Scientific Mapping of Chia Protein Research: State of the Art and Future Trends
Abstract
:1. Introduction
2. Methods
3. Network Mapping and Publication Metrics of Chia Proteins
Cluster Number | Reports | Reference |
---|---|---|
1 | Bushway (1984) | [17] |
Lqari (2002) | [18] | |
Martínez-Cruz (2014) | [19] | |
Reyes-Caudillo (2008) | [20] | |
2 | Sandoval-Oliveros (2013) | [15] |
Muñoz (2012) | [16] | |
Olivos-Lugo (2010) | [22] | |
Timilsena (2016a) | [23] | |
3 | Timilsena(2016b) | [24] |
López (2018) | [25] | |
4 | Ayerza (2011) | [21] |
Segura-Campos (2013) | [11] |
Cluster Number | Reports | Reference |
---|---|---|
1 | Grancieri (2019) | [31] |
Kulczyński (2019) | [28] | |
Kotecka- Majchrza (2020) | [32] | |
López (2018) | [25] | |
Timilsena (2015) | [34] | |
Timilsena (2016) | [24] | |
2 | Muñoz (2013) | [33] |
Segura-Campos (2013) | [11] | |
Segura-Campos (2014) | [29] | |
Ullah (2016) | [30] | |
3 | Marinelli (2014) | [26] |
Olivos- Lugo (2010) | [22] | |
Sandoval- Oliveros (2013) | [15] | |
Sargi (2013) | [27] |
4. Chia Proteins
Sample | Extraction Yield (%) * | Protein Content (%) * | Protein Solubility (%) | Water Absorption Capacity (g.g−1) | Oil Absorption Capacity (g.g−1) | Thermal Properties (°C) | Reference | |
---|---|---|---|---|---|---|---|---|
PRF | 14.1 | 49.7 | PRF > CPC2 > CPC1 | PRF > CPC1 and CPC2 (pH 5, 7, 9, 11) CPC1 > CP2 (pH 9, 11) CPC2 > CPC1 (pH 2, 3, 5) | 2.3 | ΔTd: 130.3–145.2 | [36] | |
CPC1 | 17.1 | 70.9 | 3.2 | ΔTd: 32.0–145.7 | ||||
CPC2 | 19.2 | 74.1 | 3.7 | ΔTd: 47.3–129.8 | ||||
CPI10 | 11 | 78.2 | - | - | - | Tpeak: 57 and 105 | [35] | |
CPI12 | 17 | 75 | Tpeak: 78, 94, and 112 | |||||
SDCPI | 16.2 | 90.5 | Higher at pH 8–12 Higher in NaCl 1 M | 2.3 | 2.7 | - | [24] | |
FDCPI | 18.2 | 91.2 | 2.9 | 3.3 | ||||
VDCPI | 17.4 | 90.3 | 2.1 | 3.6 | ||||
CPI10 | - | - | 90% (pH 7) 68% (pH 7) | 4.4 | 7.1 | - | [43] | |
CPI12 | 6 | 6.1 | ||||||
CPI8.5 | 15.9 | 44.29 ** | Higher at pH 7–11 | 5.24 | - | [3] | ||
CPI10 | 16.87 | 54.31 ** | CPI8.5 > CPI10 > CPI12 | 6.52 | ||||
CPI12 | 19.10 | 59.63 ** | 7.55 | |||||
CPI10 | - | 78.2 | 87% | - | - | - | [44] | |
CPI12 | 77.5 | 33% | ||||||
PRF | mesh | 60% at pH 10 | - | - | - | [37] | ||
45 | 55 | 25.7 | ||||||
100 | 3.22 | 30.53 | ||||||
200 | 1.83 | 42.29 | ||||||
PRF | ~ 18 | 44.6 | Higher at pH 10 | - | - | - | [38] | |
Mexican CPC | - | 88.32 ** | - | - | - | - | [41] | |
British CPC | 89.90 ** | |||||||
Mexican albumin fraction | 37.96 ** | |||||||
British albumin fraction | 56.75 ** | |||||||
Mexican globulin fraction | 44.22 ** | |||||||
British globulin fraction | 39.34 ** | |||||||
WCPI *** | 15.43% | 90.00 | 67.30 | 3.00 | 2.20 | Tpeak: 75.49 and 97 | [42] | |
BCPI *** | 15.96% | 90.65 | 69.75 | 3.18 | 2.39 | Tpeak: 75.9 and 103.0 | ||
CPI | - | - | 85.7 (pH 12) 97.1 (pH 8) | - | - | - | [5] |
4.1. Amino Acid Composition and Molecular Weight
4.2. Techno-Functional Properties
4.3. Biological Activity
4.4. Food Application
5. Chia Peptides
5.1. Functional Properties
Chia Byproduct | Extraction Conditions | Hydrolysis Degree (HD) | Reference | |
---|---|---|---|---|
Enzyme | Time and Temperature | |||
CPI * | Alcalase (pH 8) | 3 h at 50 °C | Highest HD (~35%) with alcalase | [9] |
Pepsin (pH 8) | 3 h at 37 °C | |||
Trypsin (pH 8) | 14 h at 37 °C | |||
α-chymotrypsin (pH 8) | 14 h at 37 °C | |||
PRF * | Alcalase (pH 7) or flavourzyme (pH 8) | Until 150 min at 50 °C | Sequential hydrolysis improved HD (~40%) | [41,49] |
Sequential hydrolysis: alcalase (pH 7) and flavourzyme (pH 8) | 60 min (alcalase) and 150 min (flavourzyme) | |||
Chia expeller | Papain (pH 7) | 3 h at 45 °C | ~15% after 120 min | [50] |
Chia expeller | Alcalase (pH 7) | Until 240 min at 50 °C | HD greater than 50% for sequential extraction | [52] |
Flavourzyme (pH 8) | Until 240 min at 50 °C | |||
Sequential hydrolysis: alcalase (pH 7) and flavourzyme (pH 8) | 90 min (alcalase) and 0–240 min (flavourzyme) | |||
CPC PRF Chia flour | Alcalase (pH 7) | Until 240 min at 50 °C | HD over 20% for sequential hydrolysis Higher HD to peptides obtained from CPC | [56] |
Flavourzyme (pH 8) | Until 240 min at 50 °C | |||
Sequential hydrolysis: alcalase and flavourzyme | 60 min (alcalase) and 180 min (flavourzyme) | |||
CPI | Sequential hydrolysis: pepsin (pH 2) and pancreatin (pH 7.5) | 45 min (pepsin) and 45 min (pancreatin) at 37 °C | HD over 38% | [14] |
Chia flour | Sequential hydrolysis or isolated: alcalase or flavourzyme (pH 8) | Maximum of 90 min until reaching 95 °C | HD greater than 40% to sequential hydrolysis | [57] |
CPC | Alcalase (pH 8) | 15 min at 50 °C | - | [58] |
Pepsin (pH 2) | ||||
Pancreatin (pH 7.5) | ||||
CPC | Sequential hydrolysis: pepsin (pH 2) and pancreatin (pH 7.5) | Reaction stopped after 20 min at 80 °C | HD of 51.1% to sequential hydrolysis | [12] |
CPI | Alcalase (pH 8) | Until 6 h at 50 °C | Highest HD in the longest hydrolysis times | [53] |
Bromelain (pH 7) | ||||
Papain (pH 7) | ||||
CPI | Thermolysis (pH 2) | Until 5 h; reaction stopped after 5 min at 95 °C | Highest HD to 0.02 NTris-HCl + 10 mM CaCl2 buffers at 2 h of hydrolysis | [5] |
PRF | Sequential hydrolysis: pepsin (pH 2) and pancreatin (pH 7.5) | 45 min (pepsin) and 45 min (pancreatin) at 37 °C | HD >30% | [59] |
PRF * | Sequential hydrolysis: pepsin (pH 2) and pancreatin (pH 7.5) | 45 min (pepsin) and 45 min (pancreatin) at 37 °C | - | [60] |
5.2. Biological Applications
5.3. Food Applications
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Luo, X. Chia Seed Protein as a Promising Source for Plant-Based Foods: Functional Properties, Processing Methods and Potential Food Applications. Appl. Food Res. 2024, 4, 100459. [Google Scholar] [CrossRef]
- Meganaharshini, M.; Sudhakar, V.; Dhivya Bharathi, N.; Deepak, S. Review on Recent Trends in the Application of Protein Concentrates and Isolates—A Food Industry Perspective. Food Humanit. 2023, 1, 308–325. [Google Scholar] [CrossRef]
- Khushairay, E.S.I.; Ghani, M.A.; Babji, A.S.; Yusop, S.M. The Nutritional and Functional Properties of Protein Isolates from Defatted Chia Flour Using Different Extraction PH. Foods 2023, 12, 3046. [Google Scholar] [CrossRef]
- Wang, Y.; Hernández-Alvarez, A.J.; Goycoolea, F.M.; Martínez-Villaluenga, C. A Comparative Study of the Digestion Behavior and Functionality of Protein from Chia (Salvia Hispanica L.) Ingredients and Protein Fractions. Curr. Res. Food Sci. 2024, 8, 100684. [Google Scholar] [CrossRef]
- Briceño-Islas, G.; Mojica, L.; Urías-Silvas, J.E. Functional Chia (Salvia Hispanica L.) Co-Product Protein Hydrolysate: An Analysis of Biochemical, Antidiabetic, Antioxidant Potential and Physicochemical Properties. Food Chem. 2024, 460, 140406. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Punia, S.; Dhakane-Lad, J.; Singh, S.; Dhumal, S.; Pradhan, P.C.; Bhushan, B.; Anitha, T.; et al. Functional Characterization of Plant-Based Protein to Determine Its Quality for Food Applications. Food Hydrocoll. 2022, 123, 106986. [Google Scholar] [CrossRef]
- Rabail, R.; Khan, M.R.; Mehwish, H.M.; Rajoka, M.S.R.; Lorenzo, J.M.; Kieliszek, M.; Khalid, A.R.; Shabbir, M.A.; Aadil, R.M. An Overview of Chia Seed (Salvia Hispanica L.) Bioactive Peptides’ Derivation and Utilization as an Emerging Nutraceutical Food. Front. Biosci.-Landmark 2021, 26, 643–654. [Google Scholar] [CrossRef]
- Villanueva-Lazo, A.; Montserrat-De la Paz, S.; Rodriguez-Martin, N.M.; Millan, F.; Carrera, C.; Pedroche, J.J.; Millan-Linares, M.D.C. Antihypertensive and Antioxidant Activity of Chia Protein Techno-Functional Extensive Hydrolysates. Foods 2021, 10, 1–14. [Google Scholar] [CrossRef]
- San Pablo-Osorio, B.; Mojica, L.; Urías-Silvas, J.E. Chia Seed (Salvia Hispanica L.) Pepsin Hydrolysates Inhibit Angiotensin-Converting Enzyme by Interacting with Its Catalytic Site. J. Food Sci. 2019, 84, 1170–1179. [Google Scholar] [CrossRef]
- Rao, V.; Poonia, A. Protein Characteristics, Amino Acid Profile, Health Benefits and Methods of Extraction and Isolation of Proteins from Some Pseudocereals—A Review. Food Prod. Process. Nutr. 2023, 5, 37. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Salazar-Vega, I.M.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Biological Potential of Chia (Salvia Hispanica L.) Protein Hydrolysates and Their Incorporation into Functional Foods. LWT Food Sci. Technol. 2013, 50, 723–731. [Google Scholar] [CrossRef]
- Salazar-Vega, I.M.; Julio, L.M.; Segura-Campos, M.R.; Tomás, M.C. Chia Protein Hydrolysates: Characterisation and Emulsifying Properties. Int. J. Food Sci. Technol. 2021, 56, 3546–3555. [Google Scholar] [CrossRef]
- Coelho, M.S.; de Araujo, S.A.; Latorres, J.M.; de las Salas-Mellado, M.M.; Silveira Coelho, M.; de Araujo Aquino, S.; Machado Latorres, J.; de las Mercedes Salas-Mellado, M.; Coelho, M.S.; de Araujo, S.A.; et al. In Vitro and in Vivo Antioxidant Capacity of Chia Protein Hydrolysates and Peptides. Food Hydrocoll. 2019, 91, 19–25. [Google Scholar] [CrossRef]
- Chan-Zapata, I.; Arana-Argáez, V.E.; Torres-Romero, J.C.; Segura-Campos, M.R. Anti-Inflammatory Effects of the Protein Hydrolysate and Peptide Fractions Isolated from Salvia Hispanica L. Seeds. Food Agric. Immunol. 2019, 30, 786–803. [Google Scholar] [CrossRef]
- Sandoval-Oliveros, M.R.; Paredes-López, O. Isolation and Characterization of Proteins from Chia Seeds (Salvia Hispanica L.). J. Agric. Food Chem. 2013, 61, 193–201. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia Seeds: Microstructure, Mucilage Extraction and Hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- Bushway, A.A.; Wilson, A.M.; Houston, L.; Ushway, R.J.; Bushway, R.J. Selected Properties of the Lipid and Protein Fractions from Chia Seed. J. Food Sci. 1984, 49, 555–557. [Google Scholar] [CrossRef]
- Lqari, H.; Vioque, J.; Pedroche, J.; Millán, F. Lupinus Angustifolius Protein Isolates: Chemical Composition, Functional Properties and Protein Characterization. Food Chem. 2002, 76, 349–356. [Google Scholar] [CrossRef]
- Martínez-Cruz, O.; Paredes-López, O. Phytochemical Profile and Nutraceutical Potential of Chia Seeds (Salvia Hispanica L.) by Ultra High Performance Liquid Chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M.A. Dietary Fibre Content and Antioxidant Activity of Phenolic Compounds Present in Mexican Chia (Salvia Hispanica L.) Seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Protein Content, Oil Content and Fatty Acid Profiles as Potential Criteria to Determine the Origin of Commercially Grown Chia (Salvia Hispanica L.). Ind. Crops Prod. 2011, 34, 1366–1371. [Google Scholar] [CrossRef]
- Olivos-Lugo, B.L.; Valdivia-López, M.Á.; Tecante, A. Thermal and Physicochemical Properties and Nutritional Value of the Protein Fraction of Mexican Chia Seed (Salvia Hispanica L.). Food Sci. Technol. Int. 2010, 16, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and Functional Characteristics of Purified Gum from Australian Chia Seeds. Carbohydr. Polym. 2016, 136, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Physicochemical and Functional Properties of Protein Isolate Produced from Australian Chia Seeds. Food Chem. 2016, 212, 648–656. [Google Scholar] [CrossRef]
- López, D.N.; Galante, M.; Robson, M.; Boeris, V.; Spelzini, D. Amaranth, Quinoa and Chia Protein Isolates: Physicochemical and Structural Properties. Int. J. Biol. Macromol. 2018, 109, 152–159. [Google Scholar] [CrossRef]
- Marineli, R.D.S.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R., Jr. Chemical Characterization and Antioxidant Potential of Chilean Chia Seeds and Oil (Salvia Hispanica L.). LWT Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.F.; Boeing, J.S.; Santos Júnior, O.O.; Souza, N.E.; Visentainer, J.V. Antioxidant Capacity and Chemical Composition in Seeds Rich in Omega-3: Chia, Flax, and Perilla. Food Sci. Technol. 2013, 33, 541–548. [Google Scholar] [CrossRef]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Ciau-Solís, N.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Chemical and Functional Properties of Chia Seed (Salvia Hispanica L.) Gum. Int. J. Food Sci. 2014, 2014, 241053. [Google Scholar] [CrossRef]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and Therapeutic Perspectives of Chia (Salvia Hispanica L.): A Review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef]
- Grancieri, M.; Martino, H.S.D.; Gonzalez de Mejia, E. Chia Seed (Salvia Hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed Proteins—Properties and Application as a Food Ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia Seed (Salvia Hispanica): An Ancient Grain and a New Functional Food. Food Rev. Int. 2013, 29, 394–408. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Preparation and Characterization of Chia Seed Protein Isolate–Chia Seed Gum Complex Coacervates. Food Hydrocoll. 2015, 52, 554–563. [Google Scholar] [CrossRef]
- López, D.N.; Ingrassia, R.; Busti, P.; Bonino, J.; Delgado, J.F.; Wagner, J.; Boeris, V.; Spelzini, D. Structural Characterization of Protein Isolates Obtained from Chia (Salvia Hispanica L.) Seeds. LWT Food Sci. Technol. 2018, 90, 396–402. [Google Scholar] [CrossRef]
- Coelho, M.S.; de las Mercedes Salas-Mellado, M. How Extraction Method Affects the Physicochemical and Functional Properties of Chia Proteins. LWT 2018, 96, 26–33. [Google Scholar] [CrossRef]
- Vázquez-Ovando, J.A.; Rosado-Rubio, J.G.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Procesamiento En Seco de Harina de Chía (Salvia Hispanica L.): Caracterización Química de Fibra y Proteína Dry Processing of Chía (Salvia Hispanica L.) Flour: Chemical Characterization of Fiber and Protein. CyTA J. Food 2010, 8, 117–127. [Google Scholar] [CrossRef]
- Vázquez-Ovando, A.; Betancur-Ancona, D.; Chel-Guerrero, L. Physicochemical and Functional Properties of a Protein-Rich Fraction Produced by Dry Fractionation of Chia Seeds (Salvia Hispanica L.). CYTA J. Food 2013, 11, 75–80. [Google Scholar] [CrossRef]
- Da Silva, B.P.; Anunciação, P.C.; Matyelka, J.C.D.S.; Della Lucia, C.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Chemical Composition of Brazilian Chia Seeds Grown in Different Places. Food Chem. 2017, 221, 1709–1716. [Google Scholar] [CrossRef]
- Ayerza, R. The Seed’s Protein and Oil Content, Fatty Acid Composition, and Growing Cycle Length of a Single Genotype of Chia (Salvia Hispanica L.) as Affected by Environmental Factors. J. Oleo Sci. 2009, 58, 347–354. [Google Scholar] [CrossRef]
- Wang, Y.; Sánchez-Velázquez, O.A.; Martínez-Villaluenga, C.; Goycoolea, F.M.; Hernández-Álvarez, A.J. Effect of Protein Extraction and Fractionation of Chia Seeds Grown in Different Locations: Nutritional, Antinutritional and Protein Quality Assessment. Food Biosci. 2023, 56, 103238. [Google Scholar] [CrossRef]
- Malik, A.M.; Riar, C.S. Difference in the Nutritional, in Vitro, and Functional Characteristics of Protein and Fat Isolates of Two Indian Chia (Salvia Hispanica L) Seed Genotypes with Variation in Seed Coat Color. J. Food Sci. 2022, 87, 3872–3887. [Google Scholar] [CrossRef] [PubMed]
- López, D.N.; Ingrassia, R.; Busti, P.; Wagner, J.; Boeris, V.; Spelzini, D. Effects of Extraction PH of Chia Protein Isolates on Functional Properties. LWT 2018, 97, 523–529. [Google Scholar] [CrossRef]
- López, D.N.; Boeris, V.; Spelzini, D.; Bonifacino, C.; Panizzolo, L.A.; Abirached, C. Adsorption of Chia Proteins at Interfaces: Kinetics of Foam and Emulsion Formation and Destabilization. Colloids Surfaces B Biointerfaces 2019, 180, 503–507. [Google Scholar] [CrossRef]
- Segura-Campos, M.R. Isolation and Functional Caharacterization of Chia (Salvia Hispanica) Proteins. Food Sci. Technol. 2020, 40, 334–339. [Google Scholar] [CrossRef]
- Julio, L.M.; Ruiz-Ruiz, J.C.; Tomás, M.C.; Segura-Campos, M.R. Chia (Salvia Hispanica) Protein Fractions: Characterization and Emulsifying Properties. J. Food Meas. Charact. 2019, 13, 3318–3328. [Google Scholar] [CrossRef]
- Jing, X.; Chen, B.; Liu, T.; Cai, Y.; Zhao, Q.; Deng, X.; Zhao, M. Formation and Stability of Pickering Emulsion Gels by Insoluble Soy Peptide Aggregates through Hydrophobic Modification. Food Chem. 2022, 387, 132897. [Google Scholar] [CrossRef]
- Nahimana, P.; Bouaicha, I.; Chèné, C.; Karamoko, G.; Missbah El Idrissi, M.; Bakhy, K.; Abdelmoumen, H.; Blecker, C.; Karoui, R. Physico-Chemical, Functional, and Structural Properties of Un-Defatted, Cold and Hot Defatted Yellow Lupin Protein Isolates. Food Chem. 2024, 437, 137871. [Google Scholar] [CrossRef]
- López-García, S.C.; Arámbula-Villa, G.; Torruco-Uco, J.G.; Contreras-Oliva, A.; Hernández-Rosas, F.; López-Espíndola, M.; Herrera-Corredor, J.A. Acvidad Antioxidante de La Fracción Proteica de Chía (Salvia Hispanica L.) Hidrolizada Con Alcalasa y Flavourzima. Agrociencia 2019, 53, 505–520. [Google Scholar]
- Cotabarren, J.; Rosso, A.M.; Tellechea, M.; García-Pardo, J.; Rivera, J.L.; Obregón, W.D.; Parisi, M.G. Adding Value to the Chia (Salvia Hispanica L.) Expeller: Production of Bioactive Peptides with Antioxidant Properties by Enzymatic Hydrolysis with Papain. Food Chem. 2019, 274, 848–856. [Google Scholar] [CrossRef]
- Ozón, B.; Cotabarren, J.; Geier, F.R.; Kise, M.P.; García-Pardo, J.; Parisi, M.G.; Obregón, W.D. Development of Fortified Breads Enriched with Plant-Based Bioactive Peptides Derived from the Chia (Salvia Hispanica L.) Expeller. Foods 2023, 12, 3382. [Google Scholar] [CrossRef] [PubMed]
- Ozón, B.; Cotabarren, J.; Valicenti, T.; Graciela Parisi, M.; David Obregón, W. Chia Expeller: A Promising Source of Antioxidant, Antihypertensive and Antithrombotic Peptides Produced by Enzymatic Hydrolysis with Alcalase and Flavourzyme. Food Chem. 2022, 380, 132185. [Google Scholar] [CrossRef] [PubMed]
- Mudgil, P.; Ajayi, F.F.; Alkaabi, A.; Alsubousi, M.; Singh, B.P.; Maqsood, S. Flaxseed- and Chia Seed-Derived Protein Hydrolysates Exhibiting Enhanced in Vitro Antidiabetic, Anti-Obesity, and Antioxidant Properties. Front. Sustain. Food Syst. 2023, 7, 1223884. [Google Scholar] [CrossRef]
- Ibrahim, E.S.K.; Ghani, M.A. The Effect of Enzymatic Hydrolysis on the Antioxidant Activities and Amino Acid Profiles of Defatted Chia (Salvia Hispanica L.) Flour. Food Res. 2020, 4, 38–50. [Google Scholar] [CrossRef]
- Salazar-Vega, I.M.; Segura-Campos, M.R.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Antihypertensive and Antioxidant Effects of Functional Foods Containing Chia (Salvia Hispanica) Protein Hydrolysates. In Scientific, Health and Social Aspects of the Food Industry; InTech: London, UK, 2012; pp. 381–3982. [Google Scholar]
- Coelho, M.S.; Soares-Freitas, R.A.M.; Arêas, J.A.G.; Gandra, E.A.; de las Mercedes Salas-Mellado , M. Peptides from Chia Present Antibacterial Activity and Inhibit Cholesterol Synthesis. Plant Foods Hum. Nutr. 2018, 73, 101–107. [Google Scholar] [CrossRef]
- Urbizo-Reyes, U.; San Martin-González, M.F.; Garcia-Bravo, J.; López Malo Vigil, A.; Liceaga, A.M. Physicochemical Characteristics of Chia Seed (Salvia Hispanica) Protein Hydrolysates Produced Using Ultrasonication Followed by Microwave-Assisted Hydrolysis. Food Hydrocoll. 2019, 97, 105187. [Google Scholar] [CrossRef]
- Villanueva, A.; Rivero-Pino, F.; Martin, M.E.; Gonzalez-De la Rosa, T.; Montserrat-De la Paz, S.; Millan-Linares, M.C. Identification of the Bioavailable Peptidome of Chia Protein Hydrolysate and the In Silico Evaluation of Its Antioxidant and ACE Inhibitory Potential. J. Agric. Food Chem. 2023, 72, 3189–3199. [Google Scholar] [CrossRef]
- Quintal-Bojórquez, N.D.C.; Carrillo-Cocom, L.M.; Hernández-Álvarez, A.J.; Segura-Campos, M.R. Anticancer Activity of Protein Fractions from Chia (Salvia Hispanica L.). J. Food Sci. 2021, 86, 2861–2871. [Google Scholar] [CrossRef]
- Quintal Bojórquez, N.D.C.; Morales Mendoza, L.F.; Hidalgo-Figueroa, S.; Hernández Álvarez, A.J.; Segura Campos, M.R. In Silico Analysis of the Interaction of de Novo Peptides Derived from Salvia Hispanica with Anticancer Targets. J. Biomol. Struct. Dyn. 2024, 42, 6119–6135. [Google Scholar] [CrossRef]
- Quintal Bojórquez, N.D.C.; Vidal-Limon, A.; Antunes Ricardo, M.; Segura Campos, M.R. Integrated in Silico and in Vitro Evaluation of Five Anticancer Peptides Identified from Salvia Hispanica. Process Biochem. 2024, 146, 364–376. [Google Scholar] [CrossRef]
- Mensah, E.O.; Nadtochii, L.; Adadi, P.; Agyei, D. Chia Derived Bioactive Peptides: Extraction, Characterization, Pharmacological Activities and Potential Food Applications. Food Biosci. 2024, 59, 103975. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and Functional Properties of Food Protein-Derived Antioxidant Peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef] [PubMed]
- León Madrazo, A.; Segura Campos, M.R. In Silico Prediction of Peptide Variants from Chia (S. Hispanica L.) with Antimicrobial, Antibiofilm, and Antioxidant Potential. Comput. Biol. Chem. 2022, 98, 107695. [Google Scholar] [CrossRef]
- Gao, Y.; Janes, M.E.; Chaiya, B.; Brennan, M.A.; Brennan, C.S.; Prinyawiwatkul, W. Gluten-Free Bakery and Pasta Products: Prevalence and Quality Improvement. Int. J. Food Sci. Technol. 2018, 53, 19–32. [Google Scholar] [CrossRef]
- Rabail, R.; Sultan, M.T.; Khalid, A.R.; Sahar, A.T.; Zia, S.; Kowalczewski, P.Ł.; Jeżowski, P.; Shabbir, M.A.; Aadil, R.M. Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins. Molecules 2022, 27, 5907. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Novack, M.E.; Santos, C.P.; Kubota, E.; Da Rosa, C.S. Evaluation of Replacing Wheat Flour with Chia Flour (Salvia Hispanica L.) in Pasta. Semin. Agrar. 2015, 36, 2545–2553. [Google Scholar] [CrossRef]
- Peredo-Lovillo, A.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Romero-Luna, H.E. Conventional and in Silico Approaches to Select Promising Food-Derived Bioactive Peptides: A Review. Food Chem. X 2022, 13, 100183. [Google Scholar] [CrossRef]
- León Madrazo, A.; Segura Campos, M.R. Antibacterial Properties of Peptides from Chia (Salvia Hispanica L.) Applied to Pork Meat Preservation. J. Food Sci. 2023, 88, 4194–4217. [Google Scholar] [CrossRef]
- León Madrazo, A.; Fuentes Ortíz, A.B.; Morales Mendoza, L.F.; Segura Campos, M.R. Antibacterial Peptide Fractions from Chia Seeds (Salvia Hispanica L.) and Their Stability to Food Processing Conditions. J. Food Sci. Technol. 2022, 59, 4332–4340. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Liceaga, A.M. Identification of Chia Seed (Salvia Hispanica L.) Peptides with Enzyme Inhibition Activity towards Skin-Aging Enzymes. Amino Acids 2020, 52, 1149–1159. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.S.; Durso, A.C.; da Silva, C.A.S.; de Castro Santana, R. Scientific Mapping of Chia Protein Research: State of the Art and Future Trends. Foods 2024, 13, 4181. https://doi.org/10.3390/foods13244181
Santos JS, Durso AC, da Silva CAS, de Castro Santana R. Scientific Mapping of Chia Protein Research: State of the Art and Future Trends. Foods. 2024; 13(24):4181. https://doi.org/10.3390/foods13244181
Chicago/Turabian StyleSantos, Júlia Scherer, Arthur Coelho Durso, César Augusto Sodré da Silva, and Rejane de Castro Santana. 2024. "Scientific Mapping of Chia Protein Research: State of the Art and Future Trends" Foods 13, no. 24: 4181. https://doi.org/10.3390/foods13244181
APA StyleSantos, J. S., Durso, A. C., da Silva, C. A. S., & de Castro Santana, R. (2024). Scientific Mapping of Chia Protein Research: State of the Art and Future Trends. Foods, 13(24), 4181. https://doi.org/10.3390/foods13244181