487. [Google Scholar] [CrossRef]
- Niki, E. Antioxidant Capacity: Which Capacity and How to Assess It? J. Berry Res. 2011, 1, 169–176. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of Biological, Environmental and Technical Factors on Phenolic Content and Antioxidant Activities of Tunisian Halophytes. C. R. Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef]
- Hartman, K.; Tringe, S.G. Interactions between Plants and Soil Shaping the Root Microbiome under Abiotic Stress. Biochem. J. 2019, 476, 2705–2724. [Google Scholar] [CrossRef]
- Zhou, M.; Wen, C.; Ming, Y.; Zhang, L.; Lyu, X. Distribution and Bioactivity of Polyphenols in Opuntia ficus-indica (L.) Mill. Wei Sheng Yan Jiu 2022, 51, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Sumaya-Martínez, M.T.; Cruz-Jaime, S.; Madrigal-Santillán, E.; García-Paredes, J.D.; Cariño-Cortés, R.; Cruz-Cansino, N.; Valadez-Vega, C.; Martinez-Cardenas, L.; Alanís-García, E. Betalain, Acid Ascorbic, Phenolic Contents and Antioxidant Properties of Purple, Red, Yellow and White Cactus Pears. Int. J. Mol. Sci. 2011, 12, 6452–6468. [Google Scholar] [CrossRef]
- Khatabi, O.; Hanine, H.; Elothmani, D.; Hasib, A. Extraction and Determination of Polyphenols and Betalain Pigments in the Moroccan Prickly Pear Fruits (Opuntia ficus indica). Arab. J. Chem. 2016, 9, S278–S281. [Google Scholar] [CrossRef]
- Berrabah, H.; Taïbi, K.; Ait Abderrahim, L.; Boussaid, M. Phytochemical Composition and Antioxidant Properties of Prickly Pear (Opuntia ficus-indica L.) Flowers from the Algerian Germplasm. J. Food Meas. Charact. 2019, 13, 1166–1174. [Google Scholar] [CrossRef]
- Putra, N.R.; Rizkiyah, D.N.; Zaini, A.S.; Yunus, M.A.C.; Machmudah, S.; Idham, Z.B.; Hazwan Ruslan, M.S. Effect of Particle Size on Yield Extract and Antioxidant Activity of Peanut Skin Using Modified Supercritical Carbon Dioxide and Soxhlet Extraction. J. Food Process Preserv. 2018, 42, e13689. [Google Scholar] [CrossRef]
- Scalbert, A.; Williamson, G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant Properties of Phenolic Compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Giraldo-Silva, L.; Ferreira, B.; Rosa, E.; Dias, A.C.P. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. Plants 2023, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Attanzio, A.; Restivo, I.; Tutone, M.; Tesoriere, L.; Allegra, M.; Livrea, M.A. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus-indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants 2022, 11, 2364. [Google Scholar] [CrossRef]
- Castro-Enríquez, D.D.; Montaño-Leyva, B.; Del Toro-Sánchez, C.L.; Juaréz-Onofre, J.E.; Carvajal-Millan, E.; Burruel-Ibarra, S.E.; Tapia-Hernández, J.A.; Barreras-Urbina, C.G.; Rodríguez-Félix, F. Stabilization of Betalains by Encapsulation—A Review. J. Food Sci. Technol. 2020, 57, 1587–1600. [Google Scholar] [CrossRef]
- Rocha, F.; de Paula Rezende, J.; Maciel dos Santos Dias, M.; Rodrigues Arruda Pinto, V.; César Stringheta, P.; Clarissa dos Santos Pires, A.; Cristina Teixeira Ribeiro Vidigal, M. Complexation of Anthocyanins, Betalains and Carotenoids with Biopolymers: An Approach to Complexation Techniques and Evaluation of Binding Parameters. Food Res. Int. 2023, 163, 112277. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Antioxidant Activity of Betalains from Plants of the Amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, F.A.L.; Lorenzo, J.M.; Pateiro, M.; Bermúdez, R.; Purriños, L.; Trindade, M.A. Effect of Guarana (Paullinia cupana) Seed and Pitanga (Eugenia uniflora L.) Leaf Extracts on Lamb Burgers with Fat Replacement by Chia Oil Emulsion during Shelf Life Storage at 2 °C. Food Res. Int. 2019, 125, 108554. [Google Scholar] [CrossRef]
- Agregán, R.; Barba, F.J.; Gavahian, M.; Franco, D.; Khaneghah, A.M.; Carballo, J.; Ferreira, I.C.; Silva Barretto, A.C.; Lorenzo, J.M. Fucus vesiculosus Extracts as Natural Antioxidants for Improvement of Physicochemical Properties and Shelf Life of Pork Patties Formulated with Oleogels. J. Sci. Food Agric. 2019, 99, 4561–4570. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Meng, Q.; He, C.; Ren, L. Effect of Mulberry Leaf Extracts on Color, Lipid Oxidation, Antioxidant Enzyme Activities and Oxidative Breakdown Products of Raw Ground Beef during Refrigerated Storage. J. Food Qual. 2016, 39, 159–170. [Google Scholar] [CrossRef]
- Mokhtar, S.M.; Youssef, K.M.; Morsy, N.E. The Effects of Natural Antioxidants on Colour, Lipid Stability and Sensory Evaluation of Fresh Beef Patties Stored at 4 °C. J. Agroaliment. Process. Technol. 2014, 20, 282–292. [Google Scholar]
- Estévez, M.; Ventanas, S.; Ramírez, R.; Cava, R. Influence of the Addition of Rosemary Essential Oil on the Volatiles Pattern of Porcine Frankfurters. J. Agric. Food Chem. 2005, 53, 8317–8324. [Google Scholar] [CrossRef]
- Pires, M.A.; Munekata, P.E.S.; Villanueva, N.D.M.; Tonin, F.G.; Baldin, J.C.; Rocha, Y.J.P.; Carvalho, L.T.; Rodrigues, I.; Trindade, M.A. The Antioxidant Capacity of Rosemary and Green Tea Extracts to Replace the Carcinogenic Antioxidant (BHA) in Chicken Burgers. J. Food Qual. 2017, 2017, 2409527. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour Perception of Oxidation in Beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Al-Marazeeq, K.; Al-Rousan, W.; Taha, S.; Osaili, T. The Influence of Cactus (Opuntia ficus-indica (L.) Mill) Cladodes Powder on Improving the Characteristics and Shelf Life of Low-Fat Beef and Chicken Burgers. Food Sci. Technol. 2023, 43, e124322. [Google Scholar] [CrossRef]
- Díaz-Vela, J.; Totosaus, A.; Pérez-Chabela, M.L. Integration of Agroindustrial Co-Products as Functional Food Ingredients: Cactus Pear (Opuntia ficus-indica) Flour and Pineapple (Ananas comosus) Peel Flour as Fiber Source in Cooked Sausages Inoculated with Lactic Acid Bacteria. J. Food Process Preserv. 2015, 39, 2630–2638. [Google Scholar] [CrossRef]
- Santos, E.M.; Rodriguez, J.A.; Lorenzo, J.M.; Mondragón, A.C.; Pateiro, M.; Gutiérrez, E.; Ferreira, T.A. Antioxidant Effect of Pumpkin Flower (Cucurbita maxima) in Chicken Patties. Foods 2022, 11, 2258. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Naeem, H.H.S.; Elshebrawy, H.A.; Imre, K.; Morar, A.; Herman, V.; Pașcalău, R.; Sallam, K.I. Antioxidant and Antibacterial Effect of Fruit Peel Powders in Chicken Patties. Foods 2022, 11, 301. [Google Scholar] [CrossRef] [PubMed]
- Sáyago-Ayerdi, S.G.; Brenes, A.; Goñi, I. Effect of Grape Antioxidant Dietary Fiber on the Lipid Oxidation of Raw and Cooked Chicken Hamburgers. LWT-Food Sci. Technol. 2009, 42, 971–976. [Google Scholar] [CrossRef]
- Basanta, M.F.; Rizzo, S.A.; Szerman, N.; Vaudagna, S.R.; Descalzo, A.M.; Gerschenson, L.N.; Pérez, C.D.; Rojas, A.M. Plum (Prunus salicina) Peel and Pulp Microparticles as Natural Antioxidant Additives in Breast Chicken Patties. Food Res. Int. 2018, 106, 1086–1094. [Google Scholar] [CrossRef]
- Hamidioglu, I.; Alenčikienė, G.; Dzedulionytė, M.; Zabulionė, A.; Bali, A.; Šalaševičienė, A. Characterization of the Quality and Oxidative Stability of Hemp-Oil-Based Oleogels as an Animal Fat Substitute for Meat Patties. Foods 2022, 11, 4030. [Google Scholar] [CrossRef]
- WHO/FAO. Diet, Nutrition and the Prevention of Chronic Diseases; Report of a Joint WHO/FAO Expert Consultation, WHO Technical Report Series 916; WHO: Geneva, Switzerland, 2003.
- De Caterina, R.; Liao, J.K.; Libby, P. Fatty Acid Modulation of Endothelial Activation. Am. J. Clin. Nutr. 2000, 71, 213S–223S. [Google Scholar] [CrossRef]
Analysis | Result for PPE |
---|---|
Total phenolic content (TPC) | 1438.74 ± 4.43 mg of GAE/100 g |
Ferric reducing/antioxidant power (FRAP) | 6793.24 ± 142.93 μmol of Fe2+/100 g |
DPPH radical scavenging activity | 700.26 ± 30.01 mg Trolox equivalents/100 g |
ABTS radical cation decolorization | 1398.21 ± 16.34 mg of ascorbic acid/100 g |
Oxygen Radical Absorbance Capacity (ORAC) | 3.43 ± 0.01 g Trolox equivalents/100 g |
Component (g/100 g) | Treatment | Sig. | |||
---|---|---|---|---|---|
CON | ERY500 | PPE500 | PPE750 | ||
Moisture | 74.25 ± 0.18 | 74.24 ± 0.20 | 74.17 ± 0.26 | 74.12 ± 0.17 | n.s. |
Protein | 18.52 ± 0.19 | 18.61 ± 0.13 | 18.62 ± 0.35 | 18.66 ± 0.20 | n.s. |
Fat | 3.41 ± 0.48 | 3.38 ± 0.53 | 3.41 ± 0.81 | 3.29 ± 0.32 | n.s. |
Ash | 2.36 ± 0.05 | 2.40 ± 0.05 | 2.37 ± 0.05 | 2.38 ± 0.04 | n.s. |
Parameter | Storage Time (Days) | Treatment | Sig. | |||
---|---|---|---|---|---|---|
CON | ERY500 | PPE500 | PPE750 | |||
L* | 1 | 61.16 ± 3.08 abAB | 58.90 ± 0.74 aA | 60.30 ± 1.20 abAB | 62.15 ± 1.0 5 bABC | * |
4 | 60.03 ± 3.06 A | 59.09 ± 2.80 A | 59.70 ± 2.62 A | 58.73 ± 1.90 A | n.s. | |
8 | 62.05 ± 2.75 AB | 62.17 ± 1.89 A | 60.71 ± 2.67 AB | 62.42 ± 1.86 ABC | n.s. | |
12 | 62.00 ± 4.26 AB | 60.13 ± 2.40 A | 62.60 ± 1.59 AB | 63.88 ± 2.23 BC | n.s. | |
16 | 65.97 ± 2.64 B | 66.78 ± 2.68 B | 64.24 ± 1.82 B | 65.89 ± 1.32 C | n.s. | |
Sig. | * | * | * | * | ||
a* | 1 | 1.58 ± 0.22 B | 1.39 ± 0.30 | 1.44 ± 0.15 | 1.59 ± 0.18 | n.s. |
4 | 1.37 ± 0.22 B | 1.61 ± 0.58 | 1.67 ± 0.78 | 1.71 ± 0.70 | n.s. | |
8 | 1.25 ± 0.07 AB | 1.47 ± 0.38 | 1.59 ± 0.15 | 1.69 ± 0.36 | n.s. | |
12 | 1.02 ± 0.44 AB | 1.18 ± 0.40 | 1.34 ± 0.43 | 1.24 ± 0.42 | n.s. | |
16 | 0.79 ± 0.27 A | 1.09 ± 0.26 | 1.14 ± 0.28 | 1.25 ± 0.41 | n.s. | |
Sig. | * | n.s. | n.s. | n.s. | ||
b* | 1 | 15.62 ± 0.72 bB | 14.30 ± 0.51 a | 15.59 ± 0.86 b | 16.41 ± 0.70 b | * |
4 | 13.39 ± 0.93 aA | 14.32 ± 0.63 ab | 14.84 ± 1.36 ab | 14.95 ± 1.43 b | * | |
8 | 13.42 ± 0.72 aA | 13.56 ± 0.56 ab | 14.03 ± 0.60 ab | 14.49 ± 1.02 b | * | |
12 | 14.99 ± 2.41 AB | 14.88 ± 1.85 | 15.72 ± 1.32 | 15.27 ± 1.58 | n.s. | |
16 | 14.20 ± 1.08 aAB | 14.83 ± 1.23 ab | 14.12 ± 0.95 a | 15.81 ± 0.94 b | * | |
Sig. | * | n.s. | n.s. | n.s. | ||
ΔE* | 1–4 | 2.90 ± 0.68 A | 2.86 ± 0.53 A | 3.31 ± 0.65 AB | 3.06 ± 0.99 | n.s. |
1–8 | 4.19 ± 0.72 A | 3.31 ± 0.99 A | 3.03 ± 0.93 A | 3.10 ± 0.46 | n.s. | |
1–12 | 3.12 ± 0.67 A | 3.10 ± 0.54 A | 3.05 ± 1.01 A | 3.56 ± 0.56 | n.s. | |
1–16 | 5.97 ± 1.46 aB | 8.14 ± 0.75 bB | 4.68 ± 0.79 aB | 4.66 ± 0.72 a | * | |
Sig. | * | * | * | n.s. | ||
pH | 1 | 5.84 ± 0.04 | 5.87 ± 0.03 | 5.86 ± 0.01 | 5.86 ± 0.01 | n.s. |
4 | 5.88 ± 0.03 | 5.92 ± 0.03 | 5.91 ± 0.03 | 5.91 ± 0.02 | n.s. | |
8 | 5.74 ± 0.09 | 5.76 ± 0.08 | 5.76 ± 0.06 | 5.76 ± 0.08 | n.s. | |
12 | 5.79 ± 0.07 | 5.83 ± 0.06 | 5.83 ± 0.08 | 5.82 ± 0.07 | n.s. | |
16 | 5.76 ± 0.05 | 5.75 ± 0.07 | 5.74 ± 0.10 | 5.73 ± 0.10 | n.s. | |
Sig. | n.s. | n.s. | n.s. | n.s. |
Fatty Acid | Treatment | Sig. | |||
---|---|---|---|---|---|
CON | ERY500 | PPE500 | PPE750 | ||
C16:0 | 15.89 ± 0.98 | 15.90 ± 0.96 | 15.87 ± 1.17 | 15.79 ± 1.21 | n.s. |
C18:0 | 6.34 ± 0.13 | 6.33 ± 0.08 | 6.35 ± 0.09 | 6.35 ± 0.07 | n.s. |
SFAs | 23.82 ± 0.97 | 23.84 ± 1.02 | 23.81 ± 1.21 | 23.72 ± 1.32 | n.s. |
C16:1n-7 | 2.41 ± 0.52 | 2.42 ± 0.50 | 2.40 ± 0.61 | 2.37 ± 0.62 | n.s. |
C18:1n-9 | 37.54 ± 0.11 | 37.54 ± 0.06 | 37.53 ± 0.11 | 37.58 ± 0.06 | n.s. |
C18:1n-7 | 2.03 ± 0.07 | 2.04 ± 0.04 | 2.04 ± 0.07 | 2.02 ± 0.10 | n.s. |
MUFAs | 42.49 ± 0.62 | 42.52 ± 0.63 | 42.48 ± 0.80 | 42.47 ± 0.81 | n.s. |
C18:2n-6 | 31.50 ± 1.52 | 31.44 ± 1.59 | 31.52 ± 1.93 | 31.63 ± 2.10 | n.s. |
n-6 | 32.67 ± 1.59 | 32.61 ± 1.65 | 32.69 ± 2.02 | 32.78 ± 2.16 | n.s. |
C18:3n-3 | 0.59 ± 0.03 | 0.58 ± 0.02 | 0.58 ± 0.04 | 0.58 ± 0.04 | n.s. |
C20:5n-3 (EPA) | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.01 | n.s. |
C22:5n-3 (DPA) | 0.22 ± 0.01 | 0.23 ± 0.02 | 0.22 ± 0.08 | 0.23 ± 0.01 | n.s. |
C22:6n-3 (DHA) | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.00 | n.s. |
n-3 | 1.02 ± 0.02 | 1.03 ± 0.03 | 1.02 ± 0.01 | 1.02 ± 0.04 | n.s. |
PUFAs | 33.69 ± 1.58 | 33.64 ± 1.64 | 33.71 ± 2.01 | 33.80 ± 2.13 | n.s. |
Nutritional Indices | |||||
n-6/n-3 | 32.03 | 31.66 | 32.05 | 32.13 | n.s. |
PUFA/SFA | 1.41 | 1.41 | 1.42 | 1.42 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, L.A.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Trindade, M.A. Effect of Opuntia ficus-indica Extract in Pro-Healthy Chicken Patties: Physicochemical Properties and Oxidative Stability. Foods 2024, 13, 3970. https://doi.org/10.3390/foods13233970
Gonçalves LA, Lorenzo JM, Bermúdez R, Pateiro M, Trindade MA. Effect of Opuntia ficus-indica Extract in Pro-Healthy Chicken Patties: Physicochemical Properties and Oxidative Stability. Foods. 2024; 13(23):3970. https://doi.org/10.3390/foods13233970
Chicago/Turabian StyleGonçalves, Leticia A., José M. Lorenzo, Roberto Bermúdez, Mirian Pateiro, and Marco Antonio Trindade. 2024. "Effect of Opuntia ficus-indica Extract in Pro-Healthy Chicken Patties: Physicochemical Properties and Oxidative Stability" Foods 13, no. 23: 3970. https://doi.org/10.3390/foods13233970
APA StyleGonçalves, L. A., Lorenzo, J. M., Bermúdez, R., Pateiro, M., & Trindade, M. A. (2024). Effect of Opuntia ficus-indica Extract in Pro-Healthy Chicken Patties: Physicochemical Properties and Oxidative Stability. Foods, 13(23), 3970. https://doi.org/10.3390/foods13233970