Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality
Abstract
:1. Introduction
2. Mechanisms of Antimicrobial Action
3. Light Sources and Irradiation Mode for Photosensitization
4. Bacteriostatic Action of Photosensitization
Microorganism | Concentration of CUR | Wavelength | Energy Density | Irradiation Time/Dose | Reduction | References |
---|---|---|---|---|---|---|
S. aureus ATCC 25923 A. hydrophila ATCC 7966 S. Typhimurium ATCC 14028 P. aeruginosa ATCC 27853 E. coli ATCC 25922 | 75 μM | 470 nm | 678 mW/cm2 | 10–30 min 139, 278, 417 J/cm2 | ~3–4 log CFU/mL | [32] |
S. aureus | 0–2.5 μM | 470 nm | 60 mW/cm2 | 3 J/cm2 | ~2.5 log CFU/mL | [33] |
E. coli DH5α | 5, 10, 20 μM | 470 nm | 0.06 W/cm2 | 3.6 J/cm2 | 3.5 log CFU/mL | [34] |
V. parahaemolyticus ATCC 17802 | 5, 10, 20 μM | 470 nm | 0.06 W/cm2 | 3.6 J/cm2 | >6.5 log CFU/mL | [35] |
A. actinomycetemcomitans ATCC 33384 | 2.5 mg/mL | 420~480 nm | 400 mW/cm2 | 120 J/cm2 | ~3 log CFU/mL | [36] |
L. innocua NCTC 11288 | 3.7 mg/L | 400~500 nm | 150 mW/cm2 | 30 min | 6.1 log CFU/mL | [37] |
P. Lundensis B. thermosphacta | 60 μM | 430 nm | 34 W | 30 min 33.01 J/cm2 | 0.31 log CFU/mL 1.39 log CFU/mL | [38] |
P. fluorescens ATCC 13525 | 62.5 mg/mL | 450 nm | 2.7 mW/cm2 | 5 min 0.81 J/cm2 | 7 log CFU/mL | [39] |
P. expansum | 400 μM | 420 nm | 50 W | 20 min 330 J/cm2 | 100% | [40] |
A. flavus ATCC 28893 | 5–100 μM | 420 nm | NS | 12–84 J/cm2 | >3 log CFU/mL | [41] |
A. niger ATCC 6275 A. flavus ATCC 9643 P. griseofulvum ATCC 48927 P. chrysogenum ATCC 10106 F. oxysporum ATCC 62606 C. albicans ATCC 10231 Z. bailii ATCC 42476 | 100–1000 μM | 370–680 nm | NS | 24–96 J/cm2 | 0.66–2.49 log CFU/mL | [42] |
P. italicum | 75 μmol/L | 460 nm | 200 mW/cm2 | 20 min | 4.61 log CFU/mL | [44] |
5. Photosensitization for Decontamination of Biofilms
Microorganism | Concentration of CUR | Wavelength | Energy Density | Irradiation Time/ Dose | Reduction | References |
---|---|---|---|---|---|---|
C. dubliniensis | 20, 30, 40 μM | 455 nm | 22 mW/cm2 | 5.28 J/cm2 | 82.05% | [45] |
C. albicans ATCC 90028 C. glabrata ATCC 2001 S. mutans ATCC 25175 | 80, 100, 120 μM | 440–460 nm | 22 mW/cm2 | 29 min 37.5 J/cm2 | lower livability | [46] |
C. albicans ATCC 90028 | 5, 10, 20 μM | 440–460 nm | 22 mW/cm2 | 1.32–26.4 J/cm2 | lower livability | [48] |
E. faecalis ATCC 29212 | 5.0 mg/mL | 450 nm | NS | 300–420 J/cm2 | 68.5% | [49] |
P. aeruginosa BCRC 12154 | 5 ppm CUR 125 ppm EDTA | 455 nm | 16 mW/cm2 | 15 min 14.4 J/cm2 | 80% | [50] |
P. Italicum | 75 μmol/L | 460 nm | 200 mW/cm2 | 20 min | ~2.3Log CFU/mL | [44] |
6. Efficiency of Synergistic Interaction in Food Model
6.1. Fruits and Vegetables
6.2. Cereal Grains
6.3. Animal-Based Food
7. Antimicrobial Effect of Curcumin Derivatives
8. Conclusions and Future Trends
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Settanni, L.; Corsetti, A. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 2008, 121, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Luksiene, Z.; Brovko, L. Antibacterial Photosensitization-Based Treatment for Food Safety. Food Eng. Rev. 2013, 5, 185–199. [Google Scholar] [CrossRef]
- Chalak, A.; Abou-Daher, C.; Chaaban, J.; Abiad, M.G. The global economic and regulatory determinants of household food waste generation: A cross-country analysis. Waste Manag. 2016, 48, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.N.; Vicente, A.A. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res. Int. 2010, 43, 1936–1943. [Google Scholar] [CrossRef]
- Li, X.; Farid, M. A review on recent development in non-conventional food sterilization technologies. J. Food Eng. 2016, 182, 33–45. [Google Scholar] [CrossRef]
- Pan, Y.Y.; Sun, D.W.; Han, Z. Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview. Trends Food Sci. Technol. 2017, 64, 13–22. [Google Scholar] [CrossRef]
- Zhao, W.; Tang, Y.L.; Lu, L.X.; Chen, X.; Li, C.Y. Review: Pulsed Electric Fields Processing of Protein-Based Foods. Food Bioprocess Technol. 2014, 7, 114–125. [Google Scholar] [CrossRef]
- Bisht, B.; Bhatnagar, P.; Gururani, P.; Kumar, V.; Tomar, M.S.; Sinhmar, R.; Rathi, N.; Kumar, S. Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables—A review. Trends Food Sci. Technol. 2021, 114, 372–385. [Google Scholar] [CrossRef]
- Patil, S.; Moiseev, T.; Misra, N.N.; Cullen, P.J.; Mosnier, J.P.; Keener, K.M.; Bourke, P. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J. Hosp. Infect. 2014, 88, 162–169. [Google Scholar] [CrossRef]
- Ghoshal, G. Comprehensive review on pulsed electric field in food preservation: Gaps in current studies for potential future research. Heliyon 2023, 9, e17532. [Google Scholar] [CrossRef]
- Cebrián, G.; Condón, S.; Mañas, P. Influence of growth and treatment temperature on Staphylococcus aureus resistance to pulsed electric fields: Relationship with membrane fluidity. Innov. Food Sci. Emerg. Technol. 2016, 37, 161–169. [Google Scholar] [CrossRef]
- Sobotta, L.; Skupin-Mrugalska, P.; Piskorz, J.; Mielcarek, J. Non-porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Dye. Pigment. 2019, 163, 337–355. [Google Scholar] [CrossRef]
- Luksiene, Z.; Zukauskas, A. Prospects of photosensitization in control of pathogenic and harmful micro-organisms. J. Appl. Microbiol. 2009, 107, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Damyeh, M.S.; Mereddy, R.; Netzel, M.E.; Sultanbawa, Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1727–1759. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, Y.; Ashkenazi, H. Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Curr. Microbiol. 2001, 42, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Stanic, Z. Curcumin, a Compound from Natural Sources, a True Scientific Challenge—A Review. Plant Food Hum. Nutr. 2017, 72, 1–12. [Google Scholar] [CrossRef]
- Martelli, G.; Giacomini, D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur. J. Med. Chem. 2018, 158, 91–105. [Google Scholar] [CrossRef]
- Suliman, M.; Kzar, M.H.; Juma, A.S.M.; Ali, I.A.; Yasin, Y.; Sayyid, N.H.; Alkhafaji, A.T.; Kadhim, A.J.; Abid, M.M.; Alawadi, A.H.; et al. B40 and SiB39 fullerenes enhance the physicochemical features of curcumin and effectively improve its anti-inflammatory and anti-cancer activities. J. Mol. Liq. 2024, 395, 123816. [Google Scholar] [CrossRef]
- Legaba, B.C.; Galinari, C.B.; dos Santos, R.S.; Bruschi, M.L.; Gremiao, I.D.F.; Boechat, J.S.; Pereira, S.A.; Malacarne, L.C.; Caetano, W.; Bonfim-Mendonça, P.S.; et al. In vitro antifungal activity of curcumin mediated by photodynamic therapy on Sporothrix brasiliensis. Photodiagnosis Photodyn. Ther. 2023, 43, 103659. [Google Scholar] [CrossRef]
- Dias, L.D.; Blanco, K.C.; Mfouo-Tynga, I.S.; Inada, N.M.; Bagnato, V.S. Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. J. Photochem. Photobiol. C 2020, 45, 100384. [Google Scholar] [CrossRef]
- Cieplik, F.; Deng, D.M.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial photodynamic therapy—What we know and what we don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Borges, A.; Giaouris, E.; Mikcha, J.M.G.; Simoes, M. Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states. Crit. Rev. Microbiol. 2018, 44, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Jori, G.; Fabris, C.; Soncin, M.; Ferro, S.; Coppellotti, O.; Dei, D.; Fantetti, L.; Chiti, G.; Roncucci, G. Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers Surg. Med. 2006, 38, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Faustino, M.A.F.; Neves, M.; Cunha, A.; Almeida, A. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages. Viruses 2012, 4, 1034–1074. [Google Scholar] [CrossRef]
- Lubart, R.; Lipovski, A.; Nitzan, Y.; Friedmann, H. A possible mechanism for the bactericidal effect of visible light. Laser Ther. 2011, 20, 17–22. [Google Scholar] [CrossRef]
- Zhang, S.; He, Z.; Xu, F.; Cheng, Y.; Waterhouse, G.I.N.; Sun-Waterhouse, D.; Wu, P. Enhancing the performance of konjac glucomannan films through incorporating zein–pectin nanoparticle-stabilized oregano essential oil Pickering emulsions. Food Hydrocolloid. 2022, 124, 107222. [Google Scholar] [CrossRef]
- Chen, B.; Huang, J.; Li, H.; Zeng, Q.-H.; Wang, J.J.; Liu, H.; Pan, Y.; Zhao, Y. Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation. Food Control 2020, 113, 107181. [Google Scholar] [CrossRef]
- Kumar, A.; Ghate, V.; Kim, M.J.; Zhou, W.B.; Khoo, G.H.; Yuk, H.G. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination. Food Microbiol. 2017, 63, 12–21. [Google Scholar] [CrossRef]
- Kleinpenning, M.M.; Smits, T.; Frunt, M.H.A.; van Erp, P.E.J.; van de Kerkhof, P.C.M.; Gerritsen, R. Clinical and histological effects of blue light on normal skin. Photodermatol. Photoimmunol. Photomed. 2010, 26, 16–21. [Google Scholar] [CrossRef]
- Matsumura, Y.; Ananthaswamy, H.N. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 2004, 195, 298–308. [Google Scholar] [CrossRef]
- Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Woolsey, G. Inactivation of Bacterial Pathogens following Exposure to Light from a 405-Nanometer Light-Emitting Diode Array. Appl. Environ. Microbiol. 2009, 75, 1932–1937. [Google Scholar] [CrossRef] [PubMed]
- Penha, C.B.; Bonin, E.; da Silva, A.F.; Hioka, N.; Zanqueta, É.; Nakamura, T.U.; de Abreu, B.A.; Campanerut-Sá, P.A.Z.; Mikcha, J.M.G. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. LWT-Food Sci. Technol. 2017, 76, 198–202. [Google Scholar] [CrossRef]
- Jiang, Y.; Leung, A.W.; Hua, H.; Rao, X.; Xu, C. Photodynamic Action of LED-Activated Curcumin against Staphylococcus aureus Involving Intracellular ROS Increase and Membrane Damage. Int. J. Photoenergy 2014, 2014, 637601. [Google Scholar] [CrossRef]
- Gao, Y.; We, J.; Li, Z.J.; Zhang, X.; Lu, N.; Xu, C.H.; Leung, A.W.; Xu, C.S.; Tang, Q.J. Curcumin-mediated photodynamic inactivation (PDI) against DH5α contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters. Photodiagnosis Photodyn. Ther. 2019, 26, 244–251. [Google Scholar] [CrossRef]
- Wu, J.; Mou, H.; Xue, C.; Leung, A.W.; Xu, C.; Tang, Q.J. Photodynamic effect of curcumin on Vibrio parahaemolyticus. Photodiagnosis Photodyn. Ther. 2016, 15, 34–39. [Google Scholar] [CrossRef]
- Najafi, S.; Khayamzadeh, M.; Paknejad, M.; Poursepanj, G.; Kharazi Fard, M.J.; Bahador, A. An In Vitro Comparison of Antimicrobial Effects of Curcumin-Based Photodynamic Therapy and Chlorhexidine, on Aggregatibacter actinomycetemcomitans. J. Lasers Med. Sci. 2016, 7, 21–25. [Google Scholar] [CrossRef]
- Bonifacio, D.; Martins, C.; David, B.; Lemos, C.; Neves, M.; Almeida, A.; Pinto, D.; Faustino, M.A.F.; Cunha, A. Photodynamic inactivation of Listeria innocua biofilms with food-grade photosensitizers: A curcumin-rich extract of Curcuma longa vs commercial curcumin. J. Appl. Microbiol. 2018, 125, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zheng, S.; Fang, J.; Zhu, J. Photodynamic inactivation of spoilers Pseudomonas lundensis and Brochothrix thermosphacta by food-grade curcumin and its application on ground beef. Innov. Food Sci. Emerg. Technol. 2023, 87, 103410. [Google Scholar] [CrossRef]
- Saraiva, B.B.; Campanholi, K.D.S.; Machado, R.R.B.; Nakamura, C.V.; Silva, A.A.; Caetano, W.; Pozza, M.S.D. Reducing Pseudomonas fluorescens in milk through photodynamic inactivation using riboflavin and curcumin with 450 nm blue light-emitting diode. Int. Dairy J. 2024, 148, 105787. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, F.; Wang, Z.; Wu, Q.; Liu, B.; Meng, X. Inhibitory effect and mechanism of curcumin-based photodynamic inactivation on patulin secretion by Penicillium expansum. Innov. Food Sci. Emerg. Technol. 2022, 80, 103078. [Google Scholar] [CrossRef]
- Temba, B.A.; Fletcher, M.T.; Fox, G.P.; Harvey, J.J.W.; Sultanbawa, Y. Inactivation of Aspergillus flavus spores by curcumin-mediated photosensitization. Food Control 2016, 59, 708–713. [Google Scholar] [CrossRef]
- Al-Asmari, F.; Mereddy, R.; Sultanbawa, Y. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin. J. Photochem. Photobiol. B 2017, 173, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Song, L.L.; Zhang, F.; Yu, J.S.; Wei, C.L.; Han, Q.M.; Meng, X.H. Antifungal effect and possible mechanism of curcumin mediated photodynamic technology against Penicillium expansum. Postharvest Biol. Technol. 2020, 167, 111234. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Wu, R.; Gao, J.; Chen, M.; Cui, Y.; Hao, J.; Han, J.; Matthews, K. Photodynamic inactivation of curcumin combined with ascorbic acid against Penicillium italicum in vitro and on fresh-cut orange. LWT 2023, 182, 114900. [Google Scholar] [CrossRef]
- Sanitá, P.V.; Pavarina, A.C.; Dovigo, L.N.; Ribeiro, A.P.D.; Andrade, M.C.; Mima, E.G.D. Curcumin-mediated anti-microbial photodynamic therapy against Candida dubliniensis biofilms. Lasers Med. Sci. 2018, 33, 709–717. [Google Scholar] [CrossRef]
- Quishida, C.C.C.; Mima, E.G.D.; Jorge, J.H.; Vergani, C.E.; Bagnato, V.S.; Pavarina, A.C. Photodynamic inactivation of a multispecies biofilm using curcumin and LED light. Lasers Med. Sci. 2016, 31, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; Kuhn, D.M.; Mukherjee, P.K.; Hoyer, L.L.; McCormick, T.; Ghannoum, M.A. Biofilm formation by the fungal pathogen Candida albicans:: Development, architecture, and drug resistance. J. Bacteriol. 2001, 183, 5385–5394. [Google Scholar] [CrossRef]
- Dovigo, L.N.; Pavarina, A.C.; Ribeiro, A.P.D.; Brunetti, I.L.; Costa, C.A.D.; Jacomassi, D.P.; Bagnato, V.S.; Kurachi, C. Investigation of the Photodynamic Effects of Curcumin Against Candida albicans. Photochem. Photobiol. 2011, 87, 895–903. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Kazemian, H.; Chiniforush, N.; Hosseini, N.; Pourakbari, B.; Azizollahi, A.; Rezaei, F.; Bahador, A. Exploring different photosensitizers to optimize elimination of planktonic and biofilm forms of Enterococcus faecalis from infected root canal during antimicrobial photodynamic therapy. Photodiagnosis Photodyn. Ther. 2018, 24, 206–211. [Google Scholar] [CrossRef]
- Liu, C.H.; Lee, W.S.; Wu, W.C. Photodynamic inactivation against Pseudomonas aeruginosa by curcumin microemulsions. RSC Adv. 2016, 6, 63013–63022. [Google Scholar] [CrossRef]
- Abdulrahman, H.; Misba, L.; Ahmad, S.; Khan, A.U. Curcumin induced photodynamic therapy mediated suppression of quorum sensing pathway of Pseudomonas aeruginosa: An approach to inhibit biofilm in vitro. Photodiagnosis Photodyn. Ther. 2020, 30, 101645. [Google Scholar] [CrossRef] [PubMed]
- Al-Asmari, F.; Mereddy, R.; Sultanbawa, Y. The effect of photosensitization mediated by curcumin on storage life of fresh date (Phoenix dactylifera L.) fruit. Food Control 2018, 93, 305–309. [Google Scholar] [CrossRef]
- Lin, Y.L.; Hu, J.M.; Li, S.Y.; Hamzah, S.S.; Jiang, H.Q.; Zhou, A.R.; Zeng, S.X.; Lin, S.L. Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon. Molecules 2019, 24, 2374. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Zhang, F.; Tang, Q.J.; Xu, C.S.; Ni, Z.J.; Meng, X.H. Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chem. 2019, 274, 415–421. [Google Scholar] [CrossRef]
- Aurum, F.S.; Nguyen, L.T. Efficacy of photoactivated curcumin to decontaminate food surfaces under blue light emitting diode. J. Food Process. Eng. 2019, 42, e12988. [Google Scholar] [CrossRef]
- Bhavya, M.L.; Hebbar, H.U. Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrason. Sonochemistry 2019, 57, 108–115. [Google Scholar] [CrossRef]
- de Oliveira, E.F.; Tosati, J.V.; Tikekar, R.V.; Monteiro, A.R.; Nitin, N. Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: Applications for fresh produce sanitation. Postharvest Biol. Technol. 2018, 137, 86–94. [Google Scholar] [CrossRef]
- Tortik, N.; Spaeth, A.; Plaetzer, K. Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin. Photochem. Photobiol. Sci. 2014, 13, 1402–1409. [Google Scholar] [CrossRef]
- de Oliveira, E.F.; Tikekar, R.; Nitin, N. Combination of aerosolized curcumin and UV-A light for the inactivation of bacteria on fresh produce surfaces. Food Res. Int. 2018, 114, 133–139. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Akkermans, S.; Boehm, D.; Cullen, P.J.; Van Impe, J.; Bourke, P. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res. Int. 2018, 106, 509–521. [Google Scholar] [CrossRef]
- Chen, B.; Huang, J.; Liu, Y.; Liu, H.; Zhao, Y.; Wang, J.J. Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature. Int. J. Food Microbiol. 2021, 345, 109152. [Google Scholar]
- Wu, J.; Hou, W.; Cao, B.; Zuo, T.; Xue, C.; Leung, A.W.; Xu, C.; Tang, Q.J. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis Photodyn. Ther. 2015, 12, 385–392. [Google Scholar] [CrossRef]
- Tosati, J.V.; de Oliveira, E.F.; Oliveira, J.V.; Nitin, N.; Monteiro, A.R. Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages. Food Control 2018, 84, 177–185. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Jia, Y.T.; Li, W.Y.; Zhang, M. Antimicrobial photodynamic inactivation with curcumin against Staphylococcus saprophyticus, in vitro and on fresh dough sheet. LWT 2021, 147, 111567. [Google Scholar] [CrossRef]
- Nguenha, R.; Damyeh, M.S.; Phan, A.D.T.; Hong, H.T.; Chaliha, M.; O’Hare, T.J.; Netzel, M.E.; Sultanbawa, Y. Effect of Photosensitization Mediated by Curcumin on Carotenoid and Aflatoxin Content in Different Maize Varieties. Appl. Sci. 2021, 11, 5902. [Google Scholar] [CrossRef]
- Temba, B.A.; Fletcher, M.T.; Fox, G.P.; Harvey, J.; Okoth, S.A.; Sultanbawa, Y. Curcumin-based photosensitization inactivates Aspergillus flavus and reduces aflatoxin B1 in maize kernels. Food Microbiol. 2019, 82, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Nguenha, R.J.; Damyeh, M.S.; Hong, H.T.; Chaliha, M.; Sultanbawa, Y. Effect of solvents on curcumin as a photosensitizer and its ability to inactivate Aspergillus flavus and reduce aflatoxin B1 in maize kernels and flour. J. Food Process. Preserv. 2022, 46, e16169. [Google Scholar] [CrossRef]
- Jingjing, W.; Jieer, Q.I.U.; Tiantian, H.E.; Aiyao, Y.; Ming, X.U.; Yang, L.I.U. Curcumin-mediated Photodynamic Inhibition of ZEN Mycotoxin Production by Fusarium graminearum. Mod. Food Sci. Technol. 2023, 39, 305–311. [Google Scholar]
- Glueck, M.; Schamberger, B.; Eckl, P.; Plaetzer, K. New horizons in microbiological food safety: Photodynamic Decontamination based on a curcumin derivative. Photochem. Photobiol. Sci. 2017, 16, 1784–1791. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Chen, J.; Lin, R.; Mai, Y.; Lin, Y.; Wang, G.; Chen, Z.; Zhang, W.; Wang, J.; et al. Formulation with zinc acetate enhances curcumin’s inherent and photodynamic antimicrobial effects for food preservation. Food Control 2024, 157, 110220. [Google Scholar] [CrossRef]
- Hu, Y.M.; Nie, W.; Hu, X.Z.; Li, Z.G. Microbial decontamination of wheat grain with superheated steam. Food Control 2016, 62, 264–269. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Shah, M.A.; Sofi, S.A.; Hamdani, A.M.; Oliveira, C.A.F.; Moosavi, M.H.; Khaneghah, A.M.; Sant’Ana, A.S. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem. Toxicol. 2021, 148, 111976. [Google Scholar] [CrossRef] [PubMed]
- Los, A.; Ziuzina, D.; Bourke, P. Current and Future Technologies for Microbiological Decontamination of Cereal Grains. J. Food Sci. 2018, 83, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Taghipour, F.; Mohseni, M. Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet light-emitting diodes (UV-LEDs). Chem. Eng. J. 2018, 343, 362–370. [Google Scholar] [CrossRef]
- Du, L.H.; Prasad, A.J.; Gänzle, M.; Roopesh, M.S. Inactivation of Salmonella spp. in wheat flour by 395 nm pulsed light emitting diode (LED) treatment and the related functional and structural changes of gluten. Food Res. Int. 2020, 127, 108716. [Google Scholar] [CrossRef]
- Subedi, S.; Du, L.H.; Prasad, A.; Yadav, B.; Roopesh, M.S. Inactivation of Salmonella and quality changes in wheat flour after pulsed light-emitting diode (LED) treatments. Food Bioprod. Process. 2020, 121, 166–177. [Google Scholar] [CrossRef]
- Ziyuan, W.; Wanyi, L.; Zichu, M.; Meng, Z.; Jinghan, W.; Min, Z. Efficacy of light emitting diode (LED) blue light treatment in bacterial decontamination of wheat flour and its influence on wheat flour quality. Food Sci. 2022, 43, 117–124. [Google Scholar]
- Vishakha, K.; Das, S.; Ganguli, A. Photodynamic antibacterial and antibiofilm activity of riboflavin against Xanthomonas oryzae pv oryzae: An ecofriendly strategy to combat bacterial leaf blight (BLB) rice disease. Arch. Microbiol. 2022, 204, 566. [Google Scholar] [CrossRef]
- Lan, X.; Liu, Y.Y.; Wang, L.; Wang, H.Y.; Hu, Z.; Dong, H.; Yu, Z.W.; Yuan, Y.K. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem. 2023, 424, 136464. [Google Scholar] [CrossRef]
- Liu, F.; Li, Z.J.; Cao, B.B.; Wu, J.; Wang, Y.M.; Xue, Y.; Xu, J.; Xue, C.H.; Tang, Q.J. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality. Food Res. Int. 2016, 87, 204–210. [Google Scholar] [CrossRef]
- Hussain, Z.; Thu, H.E.; Amjad, M.W.; Hussain, F.; Ahmed, T.A.; Khan, S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater. Sci. Eng. C 2017, 77, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Li, Y.; Fang, F. Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light. Int. J. Nanomed. 2014, 9, 5157–5165. [Google Scholar] [CrossRef] [PubMed]
- Agel, M.R.; Baghdan, E.; Pinnapireddy, S.R.; Lehmann, J.; Schäfer, J.; Bakowsky, U. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf. B Biointerfaces 2019, 178, 460–468. [Google Scholar] [CrossRef]
- Markovic, Z.; Kovácová, M.; Micusík, M.; Danko, M.; Svajdlenková, H.; Kleinová, A.; Humpolícek, P.; Lehocky, M.; Markovic, B.T.; Spitalsky, Z. Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47283. [Google Scholar] [CrossRef]
- Condat, M.; Mazeran, P.E.; Malval, J.P.; Lalevée, J.; Morlet-Savary, F.; Renard, E.; Langlois, V.; Andalloussi, S.A.; Versace, D.L. Photoinduced curcumin derivative-coatings with antibacterial properties. RSC Adv. 2015, 5, 85214–85224. [Google Scholar] [CrossRef]
- Hu, J.M.; Lin, S.L.; Tan, B.K.; Hamzah, S.S.; Lin, Y.; Kong, Z.H.; Zhang, Y.; Zheng, B.D.; Zeng, S.X. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res. Int. 2018, 111, 265–271. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Q.; Shi, Q.; Du, Y.; Zeng, Q.; Zhao, Y.; Wang, J.J. Novel 2,3-Dialdehyde Cellulose-Based Films with Photodynamic Inactivation Potency by Incorporating the β-Cyclodextrin/Curcumin Inclusion Complex. Biomacromolecules 2021, 22, 2790–2801. [Google Scholar] [CrossRef]
Foodstuff | Test Strains | CUR Concentration | Light Source | Irradiation Time /Light Dose | Reduction | References | |
---|---|---|---|---|---|---|---|
Fruit | Fresh date fruit | NS | 1000, 1400, 1800 μM | 420 nm | 10, 15 min 180, 270 J/cm2 | shelf life extended by 7 days at 30 °C | [52] |
Hami melon | NS | 10, 20, 40, 50 μM | 460 nm | 5, 30, 60, 90 min | ~1.8 log CFU/g at storage | [53] | |
Fresh-cut apples | E. coli ATCC 25922 | 0.5, 2, 10, 50 μM | 298 mW/cm2 | 150–510 s | ~0.95 log CFU/g | [54] | |
Grape | E. coli | 1600 μM | 465–470 nm 4.5–30.2 mW/cm2 | 9.1, 18.1, 27.2, 36.3 J/cm2 | 0.95, 1.26, 2.18, 2.40 log CFU/g | [55] | |
Orange juice | E. coli ATCC 11775 S. aureus ATCC 12600 | 50, 100 μM | 462 ± 3 nm | 70 J/cm2 | 1.06 log CFU/mL 2.34 log CFU/mL | [56] | |
Orange slices | P. italicum | 75 μmol/L | 460 nm 100 mW/cm2 | 20 min | ~2.5 log CFU/g | [38] | |
Vegetable | Spinach leaves Cherry tomato | E. coli O157:H7 ATCC 700728 L. innocua ATCC 33090 | 5 mg/mL | 320–400 nm 32 W/m2 | 5 min | 4 log CFU/mL in wash water >100 CFU/cm2 on surface of product | [57] |
Cucumber | S. aureus ATCC 25923 | 50, 100 μM | 435 nm 9.4 mW/cm2 | 33.8 J/cm2 | 2.6 log CFUs | [58] | |
Spinach Lettuce Tomato | E. coli O157:H7 ATCC 700728 L. innocua ATCC 33090 | 10 mg/mL | 320–400 nm 6.8 W/m2 | 5 min 20.4 kJ/m2 | 3 log CFU/mL 1.7–3.3 log CFU/mL | [59] | |
Seafood | Oysters | NS | 10 μM | 470 nm 0.06 W/cm2 | 90 s 5.4 J/cm2 | storage time extended by 7 days at 4 °C | [60] |
E. coli DH5α | 5, 10, 20 μM | 470 nm 0.06 W/cm2 | 3.6 J/cm2 | 2.5 log CFU/g | [34] | ||
V. parahaemolyticus | 100 μM | 10 W, 455–460 nm | 30 min 9.36 J/cm2 | no visible colony was detectable | [61] | ||
Norovirus | 5, 10, 20 μM | 470 nm | 3.6 J/cm2 | 1.15 log PFU/mL | [62] | ||
Meat | Chicken meat | S. aureus ATCC 25923 | 50, 100 μM | 435 nm 9.4 mW/cm2 | 33.8 J/cm2 | 1.7 log CFUs | [58] |
Sausages | L. innocua ATCC 33090 | 150 μg/mL | 320–400 nm 32 ± 0.2 W/m2 | 30 min | >3 log CFU/mL | [63] | |
Beef | P. lundensis B. thermosphacta | 60 μM | 34 W, 430 nm | 33.01 J/cm2 | 0.15 log CFU/g 0.08 log CFU/g | [38] | |
Grains and Seeds | Millet dough | S. saprophyticus | 25 μM | 420–470 nm | 4.32 J/cm2 | ~1 log CFU/g | [64] |
Corn kernels | A. flavus spores aflatoxin B1 | 1000 μM | 430 nm | 104.2 J/cm2 | 2.3 log CFU/mL inhibited aflatoxin B1 production | [65] | |
A. flavus spores | 0, 25, 45 μM | 420 nm | 60 J/cm2 | ~2 log CFU/g | [41] | ||
aflatoxin B1 | 50 μM | 420 nm | 60 J/cm2 | production of aflatoxin B1 decreased significantly | [66] | ||
A. flavus spores aflatoxin B1 | 1000, 1250, 1500 μM | 420 nm | 60 J/cm2 | storage time extended by 14 days at 25 °C inhibited aflatoxin B1 production | [67] | ||
zearalenone | 50 μΜ | 455~460 nm | 43.0 J/cm2 | ZEN decreased from 1.15 mg/kg to 0.58 mg/kg | [68] | ||
Corn flour | A. flavus spores aflatoxin B1 | 1000, 1500 μM | 420 nm | 60 J/cm2 | storage time extended by 7 days at 25 °C inhibited aflatoxin B1 production | [67] | |
Fenugreek Mung beans | E. coli ATCC 25922 | 10, 50, 100 μM | 432 nm 9.4 mW/cm2 | 33.8 J/cm2 | >3 log CFUs | [69] | |
Peanut seeds | A. flavus | 20 mg/mL | 450 nm | NS | 0.3 log CFU/g | [70] |
CUR Derivatives | Bacteria | Concentration | Light Source | Irradiation Time/Dose | Reduction | References |
---|---|---|---|---|---|---|
UNCPs-CUR | S. aureus | 0, 10, 20, 40, 80, 320 µg/mL | 980 nm 0.5 W/cm2 | 30 min | 0–100% | [82] |
CUR.NP | S. saprophyticus DSM No. 18669 E. coli DSM No. 6897 | NS | 457 nm | 105.6 J/cm2 | >6.2 log CFU/mL ~2.9 log CFU/mL | [83] |
CUR/polyurethane nanocomposites | E. coli CCM 4517 S. aureus CCM 4516 | NS | 470 nm | 1 h 6 h | 100% | [84] |
CUR derivative coatings | S. aureus E. coli | NS | 420 nm | 2, 6, 24, 48 h | 99% 95% | [85] |
Microemulsion combined with EDTA | P. aeruginosa | 5 ppm CUR 15.4 ppm EDTA | 455 nm 16 mW/cm2 | 15 min 14.4 J/cm2 | 90% | [59] |
CUR combined EDTA | B. cep aci | 50 μM CUR 0.4% EDTA | NS | 28 J/cm2 | 100% | [86] |
CUR-Zn | P. aeruginosa (ATCC27853) E. coli O157:H7 (BNCC192101) P. Mirabilis (BNCC337267) E. coli (ATCC 25922) | 1 mg/mL | 425 nm 6.25 mW/cm2 | 50 J/cm2 | 1.3 log CFU/mL 1.3 log CFU/mL 1.0 log CFU/mL 1.7 log CFU/mL | [70] |
CUR-β-CD | L. monocytogenes V. parahaemolyticus S. putrefaciens | 0.16 μM | 10 W 455−460 nm | 60 min 13.68 J/cm2 | 3.79 log CFU/g 2.81 log CFU/g 3.27 log CFU/g | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yang, H.; Li, Z.; Liu, J. Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality. Foods 2024, 13, 3980. https://doi.org/10.3390/foods13233980
Wang Z, Yang H, Li Z, Liu J. Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality. Foods. 2024; 13(23):3980. https://doi.org/10.3390/foods13233980
Chicago/Turabian StyleWang, Ziyuan, Haihong Yang, Zhaofeng Li, and Jie Liu. 2024. "Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality" Foods 13, no. 23: 3980. https://doi.org/10.3390/foods13233980
APA StyleWang, Z., Yang, H., Li, Z., & Liu, J. (2024). Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality. Foods, 13(23), 3980. https://doi.org/10.3390/foods13233980