Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging
Abstract
:1. Introduction
2. Sources of CNFs
3. Characterization of CNFs
3.1. Mechanical Properties
3.2. Emulsifying Property
3.3. Barrier Properties
3.4. Ultraviolet-Blocking Ability
3.5. Biosafety
4. Functionalization of CNFs
4.1. Carboxyl Modification
4.2. Acetylated Modification
4.3. Ethyl Modification
4.4. Silylation Modification
4.5. Physical Modification
5. CNF-Based Films Containing Biopolymers, Functional Materials, and Their Combinations
5.1. CNF-Based Films with Biopolymers
5.2. CNF-Based Films with Functional Materials
Materials | Preparation | Key Finding | References |
---|---|---|---|
Chitosan/switchgrass-based lignin-containing CNFs | Physical blending: chitosan was dissolved in a 1.5 wt% glacial acetic acid solution, and the CS solutions were obtained by constant stirring at 50 °C for 3 h. | CS/LCNF maintained a ductility of 503% and showed a 46.7% higher tensile strength with a Tmax and WCA that were increased by 2.6 °C and 11.06°, respectively. | [172] |
Poly (lactic acid)/nanosilver-decorated cellulose/chitosan/lignocellulose nanofiber | Physical blending: 1 g (dry matter) of each nanofiber was dispersed in 200 mL of 1 mM AgNO3 aqueous solution, followed by ultrasonication (40 kHz, 20 min). Then, the specific quantity of L. salicaria extract was added to the mixture at 60 °C and agitated by a magnetic stirrer for 30 min. | Better dispersion and compatibility of LCNF and CHNF, along with a high amount of the loaded AgNPs, resulted in strong interactions, smooth films, better-controlled release, surface hydrophobicity, enhanced barrier properties, and reinforcing impact. | [173] |
CNFs/carboxymethyl chitosan | Physical blending: 14 wt% CMC solution, CNF dispersion (1%) was mixed with TA at different TA to CNF mass ratios under constant stirring for 30 min, and ultrasonic treatment was performed to remove the bubbles. | The developed anti-fog film had high mechanical strength and excellent UV shielding properties, as well as good antibacterial and antioxidant properties. The bilayer anti-fog film could effectively prevent the generation of fog, delay the Browning, inhibit mildew, improve the overall acceptability, and effectively extend the shelf life of white Hypsizygus marmoreus. | [174] |
Sodium alginate/CNFs/ethyl cellulose/polyvinyl butyral | Physical blending: using a coating device, the produced SA/CNF solution was uniformly applied to the dried Ca2+ ion-filled base paper. The SA/CNF coated paper was dried in an oven at 65 °C for 40 min. The EC/PVB mixture was coated on the surface of SA/CNF oil-proof paper and dried for 30 min in an oven at 45 °C to create SA/CNF/EC/PVB water- and oil-proof paper. | The water- and oil-proof paper showed excellent water repellency (Cobb value: 1.1 g/m2), oil repellency (kit rating: 12/12), low air permeability (0.2 µm/Pa·s), and stronger mechanical properties (4.21 kN/m). | [175] |
Taro peel cellulose nanofibers/taro starch | Physical blending: taro starch films with and without cellulose nanofibers were produced by the solvent-casting process. | The addition of cellulose nanofibers caused notable changes in several properties, such as film morphology, thickness, opacity, UV-light barrier capacity, water solubility, and swelling behavior. Films with cellulose nanofiber showed enhanced mechanical features, exhibiting higher Young’s modulus and tensile strength. | [176] |
Cellulose nanofiber/starch | Hemiacetal cross-linking: the TCNF suspension (~1% w/v) and starch pastes (5% w/v) were blended and stirred until homogeneous dispersions were obtained. The TCNF/starch dispersions were cast in polypropylene Petri dishes and were kept in an oven at 45 °C for 6 h. | Short-term storage of starch pastes was found to improve the mechanical and water resistance properties of TCNF/starch films, owing to the synergistic effect of starch paste crystallinity and hemiacetal cross-linking. | [153] |
Pea protein isolate/dialdehyde carboxylated cellulose nanofibers/bilberry extract | Covalently reacting: 10 mL of DCCNFs dispersion was added to the PPI solution (90 mL), and stirring continued for another 30 min. Subsequently, the mixed solution was cooled to 35 °C and then added with BE (1.5 g). The mixture was stirred for another 30 min to obtain a film-forming solution. | DCCNFs and BE were incorporated into the pea protein isolate (PPI)-based films and enhanced the performance of PPI films through the Schiff base reaction. DCCNFs and BE improved the physicochemical properties of the PPI films. The visual color change of the smart film can be used to monitor pork freshness. | [164] |
TEMPO-oxidized cellulose nanofiber/starch | Hemiacetal cross-linking: the prepared TCNF dispersion (1.0%, w/v) and starch solution (3%, w/v) were blended at a weight ratio of 1.5:1. | Modified starch blending with TCNF enhanced the marine-microbial degradability of TCNF/modified starch film. Higher chemical modification of starch reduced microbial degradability of the film. | [177] |
Materials | Preparation | Key Finding | References |
---|---|---|---|
CNFs/starch/citric acid | CNFs were dispersed in distilled water using a stirrer at 1000 rpm for 30 min. Starch (3% [w/v]), glycerol (40% [v/w]), and CA (0.5% [w/v]) were added and stirred at 1000 rpm for 5 min for complete dispersion. | Films containing high concentrations of CNF exhibited superior mechanical, thermal, and barrier properties compared to those with low concentrations of CNF and the controls. The coated tomato exhibited a significant reduction in weight loss while retaining the firmness and color of the fruit. | [178] |
CNFs/chitosan/zein | For the first layer, chitosan solution was coated on the paper surface. After drying for 12 h at room temperature, MCNF suspension was coated on the surface of single-coated paper as the second coating layer. Zein solution was coated on the surface of dual-layer paper as the third coating layer. | The obtained triple-layer paper had a high kit number of 12 and a low Cobb 60 value of 2.6 g/m2 and exhibited heat-sealing ability without any adhesive agent, which has a peel strength of 372.6 N/m. The triple layers also effectively improved the mechanical properties and decreased the moisture and oxygen permeability of the paper substrate. Moreover, the triple-layer paper possesses good antibacterial activity and cytocompatibility. | [179] |
Regenerated kenaf CNF/Cur-Zn (II) | To prepare CNF/Cur-metal complex composite films, 5 g of CNF was added to 50 mL of DMAc/LiCl solution. The mixture was stirred until the cellulose solution became clear. Afterward, 5 mg of Cur-Zn (II) complex was added to the CNF solution and continuously stirred. | CNFs derived from kenaf plant were combined with curcumin (Cur)–metal complexes to produce regenerated composite films. Results showed that the Cur-Zn (II) complex-loaded CNF composite films exhibit higher antioxidant activity than other films, whereas Cur-Cu (II) complex-loaded CNF composite films showed prominent antibacterial activity against foodborne pathogenic bacteria such as Listera monocytogenes and Escherichia coli. | [180] |
Soy protein isolate/kappa-carrageenan/CNFs/zenian essential oil | SPI/K-car/BCN (SKB) films were synthesized using the solvent-casting method. | In comparison to the pure SPI film, the film with a high BCN concentration demonstrated a significant decrease in WS (22.98 ± 0.78%), MC (21.72 ± 0.68%), WVP (1.22 ± 0.14 g mm−1 S−1 Pa−1 10−10), and EAB (57.77 ± 5.25%) properties. Zenian-loaded metal-organic frameworks (ZM) substantially enhanced the thermal stability of this film. Furthermore, the ZM films inhibited the growth of pathogenic bacteria and increased the DPPH antioxidant activity. | [181] |
chitosan/starch/CNFs/cinnamon essential oil | Nanocomposite films were prepared using the solvent-casting method. | The addition of CEO and cellulose nanofibers was found to enhance the antimicrobial and material properties of the film. The film has also been shown to have antibacterial activity against Staphylococcus aureus and Escherichia coli. | [182] |
Konjac glucomannan/thyme essential oil/bacterial cellulose nanofibers/Ag nanoparticles | KGM powder (0.8%, w/v) and glycerol 30% (w/w, based on the weight of KGM) were dissolved in distilled water at 95 °C and stirred for 30 min. BCNs/Ag nanoparticles, TEO (1%, v/v), and TEO-loaded Pickering emulsions with an oil phase of 10% stabilized by 40 mg BCNs/Ag nanoparticles were added into the basic KGM film-forming solutions (90 mL). | TEO-loaded Pickering emulsions with an oil phase of 10% stabilized by BCNs/Ag nanoparticles films showed the highest contact angle value (86.28°), the best thermal stability and mechanical properties, as well as the best sustained-release property. | [183] |
Apple polyphenols/pea starch/pulp cellulose nanofiber | The prepared starch solution (10%, w/v) was combined with CNF-P aqueous dispersion (0.2%, w/v) in equal proportions (total volume of 100 mL) and stirred continuously at 86 °C until well mixed. After that, different masses (0.000, 0.025, 0.075, 0.125, 0.175, and 0.225 g) of AP were introduced and blended using magnetic agitation at a temperature of 86 °C. | Apple polyphenols could be uniformly distributed, and form hydrogen bonds with the matrix, and the increase in crystallinity improved the thermal stability of the films (the final residue of the films increased from 22.66% to 31.82%). The TS and EAB of the films reached their maximum values of 11.14 ± 1.73 MPa and 71.55 ± 8.8%, respectively, at an AP content of 1.5%. | [184] |
Curcumin/bacterial cellulose nanofiber | The pieces of dried BC nanofiber sheets were soaked in 100 mL of curcumin solution (0.05% (w/v)) in an acetone-water mixture (ratio of 3:1) for 90 min at 25 °C under gentle stirring (50 rpm). | The curcumin-anthocyanin-loaded nanofiber indicated a distinct color change after spoilage by its exposure to fish meat in a transparent plastic package. | [185] |
6. Application in Food Preservation
6.1. Application in Fresh Food Preservation
6.2. Application in Processed Food Preservation
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nordin, A.H.; Ngadi, N.; Ilyas, A.R.; Nabgan, W.; Norfarhana, A.S. Starch-Based Plastics: A Bibliometric Analysis. Mater. Today Proc. 2023, 74, 519–523. [Google Scholar] [CrossRef]
- Pilevar, Z.; Bahrami, A.; Beikzadeh, S.; Hosseini, H.; Jafari, S.M. Migration of Styrene Monomer from Polystyrene Packaging Materials into Foods: Characterization and Safety Evaluation. Trends Food Sci. Technol. 2019, 91, 248–261. Available online: https://www.sciencedirect.com/science/article/pii/S0924224419300354 (accessed on 4 July 2024). [CrossRef]
- de Anda-Flores, Y.B.; Cordón-Cardona, B.A.; González-León, A.; Valenzuela-Quintanar, A.I.; Peralta, E.; Soto-Valdez, H. Effect of Assay Conditions on the Migration of Phthalates from Polyvinyl Chloride Cling Films Used for Food Packaging in México. Food Packag. Shelf Life 2021, 29, 100684. [Google Scholar] [CrossRef]
- Del Nobile, M.A.; Buonocore, G.G.; Palmieri, L.; Aldi, A.; Acierno, D. Moisture Transport Properties of Polyamides Copolymers Intended for Food Packaging Applications. J. Food Eng. 2002, 53, 287–293. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Saha, U.; Kumari, P.; Ghosh, A.; Sinha, A.; Jena, S.; Kirti, A.; Gupta, A.; Choudhury, A.; Simnani, F.Z.; Nandi, A.; et al. Detrimental Consequences of Micropolymers Associated Plasticizers on Endocrinal Disruption. Mater. Today Bio 2024, 27, 101139. [Google Scholar] [CrossRef]
- Meng, W.; Chen, Q.; Zhang, Y.; Sun, H.; Li, J.; Sun, H.; Liu, C.; Fang, M.; Su, G. Tracking Chemical Feature Releases from Plastic Food Packaging to Humans. J. Hazard. Mater. 2024, 480, 135897. [Google Scholar] [CrossRef]
- Alijagic, A.; Suljević, D.; Fočak, M.; Sulejmanović, J.; Šehović, E.; Särndahl, E.; Engwall, M. The Triple Exposure Nexus of Microplastic Particles, Plastic-Associated Chemicals, and Environmental Pollutants from a Human Health Perspective. Environ. Int. 2024, 188, 108736. [Google Scholar] [CrossRef]
- Haldar, S.; Muralidaran, Y.; Míguez, D.; Mulla, S.I.; Mishra, P. Eco-Toxicity of Nano-Plastics and Its Implication on Human Metabolism: Current and Future Perspective. Sci. Total Environ. 2023, 861, 160571. [Google Scholar] [CrossRef]
- Rodríguez-Ramos, R.; Santana-Mayor, A.; Herrera-Herrera, A.V.; Socas-Rodríguez, B.; Rodríguez-Delgado, M.A. Recent Advances in the Analysis of Plastic Migrants in Food. TrAC Trends Anal. Chem. 2024, 178, 117847. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y.; Li, P.; Tu, D.; Zheng, X. Effects of the Adsorption Behavior of Polyamide Microplastics on Male Reproductive Health by Reduction of Testosterone Bioavailability. Ecotoxicol. Environ. Saf. 2024, 269, 115747. [Google Scholar] [CrossRef] [PubMed]
- Alijagic, A.; Kotlyar, O.; Larsson, M.; Salihovic, S.; Hedbrant, A.; Eriksson, U.; Karlsson, P.; Persson, A.; Scherbak, N.; Färnlund, K.; et al. Immunotoxic, Genotoxic, and Endocrine Disrupting Impacts of Polyamide Microplastic Particles and Chemicals. Environ. Int. 2024, 183, 108412. [Google Scholar] [CrossRef] [PubMed]
- Bahl, S.; Dolma, J.; Jyot Singh, J.; Sehgal, S. Biodegradation of Plastics: A State of the Art Review. Mater. Today Proc. 2021, 39, 31–34. [Google Scholar] [CrossRef]
- Wei, H.-N.; Liu, X.-Y.; Wang, C.-C.; Feng, R.; Zhang, B. Characteristics of Corn Starch/Polyvinyl Alcohol Composite Film with Improved Flexibility and UV Shielding Ability by Novel Approach Combining Chemical Cross-Linking and Physical Blending. Food Chem. 2024, 456, 140051. [Google Scholar] [CrossRef] [PubMed]
- Leroux, F.; Campagne, C.; Perwuelz, A.; Gengembre, L. Polypropylene Film Chemical and Physical Modifications by Dielectric Barrier Discharge Plasma Treatment at Atmospheric Pressure. J. Colloid Interface Sci. 2008, 328, 412–420. [Google Scholar] [CrossRef]
- Zhao, N.; Chai, Y.; Wang, T.; Wang, K.; Jiang, J.; Yang, H. Preparation and Physical/Chemical Modification of Galactomannan Film for Food Packaging. Int. J. Biol. Macromol. 2019, 137, 1060–1067. [Google Scholar] [CrossRef]
- Muhammed, A.P.; Thangarasu, S.; Oh, T.H. Green Interconnected Network Structure of Chitosan-Microcrystalline Cellulose-Lignin Biopolymer Film for Active Packaging Applications. Int. J. Biol. Macromol. 2023, 253, 127471. [Google Scholar] [CrossRef]
- Jovanović, J.; Ćirković, J.; Radojković, A.; Tasić, N.; Mutavdžić, D.; Branković, G.; Branković, Z. Enhanced Stability of Encapsulated Lemongrass Essential Oil in Chitosan-Gelatin and Pectin-Gelatin Biopolymer Matrices Containing ZnO Nanoparticles. Int. J. Biol. Macromol. 2024, 275, 133335. [Google Scholar] [CrossRef]
- Choi, I.; Choi, M.H.; Han, J. Exploring the Effect of Corn Starch/Pea Protein Blending on the Physicochemical and Structural Properties of Biopolymer Films and Their Aging Resistance. Int. J. Biol. Macromol. 2024, 269, 132092. [Google Scholar] [CrossRef]
- Verrillo, M.; Khan, M.R.; Volpe, S.; Spaccini, R.; Torrieri, E. Valorization of Organic Biomass through the Production of Active Biopolymer Film Based on Sodium Caseinate, Guar Gum, and Beeswax. Food Biosci. 2023, 53, 102757. [Google Scholar] [CrossRef]
- Mao, P.; Sun, Q.; Zhang, L.; Wang, Z.; He, L.; Kang, R.; Lu, G.; Xie, B.; Liu, Z.; Wang, J. Multilayer-Structured Nanocomposite Films with Enhanced Energy Storage Performance under Intermediate Electric Fields via Incorporation of BaTiO3/CaCu3Ti4O12@SiO2 Nanofillers. Chem. Eng. J. 2022, 431, 134320. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Huang, M.; Ma, M.; Zeng, J.; Le, T. Modification of Starch-Derived Graphene Quantum Dots as Multifunctional Nanofillers to Produce Polymer Starch/Polyvinyl Alcohol Composite Films for Active Packaging. LWT 2024, 198, 115953. [Google Scholar] [CrossRef]
- Dharini, V.; Periyar Selvam, S.; Jayaramudu, J.; Sadiku Emmanuel, R. Functional Properties of Clay Nanofillers Used in the Biopolymer-Based Composite Films for Active Food Packaging Applications—Review. Appl. Clay Sci. 2022, 226, 106555. [Google Scholar] [CrossRef]
- Sharma, R.; Jafari, S.M.; Sharma, S. Antimicrobial Bio-Nanocomposites and Their Potential Applications in Food Packaging. Food Control 2020, 112, 107086. [Google Scholar] [CrossRef]
- Fatyeyeva, K.; Chappey, C.; Marais, S. 13—Biopolymer/Clay Nanocomposites as the High Barrier Packaging Material: Recent Advances. In Food Packaging; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 425–463. ISBN 978-0-12-804302-8. [Google Scholar]
- Li, S.; Wei, N.; Wei, J.; Fang, C.; Feng, T.; Liu, F.; Liu, X.; Wu, B. Curcumin and Silver Nanoparticles Loaded Antibacterial Multifunctional Pectin/Gelatin Films for Food Packaging Applications. Int. J. Biol. Macromol. 2024, 266, 131248. [Google Scholar] [CrossRef]
- Rouhi, M.; Garavand, F.; Heydari, M.; Mohammadi, R.; Sarlak, Z.; Cacciotti, I.; Razavi, S.H.; Mousavi, M.; Parandi, E. Fabrication of a Ternary Biocomposite Film Based on Polyvinyl Alcohol, Cellulose Nanocrystals, and Silver Nanoparticles for Food Packaging. RSC Adv. 2024, 14, 18671–18684. [Google Scholar] [CrossRef]
- Majumder, S.; Huang, S.; Zhou, J.; Wang, Y.; George, S. Tannic Acid-Loaded Halloysite Clay Grafted with Silver Nanoparticles Enhanced the Mechanical and Antimicrobial Properties of Soy Protein Isolate Films for Food-Packaging Applications. Food Packag. Shelf Life 2023, 39, 101142. [Google Scholar] [CrossRef]
- Riahi, Z.; Khan, A.; Shin, G.H.; Rhim, J.-W.; Kim, J.T. Sustainable Chitosan/Polyvinyl Alcohol Composite Film Integrated with Sulfur-Modified Montmorillonite for Active Food Packaging Applications. Prog. Org. Coat. 2024, 192, 108474. [Google Scholar] [CrossRef]
- Rohini, B.; Padma Ishwarya, S.; Rajasekharan, R.; VijayaKumar, A.K. Ocimum basilicum Seed Mucilage Reinforced with Montmorillonite for Preparation of Bionanocomposite Film for Food Packaging Applications. Polym. Test. 2020, 87, 106465. [Google Scholar] [CrossRef]
- Das, D.; Panesar, P.S.; Saini, C.S. Effect of Montmorillonite (MMT) on the Properties of Soybean Meal Protein Isolate-Based Nanocomposite Film Loaded with Debittered Kinnow Peel Powder. Food Res. Int. 2024, 185, 114292. [Google Scholar] [CrossRef]
- Zhai, X.; Zhou, S.; Zhang, R.; Wang, W.; Hou, H. Antimicrobial Starch/Poly(Butylene Adipate-Co-Terephthalate) Nanocomposite Films Loaded with a Combination of Silver and Zinc Oxide Nanoparticles for Food Packaging. Int. J. Biol. Macromol. 2022, 206, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.H.; El-Naggar, M.E.; Abdelaziz, A.M.; Abdelbary, S.; Hassan, Y.R.; Hasanin, M.S. Bio-Based Antimicrobial Food Packaging Films Based on Hydroxypropyl Starch/Polyvinyl Alcohol Loaded with the Biosynthesized Zinc Oxide Nanoparticles. Int. J. Biol. Macromol. 2023, 249, 126011. [Google Scholar] [CrossRef] [PubMed]
- Bumbudsanpharoke, N.; Nurhadi, R.P.; Chongcharoenyanon, B.; Kwon, S.; Harnkarnsujarit, N.; Ko, S. Effect of Migration on the Functionality of Zinc Oxide Nanoparticle in Polybutylene Adipate Terephthalate/Thermoplastic Starch Films: A Food Simulant Study. Int. J. Biol. Macromol. 2024, 263, 130232. [Google Scholar] [CrossRef] [PubMed]
- Promhuad, K.; Phothisarattana, D.; Laorenza, Y.; Bumbudsanpharoke, N.; Harnkarnsujarit, N. Zinc Oxide Enhanced the Antibacterial Efficacy of Biodegradable PBAT/PBS Nanocomposite Films: Morphology and Food Packaging Properties. Food Biosci. 2023, 55, 103077. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Y.; Li, S.; Liu, B.; Yang, L.; Geng, F.; Xie, S.; Qi, R.; Zhang, Y.; Liu, D.; et al. Enhanced Properties of Gelatin Films Incorporated with TiO2-Loaded Reduced Graphene Oxide Aerogel Microspheres for Active Food Packaging Applications. Int. J. Biol. Macromol. 2024, 261, 129772. [Google Scholar] [CrossRef]
- Zhang, W.; Rhim, J.-W. Titanium Dioxide (TiO2) for the Manufacture of Multifunctional Active Food Packaging Films. Food Packag. Shelf Life 2022, 31, 100806. [Google Scholar] [CrossRef]
- Jayakumar, A.; Radoor, S.; Kim, J.T.; Rhim, J.W.; Parameswaranpillai, J.; Nandi, D.; Srisuk, R.; Siengchin, S. Titanium Dioxide Nanoparticles and Elderberry Extract Incorporated Starch Based Polyvinyl Alcohol Films as Active and Intelligent Food Packaging Wraps. Food Packag. Shelf Life 2022, 34, 100967. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Li, W.; Xie, X.; Yu, W.; Xie, L.; Wei, Z.; Guo, R.; Yan, H.; Zheng, Q. Antibacterial Poly(Butylene Succinate-Co-Terephthalate)/Titanium Dioxide/Copper Oxide Nanocomposites Films for Food Packaging Applications. Food Packag. Shelf Life 2022, 34, 101004. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Sayed, S.M. Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. Carbohydr. Polym. 2018, 193, 19–27. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Chen, H.; Tang, C. Metal Polyphenol Network-Modified Chitin Nanocrystals Reinforce Versatile Biomass Films: Active Packaging, Intelligent Visualization and Controlled Photothermal Sterilization. Chem. Eng. J. 2024, 500, 157114. [Google Scholar] [CrossRef]
- Abdollahi, M.; Alboofetileh, M.; Rezaei, M.; Behrooz, R. Comparing Physico-Mechanical and Thermal Properties of Alginate Nanocomposite Films Reinforced with Organic and/or Inorganic Nanofillers. Food Hydrocoll. 2013, 32, 416–424. [Google Scholar] [CrossRef]
- Gardner, K.H.; Blackwell, J. The Structure of Native Cellulose. Biopolym. Orig. Res. Biomol. 1974, 13, 1975–2001. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.1974.360131005 (accessed on 5 July 2024). [CrossRef]
- El Allaoui, B.; Benzeid, H.; Zari, N.; Bouhfid, R. Functional Cellulose-Based Beads for Drug Delivery: Preparation, Functionalization, and Applications. J. Drug Deliv. Sci. Technol. 2023, 88, 104899. [Google Scholar] [CrossRef]
- An, H.; Lu, Z.; Wang, Z.; Abbas, M.Q.; Du, Z. Safety Assessment and Quality Control of Regenerated Cellulose Food Packaging in Different Processes. Food Control 2024, 163, 110543. [Google Scholar] [CrossRef]
- Prabsangob, N. Plant-Based Cellulose Nanomaterials for Food Products with Lowered Energy Uptake and Improved Nutritional Value—A Review. NFS J. 2023, 31, 39–49. [Google Scholar] [CrossRef]
- Turbak, A.F.; Snyder, F.W.; Sandberg, K.R. Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential. J. Appl. Polym. Sci. Appl. Polym. Symp. 1983, 37, 815–827. [Google Scholar]
- Zabihollahi, N.; Alizadeh, A.; Almasi, H.; Hanifian, S.; Hamishekar, H. Development and Characterization of Carboxymethyl Cellulose Based Probiotic Nanocomposite Film Containing Cellulose Nanofiber and Inulin for Chicken Fillet Shelf Life Extension. Int. J. Biol. Macromol. 2020, 160, 409–417. [Google Scholar] [CrossRef]
- Deng, Z.; Jung, J.; Zhao, Y. Development, Characterization, and Validation of Chitosan Adsorbed Cellulose Nanofiber (CNF) Films as Water Resistant and Antibacterial Food Contact Packaging. LWT Food Sci. Technol. 2017, 83, 132–140. [Google Scholar] [CrossRef]
- Wu, J.; Gao, Y.; Shen, H.; Yan, S.; Zhao, R.; Wang, F.; Shen, X.; Li, Z.; Yao, X.; Wang, Y. Application Potential of Wheat Bran Cellulose Nanofibers as Pickering Emulsion Stabilizers and Stabilization Mechanisms. Food Chem. X 2024, 24, 101922. [Google Scholar] [CrossRef]
- Wardana, A.A.; Wigati, L.P.; Tanaka, F.; Tanaka, F. Incorporation of Co-Stabilizer Cellulose Nanofibers/Chitosan Nanoparticles into Cajuput Oil-Emulsified Chitosan Coating Film for Fruit Application. Food Control 2023, 148, 109633. [Google Scholar] [CrossRef]
- Riahi, Z.; Khan, A.; Rhim, J.-W.; Shin, G.H.; Kim, J.T. Sustainable Packaging Film Based on Cellulose Nanofibres/Pullulan Impregnated with Zinc-Doped Carbon Dots Derived from Avocado Peel to Extend the Shelf Life of Chicken and Tofu. Int. J. Biol. Macromol. 2024, 258, 129302. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.; Akyuz, L.; Koc, B.; Kaya, M.; Ilk, S.; Cansaran-Duman, D.; Martinez, A.S.; Cakmak, Y.S.; Labidi, J.; Boufi, S. Novel, Multifunctional Mucilage Composite Films Incorporated with Cellulose Nanofibers. Food Hydrocoll. 2019, 89, 20–28. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Kumar, V.; Khakalo, A.; Lahtinen, P.; Solin, K.; Pere, J.; Toivakka, M. Rheological Behavior of High Consistency Enzymatically Fibrillated Cellulose Suspensions. Cellulose 2021, 28, 2087–2104. Available online: https://link.springer.com/article/10.1007/s10570-021-03688-y (accessed on 2 September 2024). [CrossRef]
- Dufresne, A. Nanocellulose: A New Ageless Bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, S.; Li, Y.; Wang, Z.; Long, Y.; Yu, T.; Shen, Y. High Performances of Plant Fiber Reinforced Composites—A New Insight from Hierarchical Microstructures. Compos. Sci. Technol. 2020, 194, 108151. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Rosa, M.F.; Mattoso, L.H.C. Nanocellulose in Bio-Based Food Packaging Applications. Ind. Crops Prod. 2017, 97, 664–671. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of Mixed Polysaccharide-Protein Systems in Fabricating Multi-Structures of Binary Food Gels—A Review. Trends Food Sci. Technol. 2021, 109, 197–210. [Google Scholar] [CrossRef]
- Mamun, M.; Roy, A.; Das, S.; Rakwal, R.; Ganesh Kumar, A.; Singh, P.; Awasthi, A.; Sarkar, A. Food Waste-Based Bio-Fertilizers Production by Bio-Based Fermenters and Their Potential Impact on the Environment. Chemosphere 2024, 353, 141539. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P.; Martellotta, F. The Agro-Waste Production in Selected EUSAIR Regions and Its Potential Use for Building Applications: A Review. Sustainability 2022, 14, 670. [Google Scholar] [CrossRef]
- Pirich, C.L.; Picheth, G.F.; Fontes, A.M.; Delgado-Aguilar, M.; Ramos, L.P. Disruptive Enzyme-Based Strategies to Isolate Nanocelluloses: A Review. Cellulose 2020, 27, 5457–5475. [Google Scholar] [CrossRef]
- Mo, Y.; Huang, X.; Yue, M.; Hu, L.; Hu, C. Preparation of Nanocellulose and Application of Nanocellulose Polyurethane Composites. RSC Adv. 2024, 14, 18247–18257. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; McClements, D.J.; He, M.; Zheng, L.; Tian, T.; Teng, F.; Li, Y. Preparation and Characterization of Okara Nanocellulose Fabricated Using Sonication or High-Pressure Homogenization Treatments. Carbohydr. Polym. 2021, 255, 117364. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Z.; Cheng, X.; Zhou, H.; He, L.; Guan, Q.; Shang, D.; Guo, M. Alkali-Oxygen Cooking Coupled with Ultrasonic Etching for Directly Defibrillation of Bagasse Parenchyma Cells into Cellulose Nanofibrils. Int. J. Biol. Macromol. 2023, 237, 124121. [Google Scholar] [CrossRef]
- Pradhan, D.; Jaiswal, S.; Tiwari, B.K.; Jaiswal, A.K. Nanocellulose Separation from Barley Straw via Ultrasound-Assisted Choline Chloride—Formic Acid Deep Eutectic Solvent Pretreatment and High-Intensity Ultrasonication. Ultrason. Sonochem. 2024, 110, 107048. [Google Scholar] [CrossRef]
- Gregory, D.; Tripathi, L.; Feicker, A.T.R.F.; Asare, E.; Orlando, I.; Raghavendran, V.; Roy, I. Bacterial Cellulose: A Smart Biomaterial with Diverse Applications. Mater. Sci. Eng. R Rep. 2021, 145, 100623. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and Sustainable Pretreatment Methods for Cellulose Extraction from Lignocellulosic Biomass and Its Applications: A Review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation’s Pivotal Role in Shaping the Future of Plant-Based Foods: An Integrative Review of Fermentation Processes and Their Impact on Sensory and Health Benefits. Appl. Food Res. 2024, 4, 100468. [Google Scholar] [CrossRef]
- Zaki, M.; HPS, A.K.; Sabaruddin, F.A.; Bairwan, R.D.; Oyekanmi, A.A.; Alfatah, T.; Danish, M.; Mistar, E.M.; Abdullah, C.K. Microbial Treatment for Nanocellulose Extraction from Marine Algae and Its Applications as Sustainable Functional Material. Bioresour. Technol. Rep. 2021, 16, 100811. Available online: https://www.sciencedirect.com/science/article/abs/pii/S2589014X21001894 (accessed on 2 September 2024). [CrossRef]
- da Cruz, T.T.; Las-Casas, B.; Dias, I.K.R.; Arantes, V. Nanocelluloses as Sustainable Emerging Technologies: State of the Art and Future Challenges Based on Life Cycle Assessment. Sustain. Mater. Technol. 2024, 41, e01010. [Google Scholar] [CrossRef]
- Lin, H.; Kehinde, O.; Lin, C.; Fei, M.; Li, R.; Zhang, X.; Yang, W.; Li, J. Mechanically Strong Micro-Nano Fibrillated Cellulose Paper with Improved Barrier and Water-Resistant Properties for Replacing Plastic. Int. J. Biol. Macromol. 2024, 263, 130102. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Wang, Q.; Huang, J.; Luo, X.; Huang, Y.; Wu, Y.; Chen, P.; Zheng, Y. Curcumin-Loaded Bamboo Shoot Cellulose Nanofibers: Characterization and In Vitro Studies. Foods 2023, 12, 3512. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Li, Z.; Zhong, T. Fabrication of Clickable Bamboo-Sourced Cellulose Nanofibrils for Diverse Surface Modifications: Hydrophobicity and Fluorescence Functionalities. Carbohydr. Polym. 2025, 348, 122786. [Google Scholar] [CrossRef]
- Dungani, R.; Bakshi, M.I.; Hanifa, T.Z.; Dewi, M.; Syamani, F.A.; Mahardika, M.; Fatriasari, W. Isolation and Characterization of Cellulose Nanofiber (CNF) from Kenaf (Hibiscus Cannabinus) Bast through the Chemo-Mechanical Process. J. Renew. Mater. 2024, 12, 1057–1069. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, X.; Han, F.; Wu, Y.; Wang, L.; Dai, H.; Song, P.; Tang, L.; Gao, J. Superhydrophobic, Biocompatible and Durable Nanofiber Composite with an Asymmetric Structure for Anisotropic Strain Sensing and Body Motion Detection. Chem. Eng. J. 2022, 450, 137899. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Golparvar, M.; Fasihi, M. A New Evaluation Criterion for Optimizing the Mechanical Properties of Toughened Polypropylene/Silica Nanocomposites. Chin. J. Polym. Sci. 2020, 38, 877–887. [Google Scholar] [CrossRef]
- Shaghaleh, H.; Xu, X.; Wang, S. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef]
- Wang, M.; Miao, X.; Li, H.; Chen, C. Effect of Length of Cellulose Nanofibers on Mechanical Reinforcement of Polyvinyl Alcohol. Polymers 2022, 14, 128. [Google Scholar] [CrossRef]
- Wang, L.; Okada, K.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Yano, H. Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding. Polymers 2019, 11, 249. [Google Scholar] [CrossRef]
- Ge, J.; Lu, W.; Zhang, H.; Gong, Y.; Wang, J.; Xie, Y.; Chang, Q.; Deng, X. Exploring Sustainable Food Packaging: Nanocellulose Composite Films with Enhanced Mechanical Strength, Antibacterial Performance, and Biodegradability. Int. J. Biol. Macromol. 2024, 259, 129200. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Chen, L.; Liu, J.; Cao, J.; Jiang, W. Recent Advances in Guar Gum-Based Films or Coatings: Diverse Property Enhancement Strategies and Applications in Foods. Food Hydrocoll. 2023, 136, 108278. [Google Scholar] [CrossRef]
- Zhao, K.; Tian, X.; Zhang, K.; Huang, N.; Wang, Y.; Zhang, Y.; Wang, W. Using Celluloses in Different Geometries to Reinforce Collagen-Based Composites: Effect of Cellulose Concentration. Int. J. Biol. Macromol. 2023, 226, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Liao, M.; Xu, K.; Qin, Z. High-Performance Soy Protein-Based Films from Cellulose Nanofibers and Graphene Oxide Constructed Synergistically via Hydrogen and Chemical Bonding. RSC Adv. 2021, 11, 22812–22819. Available online: https://pubs.rsc.org/en/content/articlelanding/2021/ra/d1ra02484a (accessed on 15 October 2024). [CrossRef] [PubMed]
- Berglund, L.; Squinca, P.; Baş, Y.; Zattarin, E.; Aili, D.; Rakar, J.; Junker, J.; Starkenberg, A.; Diamanti, M.; Sivlér, P.; et al. Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications. Biomacromolecules 2023, 24, 2264–2277. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Liu, Y.; Chen, J.; Wei, Y.; Chen, G. Pickering Emulsions Stabilized by Cellulose Nanofibers with Tunable Surface Properties for Thermal Energy Storage. Int. J. Biol. Macromol. 2024, 280, 136013. [Google Scholar] [CrossRef]
- Damla, D.; Zhao, Y. Development and Characterization of Cinnamon Essential Oil Incorporated Active, Printable and Heat Sealable Cellulose Nanofiber Reinforced Hydroxypropyl Methylcellulose Films. Food Packag. Shelf Life 2023, 39, 101153. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The Solution-Diffusion Model: A Review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Cainglet, H.E.; Black, J.R.; Udugoda, H.; Nasiri, N.; Diaz-Arenas, G.L.; Garnier, G.; Batchelor, W.; Tanner, J. Can Pure Cellulose Nanofibril Films Replace Polyolefins as Water Vapor Barriers in Packaging? J. Colloid Interface Sci. 2025, 678, 547–555. [Google Scholar] [CrossRef]
- Trifol, J.; Moriana, R. Barrier Packaging Solutions from Residual Biomass: Synergetic Properties of CNF and LCNF in Films. Ind. Crops Prod. 2022, 177, 114493. [Google Scholar] [CrossRef]
- Ferrer, A.; Pal, L.; Hubbe, M. Nanocellulose in Packaging: Advances in Barrier Layer Technologies. Ind. Crops Prod. 2017, 95, 574–582. [Google Scholar] [CrossRef]
- Sethi, J.; Visanko, M.; Österberg, M.; Sirviö, J.A. A Fast Method to Prepare Mechanically Strong and Water Resistant Lignocellulosic Nanopapers. Carbohydr. Polym. 2019, 203, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-K.; Choi, B.; Jin, J. Transparent, Water-Stable, Cellulose Nanofiber-Based Packaging Film with a Low Oxygen Permeability. Carbohydr. Polym. 2020, 249, 116823. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, D.; Karaś, M.; Kordowska-Wiater, M.; Skrzypek, T.; Kazimierczak, W. Inherently Acidic Films Based on Chitosan Lactate-Doped Starches and Pullulan as Carries of Nisin: A Comparative Study of Controlled-Release and Antimicrobial Properties. Food Chem. 2023, 404, 134760. [Google Scholar] [CrossRef] [PubMed]
- Tsormpatsidis, E.; Henbest, R.G.C.; Battey, N.H.; Hadley, P. The Influence of Ultraviolet Radiation on Growth, Photosynthesis and Phenolic Levels of Green and Red Lettuce: Potential for Exploiting Effects of Ultraviolet Radiation in a Production System. Ann. Appl. Biol. 2010, 156, 357–366. [Google Scholar] [CrossRef]
- Abitbol, T.; Ahniyaz, A.; Álvarez-Asencio, R.; Fall, A.; Swerin, A. Nanocellulose-Based Hybrid Materials for UV Blocking and Mechanically Robust Barriers. ACS Appl. Bio Mater. 2020, 3, 2245–2254. [Google Scholar] [CrossRef]
- Li, P.; Sirviö, J.A.; Haapala, A.; Khakalo, A.; Liimatainen, H. Anti-Oxidative and UV-Absorbing Biohybrid Film of Cellulose Nanofibrils and Tannin Extract. Food Hydrocoll. 2019, 92, 208–217. [Google Scholar] [CrossRef]
- Kim, J.-C.; Kim, J.; Cho, Y.-M.; Cho, S.-M.; Hwang, S.-W.; Kwak, H.W.; Yeo, H.; Choi, I.-G. Fabrication of Transparent Cellulose Nanofibril Composite Film with Smooth Surface and Ultraviolet Blocking Ability Using Hydrophilic Lignin. Int. J. Biol. Macromol. 2023, 245, 125545. [Google Scholar] [CrossRef]
- Papadaki, A.; Manikas, A.C.; Papazoglou, E.; Kachrimanidou, V.; Lappa, I.; Galiotis, C.; Mandala, I.; Kopsahelis, N. Whey Protein Films Reinforced with Bacterial Cellulose Nanowhiskers: Improving Edible Film Properties via a Circular Economy Approach. Food Chem. 2022, 385, 132604. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Zhang, B.; He, L.; Li, X.; Li, Y.; Zhang, Z.; Zhou, Y.; Jin, W.; He, X.; et al. Natural Lignocellulosic Biomass Structure Inspired CNF/Lignin/PBAT Composite Film with Thermoplastic, Antibacterial and UV-Blocking Abilities. Int. J. Biol. Macromol. 2024, 271, 132498. [Google Scholar] [CrossRef]
- Wang, K.; Liu, K.; Dai, L.; Si, C. Bioinspired Multiscale Cellulose/Lignin-Silver Composite Films with Robust Mechanical, Antioxidant and Antibacterial Properties for Ultraviolet Shielding. Int. J. Biol. Macromol. 2024, 258, 129046. [Google Scholar] [CrossRef]
- Bi, F.; Yong, H.; Liu, J.; Zhang, X.; Shu, Y.; Liu, J. Development and Characterization of Chitosan and D-α-Tocopheryl Polyethylene Glycol 1000 Succinate Composite Films Containing Different Flavones. Food Packag. Shelf Life 2020, 25, 100531. [Google Scholar] [CrossRef]
- Mao, L.; Wang, C.; Yao, J.; Lin, Y.; Liao, X.; Lu, J. Design and Fabrication of Anthocyanin Functionalized Layered Clay/Poly(Vinyl Alcohol) Coatings on Poly(Lactic Acid) Film for Active Food Packaging. Food Packag. Shelf Life 2023, 35, 101007. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Guo, M.; Jin, T.Z.; Arabi, S.A.; He, Q.; Ismail, B.B.; Hu, Y.; Liu, D. Antimicrobial and UV Blocking Properties of Composite Chitosan Films with Curcumin Grafted Cellulose Nanofiber. Food Hydrocoll. 2021, 112, 106337. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, H.; Zhang, H.; Wang, X.; Fu, Y.; Wang, Q.; Liu, H.; Yong, Y.; Guo, J.; Liu, J. Biosafety Consideration of Nanocellulose in Biomedical Applications: A Review. Int. J. Biol. Macromol. 2024, 265, 130900. [Google Scholar] [CrossRef]
- Alexandrescu, L.; Syverud, K.; Gatti, A.; Chinga-Carrasco, G. Cytotoxicity Tests of Cellulose Nanofibril-Based Structures. Cellulose 2013, 20, 1765–1775. [Google Scholar] [CrossRef]
- Biranje, S.S.; Sun, J.; Cheng, L.; Cheng, Y.; Shi, Y.; Yu, S.; Jiao, H.; Zhang, M.; Lu, X.; Han, W.; et al. Development of Cellulose Nanofibril/Casein-Based 3D Composite Hemostasis Scaffold for Potential Wound-Healing Application. ACS Appl. Mater. Interfaces 2022, 14, 3792–3808. [Google Scholar] [CrossRef]
- Lunardi, V.B.; Soetaredjo, F.E.; Putro, J.N.; Santos, S.P.; Yuliana, M.; Sunarso, J.; Ju, Y.-H.; Ismadji, S. Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers. Polymers 2021, 13, 2052. [Google Scholar] [CrossRef]
- Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties. Int. J. Mol. Sci. 2019, 20, 5092. [Google Scholar] [CrossRef]
- Ghilan, A.; Nicu, R.; Ciolacu, D.E.; Ciolacu, F. Insight into the Latest Medical Applications of Nanocellulose. Materials 2023, 16, 4447. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Li, D.; Li, X.; Li, P.; Sun, L.; Guo, Y. Improved Physical Properties of Konjac Glucomannan Gels by Co-Incubating Composite Konjac Glucomannan/Xanthan Systems under Alkaline Conditions. Food Hydrocoll. 2020, 106, 105870. [Google Scholar] [CrossRef]
- Qanati, M.V.; Rasooli, A. Improving the Braking Performance of the Novalac-Based CNFs/Carbon Composite by the Wet Chemical Oxidation of CNFs. J. Eur. Ceram. Soc. 2023, 43, 5986–5999. [Google Scholar] [CrossRef]
- Zheng, D.; Sun, X.; Sun, H.; Zhu, Y.; Zhu, J.; Zhu, P.; Yu, Z.; Ye, Y.; Zhang, Y.; Jiang, F. Effect of Hornification on the Isolation of Anionic Cellulose Nanofibrils from Kraft Pulp via Maleic Anhydride Esterification. Carbohydr. Polym. 2024, 333, 121961. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, W.; Dong, Z.; Deng, Y. Underwater Superoleophobicity Cellulose Nanofibril Aerogel through Regioselective Sulfonation for Oil/Water Separation. Chem. Eng. J. 2017, 330, 774–782. [Google Scholar] [CrossRef]
- Tasker, S.; Badyal, J.P.S.; Backson, S.C.E.; Richards, R.W. Hydroxyl Accessibility in Celluloses. Polymer 1994, 35, 4717–4721. [Google Scholar] [CrossRef]
- Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent Advances in Surface-Modified Cellulose Nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar] [CrossRef]
- Sang, X.; Qin, C.; Tong, Z.; Kong, S.; Jia, Z.; Wan, G.; Liu, X. Mechanism and Kinetics Studies of Carboxyl Group Formation on the Surface of Cellulose Fiber in a TEMPO-Mediated System. Cellulose 2017, 24, 2415–2425. [Google Scholar] [CrossRef]
- Bobbitt, J.M. Periodate Oxidation of Carbohydrates. In Advances in Carbohydrate Chemistry; Wolfrom, M.L., Tipson, R.S., Eds.; Academic Press: Cambridge, MA, USA, 1956; Volume 11, pp. 1–41. [Google Scholar]
- Sharma, P.R.; Chattopadhyay, A.; Zhan, C.; Sharma, S.K.; Geng, L.; Hsiao, B.S. Lead Removal from Water Using Carboxycellulose Nanofibers Prepared by Nitro-Oxidation Method. Cellulose 2018, 25, 1961–1973. Available online: https://link.springer.com/article/10.1007/s10570-018-1659-9 (accessed on 31 July 2024). [CrossRef]
- Shi, X.; Wang, Z.; Liu, S.; Xia, Q.; Liu, Y.; Chen, W.; Yu, H.; Zhang, K. Scalable Production of Carboxylated Cellulose Nanofibres Using a Green and Recyclable Solvent. Nat. Sustain. 2024, 7, 315–325. Available online: https://www.nature.com/articles/s41893-024-01267-0 (accessed on 1 August 2024). [CrossRef]
- Heinze, T. Cellulose: Structure and Properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Advances in Polymer Science; Springer: Cham, Switzerland, 2015; Available online: https://link.springer.com/chapter/10.1007/12_2015_319 (accessed on 1 August 2024).
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Habibi, Y.; Adhikari, B. Surface Modifications of Nanocellulose: From Synthesis to High-Performance Nanocomposites. Prog. Polym. Sci. 2021, 119, 101418. [Google Scholar] [CrossRef]
- Dong, G.; Yuan, Z.; Guo, X. Functional Properties of Nano-SiO2/Pinewood-Derived Cellulose Acetate Composite Film for Packaging Application. Ind. Crops Prod. 2023, 204, 117253. [Google Scholar] [CrossRef]
- Madivoli, E.; Kareru, P.G.; Gachanja, A.; Mugo, S.; Murigi, M.; Kairigo, P.; Kipyegon, C.; Mutembei, J.; Njonge, F. Adsorption of Selected Heavy Metals on Modified Nano Cellulose. Int. Res. J. Pure Appl. Chem. 2016, 12, 1–9. Available online: https://www.researchgate.net/publication/307605488_Adsorption_of_Selected_Heavy_Metals_on_Modified_Nano_Cellulose (accessed on 1 August 2024). [CrossRef]
- Ma, J.; Wang, X.; Fu, Q.; Si, Y.; Yu, J.; Ding, B. Highly Carbonylated Cellulose Nanofibrous Membranes Utilizing Maleic Anhydride Grafting for Efficient Lysozyme Adsorption. ACS Appl. Mater. Interfaces 2015, 7, 15658–15666. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S. Pharmaceutical Coating and Its Different Approaches, a Review. Polymers 2022, 14, 3318. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, Y.; Tan, Z.; Zhou, T. Cellulose Extraction from Rice Straw Waste for Biodegradable Ethyl Cellulose Films Preparation Using Green Chemical Technology. J. Clean. Prod. 2024, 439, 140839. [Google Scholar] [CrossRef]
- Johansson, L.-S.; Tammelin, T.; Campbell, J.M.; Setälä, H.; Österberg, M. Experimental Evidence on Medium Driven Cellulose Surface Adaptation Demonstrated Using Nanofibrillated Cellulose. Soft Matter 2011, 7, 10917–10924. Available online: https://pubs.rsc.org/en/content/articlelanding/2011/sm/c1sm06073b/unauth (accessed on 19 October 2024). [CrossRef]
- Peresin, M.S.; Kammiovirta, K.; Heikkinen, H.; Johansson, L.-S.; Vartiainen, J.; Setälä, H.; Österberg, M.; Tammelin, T. Understanding the Mechanisms of Oxygen Diffusion through Surface Functionalized Nanocellulose Films. Carbohydr. Polym. 2017, 174, 309–317. [Google Scholar] [CrossRef]
- Saini, S.; Yücel Falco, Ç.; Belgacem, M.N.; Bras, J. Surface Cationized Cellulose Nanofibrils for the Production of Contact Active Antimicrobial Surfaces. Carbohydr. Polym. 2016, 135, 239–247. [Google Scholar] [CrossRef]
- Fernandes, S.C.M.; Sadocco, P.; Alonso-Vaona, A.; Palomares, T.; Eceiza, A.; Silvestre, A.J.D.; Mondragon, I.; Freire, C.S.R. Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups. ACS Appl. Mater. Interfaces 2013, 5, 3290–3297. Available online: https://pubs.acs.org/doi/abs/10.1021/am400338n (accessed on 19 October 2024). [CrossRef]
- Kalia, S.; Boufi, S.; Celli, A.; Kango, S. Non Leaching Biomimetic Antimicrobial Surfaces via Surface Functionalisation of Cellulose Nanofibers with Aminosilane. Cellulose 2016, 23, 795–810. Available online: https://link.springer.com/article/10.1007/s10570-015-0854-1 (accessed on 19 October 2024).
- Saini, S.; Belgacem, M.N.; Bras, J. Effect of Variable Aminoalkyl Chains on Chemical Grafting of Cellulose Nanofiber and Their Antimicrobial Activity. Mater. Sci. Eng. C 2017, 75, 760–768. [Google Scholar] [CrossRef]
- Misra, N.N.; Jo, C. Applications of Cold Plasma Technology for Microbiological Safety in Meat Industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Oberlintner, A.; Shvalya, V.; Vasudevan, A.; Vengust, D.; Likozar, B.; Cvelbar, U.; Novak, U. Hydrophilic to Hydrophobic: Ultrafast Conversion of Cellulose Nanofibrils by Cold Plasma Fluorination. Appl. Surf. Sci. 2022, 581, 152276. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.T.; Hossain, M.S.; Kabir, M.S.; Ahmed, S.; Khan, R.A.; Chowdhury, A.S. Improvement of Mechanical Properties of Jute-Nano Cellulose-Reinforced Unsaturated Polyester Resin-Based Composite: Effects of Gamma Radiation. Hybrid Adv. 2023, 3, 100068. [Google Scholar] [CrossRef]
- Lavrič, G.; Oberlintner, A.; Filipova, I.; Novak, U.; Likozar, B.; Vrabič-Brodnjak, U. Functional Nanocellulose, Alginate and Chitosan Nanocomposites Designed as Active Film Packaging Materials. Polymers 2021, 13, 2523. [Google Scholar] [CrossRef]
- Zhang, H.; Su, S.; Liu, S.; Qiao, C.; Wang, E.; Chen, H.; Zhang, C.; Yang, X.; Li, T. Effects of Chitosan and Cellulose Derivatives on Sodium Carboxymethyl Cellulose-Based Films: A Study of Rheological Properties of Film-Forming Solutions. Molecules 2023, 28, 5211. [Google Scholar] [CrossRef]
- Zhao, Y.; Troedsson, C.; Bouquet, J.-M.; Thompson, E.M.; Zheng, B.; Wang, M. Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties. Polymers 2021, 13, 4346. [Google Scholar] [CrossRef]
- Qin, Z.; Mo, L.; Liao, M.; He, H.; Sun, J. Preparation and Characterization of Soy Protein Isolate-Based Nanocomposite Films with Cellulose Nanofibers and Nano-Silica via Silane Grafting. Polymers 2019, 11, 1835. [Google Scholar] [CrossRef]
- Xu, C.; Shi, L.; Guo, L.; Wang, X.; Wang, X.; Lian, H. Fabrication and Characteristics of Graphene Oxide/Nanocellulose Fiber/Poly(Vinyl Alcohol) Film. J. Appl. Polym. Sci. 2017, 134, 45345. [Google Scholar] [CrossRef]
- Roy, S.; Biswas, D.; Rhim, J.-W. Gelatin/Cellulose Nanofiber-Based Functional Nanocomposite Film Incorporated with Zinc Oxide Nanoparticles. J. Compos. Sci. 2022, 6, 223. [Google Scholar] [CrossRef]
- Guo, L.; Li, M.; Xu, Q.; Jin, L.; Wang, Y. Bio-Based Films with High Antioxidant and Improved Water-Resistant Properties from Cellulose Nanofibres and Lignin Nanoparticles. Int. J. Biol. Macromol. 2023, 227, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Kim, H.C.; Panicker, P.S.; Rhim, J.-W.; Kim, J. Cellulose Nanofiber-Based Nanocomposite Films Reinforced with Zinc Oxide Nanorods and Grapefruit Seed Extract. Nanomaterials 2021, 11, 877. [Google Scholar] [CrossRef] [PubMed]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Active Chitosan–Polyvinyl Alcohol Films with Natural Extracts. Food Hydrocoll. 2012, 29, 290–297. [Google Scholar] [CrossRef]
- Soofi, M.; Alizadeh, A.; Hamishehkar, H.; Almas, H.; Roufegarinejad, L. Preparation of Nanobiocomposite Film Based on Lemon Waste Containing Cellulose Nanofiber and Savory Essential Oil: A New Biodegradable Active Packaging System. Int. J. Biol. Macromol. 2021, 169, 352–361. [Google Scholar] [CrossRef]
- Chen, S.; Wu, M.; Lu, P.; Gao, L.; Yan, S.; Wang, S. Development of pH Indicator and Antimicrobial Cellulose Nanofibre Packaging Film Based on Purple Sweet Potato Anthocyanin and Oregano Essential Oil. Int. J. Biol. Macromol. 2020, 149, 271–280. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, Y.; Fan, Y.; Li, L. Cellulose Nanofibril Reinforced Functional Chitosan Biocomposite Films. Polym. Test. 2023, 120, 107964. [Google Scholar] [CrossRef]
- Jin, S.; Xiong, L.; Xing, J.; Li, J.; Aladejana, J.T.; Mei, C.; Li, K.; Xiao, H. Functionalized Cellulose Nanofibrils Based Supramolecular System-Assisted Molding Enabled Strong, Antibacterial Chitosan Bioplastics. Carbohydr. Polym. 2023, 315, 120979. [Google Scholar] [CrossRef]
- Thongmeepech, A.; Koda, T.; Nishioka, A. Effect of Shear and Heat Milling of Starch on the Properties of Tapioca Starch/Cellulose Nanofiber Composites. Carbohydr. Polym. 2023, 306, 120618. [Google Scholar] [CrossRef]
- Nasir, M.; Hashim, R.; Sulaiman, O.; Asim, M. 11—Nanocellulose: Preparation Methods and Applications. In Cellulose-Reinforced Nanofibre Composites; Jawaid, M., Boufi, S., Abdul Khalil, H.P.S., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2017; pp. 261–276. ISBN 978-0-08-100957-4. [Google Scholar]
- Soni, R.; Hsu, Y.-I.; Asoh, T.-A.; Uyama, H. Synergistic Effect of Hemiacetal Crosslinking and Crystallinity on Wet Strength of Cellulose Nanofiber-Reinforced Starch Films. Food Hydrocoll. 2021, 120, 106956. [Google Scholar] [CrossRef]
- Tian, J.; Kong, Y.; Qian, S.; Zhang, Z.; Xia, Y.; Li, Z. Mechanically Robust Multifunctional Starch Films Reinforced by Surface-Tailored Nanofibrillated Cellulose. Compos. Part B Eng. 2024, 275, 111339. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Chen, G. A Comparative Study on the Starch-Based Biocomposite Films Reinforced by Nanocellulose Prepared from Different Non-Wood Fibers. Cellulose 2019, 26, 2425–2435. [Google Scholar] [CrossRef]
- Lomelí-Ramírez, M.G.; Reyes-Alfaro, B.; Martínez-Salcedo, S.L.; González-Pérez, M.M.; Gallardo-Sánchez, M.A.; Landázuri-Gómez, G.; Vargas-Radillo, J.J.; Diaz-Vidal, T.; Torres-Rendón, J.G.; Macias-Balleza, E.R.; et al. Thermoplastic Starch Biocomposite Films Reinforced with Nanocellulose from Agave tequilana Weber var. Azul Bagasse. Polymers 2023, 15, 3793. [Google Scholar] [CrossRef] [PubMed]
- de Souza Coelho, C.C.; Silva, R.B.S.; Carvalho, C.W.P.; Rossi, A.L.; Teixeira, J.A.; Freitas-Silva, O.; Cabral, L.M.C. Cellulose Nanocrystals from Grape Pomace and Their Use for the Development of Starch-Based Nanocomposite Films. Int. J. Biol. Macromol. 2020, 159, 1048–1061. [Google Scholar] [CrossRef] [PubMed]
- Ahankari, S.S.; Subhedar, A.R.; Bhadauria, S.S.; Dufresne, A. Nanocellulose in Food Packaging: A Review. Carbohydr. Polym. 2021, 255, 117479. [Google Scholar] [CrossRef]
- Soni, R.; Asoh, T.-A.; Uyama, H. Cellulose Nanofiber Reinforced Starch Membrane with High Mechanical Strength and Durability in Water. Carbohydr. Polym. 2020, 238, 116203. [Google Scholar] [CrossRef]
- Wang, M.; Miao, X.; Guo, F.; Deng, Z.; Bian, F.; Xiao, T.; Chen, C. Optimized Hybrid Edible Surface Coating Prepared with Gelatin and Cellulose Nanofiber for Cherry Tomato Preservation. Int. J. Biol. Macromol. 2024, 279, 134822. [Google Scholar] [CrossRef]
- Peng, L.-P.; Xu, Y.-T.; Li, X.-T.; Tang, C.-H. Improving the Emulsification of Soy β-Conglycinin by Alcohol-Induced Aggregation. Food Hydrocoll. 2020, 98, 105307. [Google Scholar] [CrossRef]
- González, A.; Gastelú, G.; Barrera, G.N.; Ribotta, P.D.; Igarzabal, C.I. Preparation and Characterization of Soy Protein Films Reinforced with Cellulose Nanofibers Obtained from Soybean By-Products. Food Hydrocoll. 2019, 89, 758–764. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, X.; Gao, B.; Liu, W.; Han, L.; Sing, S.L.; Liu, X. Insight into the Effect of Different Nanocellulose Types on Protein-Based Bionanocomposite Film Properties. Int. J. Biol. Macromol. 2024, 257, 127944. [Google Scholar] [CrossRef]
- Zhang, C.; Qu, L.; Liu, H.; Cai, D.; Yuan, Y.; Wang, S. pH-Responsive Color-Indicating Film of Pea Protein Isolate Cross-Linked with Dialdehyde Carboxylated Cellulose Nanofibers for Pork Freshness Monitoring. Int. J. Biol. Macromol. 2024, 257, 128671. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Zou, Y.; Chen, F.; Fan, Y.; Yong, Q. Zwitterionic Chitin Nanocrystals Mediated Composite and Self-Assembly with Cellulose Nanofibrils. Int. J. Biol. Macromol. 2022, 223, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Sul, Y.; Khan, A.; Rhim, J.-W. Effects of Coffee Bean Types on the Characteristics of Carbon Dots and Their Use for Manufacturing Cellulose Nanofibers-Based Films for Active Packaging of Meat. Food Packag. Shelf Life 2024, 43, 101282. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Aguado, R.J.; Saguer, E.; Fiol, N.; Tarrés, Q.; Delgado-Aguilar, M. Pickering Emulsions of Thyme Oil in Water Using Oxidized Cellulose Nanofibers: Towards Bio-Based Active Packaging. Int. J. Biol. Macromol. 2024, 263, 130319. [Google Scholar] [CrossRef]
- Hazarika, K.K.; Konwar, A.; Borah, A.; Saikia, A.; Barman, P.; Hazarika, S. Cellulose Nanofiber Mediated Natural Dye Based Biodegradable Bag with Freshness Indicator for Packaging of Meat and Fish. Carbohydr. Polym. 2023, 300, 120241. [Google Scholar] [CrossRef]
- Mapelli, C.; Musatti, A.; Barbiroli, A.; Saini, S.; Bras, J.; Cavicchioli, D.; Rollini, M. Cellulose Nanofiber (CNF)–Sakacin-A Active Material: Production, Characterization and Application in Storage Trials of Smoked Salmon. J. Sci. Food Agric. 2019, 99, 4731–4738. [Google Scholar] [CrossRef]
- Maresca, D.; Mauriello, G. Development of Antimicrobial Cellulose Nanofiber-Based Films Activated with Nisin for Food Packaging Applications. Foods 2022, 11, 3051. [Google Scholar] [CrossRef]
- Xu, K.; Li, Q.; Xie, L.; Shi, Z.; Su, G.; Harper, D.; Tang, Z.; Zhou, J.; Du, G.; Wang, S. Novel Flexible, Strong, Thermal-Stable, and High-Barrier Switchgrass-Based Lignin-Containing Cellulose Nanofibrils/Chitosan Biocomposites for Food Packaging. Ind. Crops Prod. 2022, 179, 114661. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Almasi, H.; Esmaiili, M. Physical and Release Properties of Poly(Lactic Acid)/Nanosilver-Decorated Cellulose, Chitosan and Lignocellulose Nanofiber Composite Films. Mater. Chem. Phys. 2021, 268, 124719. [Google Scholar] [CrossRef]
- Liu, S.; Rao, Z.; Chen, H.; Zhang, K.; Lei, X.; Zhao, J.; Zeng, K.; Ming, J. Development of Antifogging Double-Layer Film Using Cellulose Nanofibers and Carboxymethyl Chitosan for White Hypsizygus Marmoreus Preservation. Int. J. Biol. Macromol. 2024, 256, 128307. [Google Scholar] [CrossRef]
- Zhu, R.; He, Z.; Sun, C.; Jin, S.; Ma, R.; Zhang, D.; Long, Z. Fabrication of Recyclable High-Barrier Water- and Oil-Proof Paper by Sodium Alginate/Cellulose Nanofiber/Ethyl Cellulose/ Polyvinyl Butyral. Ind. Crops Prod. 2023, 203, 117084. [Google Scholar] [CrossRef]
- Daza-Orsini, S.M.; Medina-Jaramillo, C.; Caicedo-Chacon, W.D.; Ayala-Valencia, G.; López-Córdoba, A. Isolation of Taro Peel Cellulose Nanofibers and Its Application in Improving Functional Properties of Taro Starch Nanocomposites Films. Int. J. Biol. Macromol. 2024, 273, 132951. [Google Scholar] [CrossRef] [PubMed]
- Haji Abdul Hamid, I.D.; Soni, R.; Hsu, Y.-I.; Uyama, H. TEMPO-Oxidized Cellulose Nanofiber Reinforced Starch Film with pH-Responsive Weakening and Rapid Marine-Degradability. Polym. Degrad. Stab. 2024, 219, 110618. [Google Scholar] [CrossRef]
- Wardak, M.H.; Nkede, F.N.; Van, T.T.; Meng, F.; Tanaka, F.; Tanaka, F. Development of Edible Films and Partial Coating, a Novel Coating Technique for Tomato Fruits, Using Citric Acid-Crosslinked Starch and Cellulose Nanofiber. Prog. Org. Coat. 2024, 187, 108127. [Google Scholar] [CrossRef]
- Yi, C.; Yuan, T.; Xiao, H.; Ren, H.; Zhai, H. Hydrophobic-Modified Cellulose Nanofibrils (CNFs)/Chitosan/Zein Coating for Enhancing Multi-Barrier Properties of Heat-Sealable Food Packaging Materials. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131245. [Google Scholar] [CrossRef]
- Kumar, A.; Packialakshmi, J.S.; Kim, J.T.; Shin, G.H. Preparation of Transparent and Flexible Regenerated Kenaf CNF Composite Films with Curcumin-Metal Complex for Food Packaging Applications. Food Packag. Shelf Life 2024, 45, 101327. [Google Scholar] [CrossRef]
- Yavari Maroufi, L.; Shahabi, N.; Fallah, A.A.; Mahmoudi, E.; Al-Musawi, M.H.; Ghorbani, M. Soy Protein Isolate/Kappa-Carrageenan/Cellulose Nanofibrils Composite Film Incorporated with Zenian Essential Oil-Loaded MOFs for Food Packaging. Int. J. Biol. Macromol. 2023, 250, 126176. [Google Scholar] [CrossRef]
- Sreekanth, K.; Sharath, K.P.; Midhun Dominic, C.D.; Divya, M.; Radhakrishnan, E.K. Microbial Load Reduction in Stored Raw Beef Meat Using Chitosan/Starch-Based Active Packaging Films Incorporated with Cellulose Nanofibers and Cinnamon Essential Oil. Meat Sci. 2024, 216, 109552. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, H.; Zhao, A.; Yang, X.; Lin, D. Konjac Glucomannan-Based Highly Antibacterial Active Films Loaded with Thyme Essential Oil through Bacterial Cellulose Nanofibers/Ag Nanoparticles Stabilized Pickering Emulsions. Int. J. Biol. Macromol. 2024, 269, 131875. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Luo, B.; Xiang, W.; Chen, Z. Effect of Apple Polyphenols on Physicochemical Properties of Pea Starch/Pulp Cellulose Nanofiber Composite Biodegradable Films. Int. J. Biol. Macromol. 2024, 257, 128480. [Google Scholar] [CrossRef]
- Mohseni-Shahri, F.; Mehrzad, A.; Khoshbin, Z.; Sarabi-Jamab, M.; Khanmohamadi, F.; Verdian, A. Polyphenol-Loaded Bacterial Cellulose Nanofiber as a Green Indicator for Fish Spoilage. Int. J. Biol. Macromol. 2023, 224, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Li, F.; Zhe, T.; Sun, X.; Zhang, X.; Wan, P.; Na, H.; Zhao, J.; Wang, L. Biopolymer Films Incorporated with Chlorogenic Acid Nanoparticles for Active Food Packaging Application. Food Chem. 2024, 435, 137552. [Google Scholar] [CrossRef] [PubMed]
- Moura-Alves, M.; Esteves, A.; Ciríaco, M.; Silva, J.A.; Saraiva, C. Antimicrobial and Antioxidant Edible Films and Coatings in the Shelf-Life Improvement of Chicken Meat. Foods 2023, 12, 2308. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, S.; Liu, P.; He, Y.; Chen, F.; Cai, Y.; Yang, X. Gelatin Improves the Performance of Oregano Essential Oil Nanoparticle Composite Films—Application to the Preservation of Mullet. Foods 2023, 12, 2542. [Google Scholar] [CrossRef] [PubMed]
- Popescu, P.-A.; Palade, L.M.; Nicolae, I.-C.; Popa, E.E.; Miteluț, A.C.; Drăghici, M.C.; Matei, F.; Popa, M.E. Chitosan-Based Edible Coatings Containing Essential Oils to Preserve the Shelf Life and Postharvest Quality Parameters of Organic Strawberries and Apples during Cold Storage. Foods 2022, 11, 3317. [Google Scholar] [CrossRef]
- Iseppi, R.; Zurlini, C.; Cigognini, I.M.; Cannavacciuolo, M.; Sabia, C.; Messi, P. Eco-Friendly Edible Packaging Systems Based on Live-Lactobacillus Kefiri MM5 for the Control of Listeria Monocytogenes in Fresh Vegetables. Foods 2022, 11, 2632. [Google Scholar] [CrossRef]
- Kim, T.; Tran, T.H.; Hwang, S.Y.; Park, J.; Oh, D.X.; Kim, B.-S. Crab-on-a-Tree: All Biorenewable, Optical and Radio Frequency Transparent Barrier Nanocoating for Food Packaging. ACS Nano 2019, 13, 3796–3805. [Google Scholar] [CrossRef]
- Amoroso, L.; France, K.J.D.; Milz, C.I.; Siqueira, G.; Zimmermann, T.; Nyström, G. Sustainable Cellulose Nanofiber Films from Carrot Pomace as Sprayable Coatings for Food Packaging Applications. ACS Sustain. Chem. Eng. 2021, 10, 342–352. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, S.; Meng, F.; Xu, Z.; Fang, Q.; Gu, Z.; Zhang, C.; Li, P.; Kong, F. Eco-Friendly Food Packaging Based on Paper Coated with a Bio-Based Antibacterial Coating Composed of Carbamate Starch, Calcium Lignosulfonate, Cellulose Nanofibrils, and Silver Nanoparticles. Int. J. Biol. Macromol. 2024, 254, 127659. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, R.; Cheng, J.-H.; Keener, K.M. Engineering Pineapple Peel Cellulose Nanofibrils with Oxidase-Mimic Functionalities for Antibacterial and Fruit Preservation. Food Chem. 2024, 451, 139417. [Google Scholar] [CrossRef]
- Wang, X.; Xia, Q.; Jing, S.; Li, C.; Chen, Q.; Chen, B.; Pang, Z.; Jiang, B.; Gan, W.; Chen, G.; et al. Strong, Hydrostable, and Degradable Straws Based on Cellulose-Lignin Reinforced Composites. Small 2021, 17, 2008011. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-Y.; Xue, C.-H.; An, Q.-F.; Jia, S.-T.; Xu, M.-M. Fabrication of Superhydrophobic Coatings with Edible Materials for Super-Repelling Non-Newtonian Liquid Foods. Chem. Eng. J. 2019, 371, 833–841. [Google Scholar] [CrossRef]
- Das, P.P.; Kalyani, P.; Kuma, R.; Khandelwal, M. Cellulose-Based Natural Nanofibers for Fresh Produce Packaging: Current Status, Sustainability and Future Outlook. Sustain. Food Technol. 2023, 1, 528–544. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Cheng, J.; Xia, Y.; Duan, C.; Zhong, R.; Zhao, X.; Li, X.; Ni, Y. Nanolignin-Containing Cellulose Nanofibrils (LCNF)-Enabled Multifunctional Ratiometric Fluorescent Bio-Nanocomposite Films for Food Freshness Monitoring. Food Chem. 2024, 453, 139673. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.-H.; Xu, L.-H.; Sun, S.-C.; Wen, J.-L.; Yuan, T.-Q. Multifunctional Composite Film of Curcumin Pickering Emulsion Stabilized by Lignocellulose Nanofibrils Isolated from Bamboo Shoot Shells for Monitoring Shrimp Freshness. Carbohydr. Polym. 2024, 346, 122663. [Google Scholar] [CrossRef]
- Silva, J.M.; Vilela, C.; Girão, A.V.; Branco, P.C.; Martins, J.; Freire, M.G.; Silvestre, A.J.D.; Freire, C.S.R. Wood Inspired Biobased Nanocomposite Films Composed of Xylans, Lignosulfonates and Cellulose Nanofibers for Active Food Packaging. Carbohydr. Polym. 2024, 337, 122112. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y.; Wang, F.; Lu, C.; Liu, Y.; Zhang, S.; Ma, S.; Wang, L. Development of Cellulose-Based Self-Healing Hydrogel Smart Packaging for Fish Preservation and Freshness Indication. Carbohydr. Polym. 2025, 348, 122806. [Google Scholar] [CrossRef]
- Li, Z.; Guan, J.; Yan, C.; Chen, N.; Wang, C.; Liu, T.; Cheng, F.; Guo, Q.; Zhang, X.; Ye, X.; et al. Corn Straw Core/Cellulose Nanofibers Composite for Food Packaging: Improved Mechanical, Bacteria Blocking, Ultraviolet and Water Vapor Barrier Properties. Food Hydrocoll. 2023, 143, 108884. [Google Scholar] [CrossRef]
- LakshmiBalasubramaniam, S.; Tajvidi, M.; Skonberg, D. Hydrophobic Corn Zein-Modified Cellulose Nanofibril (CNF) Films with Antioxidant Properties. Food Chem. 2024, 458, 140220. [Google Scholar] [CrossRef]
- Shih, Y.-T.; Zhao, Y. Development, Characterization and Validation of Starch Based Biocomposite Films Reinforced by Cellulose Nanofiber as Edible Muffin Liner. Food Packag. Shelf Life 2021, 28, 100655. [Google Scholar] [CrossRef]
- Palanichamy, P.; Venkatachalam, S.; Gupta, S. Tough, Flexible and Oil-Resistant Film from Sonicated Guar Gum and Cellulose Nanofibers for Food Packaging. Food Packag. Shelf Life 2023, 40, 101189. [Google Scholar] [CrossRef]
- Oun, A.A.; Roy, S.; Hong, S.J.; Shin, G.H.; Yoo, S.; Kim, J.T. Development of Smart Colorimetric Indicators for Tracking Kimchi Freshness by Loading Aronia Extract in Agar, κ-Carrageenan, and Cellulose Nanofiber Films. Int. J. Biol. Macromol. 2024, 270, 132343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Yang, X.; Bai, Y.; Fang, Z.; Zhang, S.; Wang, X.; Yang, Y.; Guo, Y. Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging. Foods 2024, 13, 3999. https://doi.org/10.3390/foods13243999
Sun J, Yang X, Bai Y, Fang Z, Zhang S, Wang X, Yang Y, Guo Y. Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging. Foods. 2024; 13(24):3999. https://doi.org/10.3390/foods13243999
Chicago/Turabian StyleSun, Jiaojiao, Xi Yang, Yifan Bai, Zhisheng Fang, Shuai Zhang, Xiaoyu Wang, Yali Yang, and Yurong Guo. 2024. "Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging" Foods 13, no. 24: 3999. https://doi.org/10.3390/foods13243999
APA StyleSun, J., Yang, X., Bai, Y., Fang, Z., Zhang, S., Wang, X., Yang, Y., & Guo, Y. (2024). Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging. Foods, 13(24), 3999. https://doi.org/10.3390/foods13243999