The Role of Autochthonous Levilactobacillus brevis B1 Starter Culture in Improving the Technological and Nutritional Quality of Cow’s Milk Acid-Rennet Cheeses—Industrial Model Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Levilactobacillus brevis B1 Starter Culture Bacteria
2.1.2. Starter Culture Preparation
2.1.3. Acid-Rennet Cheeses Manufacture
2.2. Methods
2.2.1. Microbiological Analyses
2.2.2. Chemical Composition
2.2.3. Physicochemical Parameter Analysis
2.2.4. Texture Profile Analysis (TPA)
2.2.5. The Fatty Acid, Cholesterol, and Lipid Quality Indices Measurement
2.2.6. Sensory Evaluation
2.2.7. Statistical Analyses
3. Results and Discussion
3.1. Chemical Composition of Acid-Rennet Cheeses
3.2. Physicochemical Analysis
3.3. Microbiological Analysis
3.4. Instrumental Texture Analysis
3.5. Analysis of the Fatty Acid Composition, Cholesterol Content, and Lipid Quality Indices
3.6. Sensory Evaluation
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakobsen, M.U.; Trolle, E.; Outzen, M.; Mejborn, H.; Grønberg, M.G.; Lyndgaard, C.B.; Stockmarr, A.; Venø, S.K.; Bysted, A. Intake of dairy products and associations with major atherosclerotic cardiovascular diseases: A systematic review and meta-analysis of cohort studies. Sci. Rep. 2021, 11, 1303. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhong, X.; Liu, X.; Wang, X.; Gao, X. Therapeutic and improving function of lactobacilli in the prevention and treatment of cardiovascular-related diseases: A novel perspective from gut microbiota. Front. Nutr. 2021, 8, 693412. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Wang, Y.; Tong, X.; Szeto, I.M.Y.; Smit, G.; Li, Z.N.; Qin, L.Q. Cheese consumption and risk of cardiovascular disease: A meta-analysis of prospectives studies. Eur. J. Nutr. 2017, 56, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Kongo, J.M.; Malcata, F.X. Cheese: Types of Cheeses–Soft. In Encyclopedia of Food and Health; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 768–773. [Google Scholar]
- Wang, J.; Yang, Z.J.; Xu, L.Y.; Wang, B.; Zhang, J.H.; Li, B.Z.; Cao, Y.P.; Tan, T. Key aroma compounds identified in Cheddar cheese with different ripening times by aroma extract dilution analysis, odor activity value, aroma recombination, and omission. J. Dairy Sci. 2021, 104, 1576–1590. [Google Scholar] [CrossRef]
- Lucey, J.A. Acid- and Acid/Heat Coagulated Cheese. In Encyclopedia of Dairy Sciences; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; pp. 6–14. [Google Scholar]
- Raziani, F.; Tholstrup, T.; Kristensen, M.D.; Svanegaard, M.L.; Ritz, C.; Astrup, A.; Raben, A. High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL Cholesterol or risk markers of the metabolic syndrome: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 973–981. [Google Scholar] [CrossRef]
- Sofi, F.; Buccioni, A.; Cesari, F.; Gori, A.M.; Minieri, S.; Mannini, L.; Casini, A.; Gensini, G.F.; Abbate, R.; Antongiovanni, M. Effects of a dairy product (Pecorino Cheese) naturally rich in Cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: A dietary intervention study. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 117–124. [Google Scholar] [CrossRef]
- Corbo, M.R.; Racioppo, A.; Monacis, N.; Speranza, B. Commercial starters or autochtonous strains? That is the question. In Starter Cultures in Food Production; Speranza, B., Bevilacqua, A., Corbo, M.R., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 174–198. [Google Scholar]
- Carminati, D.; Giraffa, G.; Quiberoni, A.; Binettif, A.; Surez, V.; Reinheimer, J. Advances and trends in starter cultures for dairy fermentations. In Biotechnology of Lactic Acid Bacteria; Wiley-Blackwell: Oxford, UK, 2010; pp. 177–192. [Google Scholar]
- Poltronieri, P.; Rossi, F.; Cammà, C.; Pomilio, F.; Randazzo, C. Genomics of LAB and dairy-associated species. In Microbiology in Dairy Processing: Challenges and Opportunities; Poltronieri, P., Ed.; Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 71–95. [Google Scholar]
- Li, Y.; Zhang, Y.; Dong, L.; Li, Y.; Liu, Y.; Liu, Y.; Liu, L.; Liu, L. Fermentation of Lactobacillus fermentum NB02 with feruloyl esterase production increases the phenolic compounds content and antioxidant properties of oat bran. Food Chem. 2024, 30 Pt 1, 137834. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Ren, X.; Zhang, X.; Wu, Z.; Liu, L. The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds. Food Chem. 2023, 402, 134231. [Google Scholar] [CrossRef]
- Colonna, A.; Durham, C.; Meunier-Goddik, L. Factors affecting consumers preferences for an purchasing decisions regarding pasteurized and raw milk specialty cheeses. J. Diary Sci. 2011, 94, 5217–5226. [Google Scholar] [CrossRef]
- Smit, G.; Smit, B.A.; Engels, W.J.M. FEMS Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef]
- Carvalho, M.M.; de Fariña, L.O.; Strongin, D.; Ferreira, C.L.F.L.; Lindner, J.D.D. Traditional Colonial-type cheese from the south of Brazil: A case to support the new Brazilian laws for artisanal cheese production from raw milk. J. Dairy Sci. 2019, 102, 9711–9720. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Marciniak-Lukasiak, K.; Karbowiak, M.; Lukasiak, P. Effects of fruotose and oligofructose addition on milk fermentation using novel Lactobacillus Cultures to obtain high-quality yoghurt-like products. Molecules 2021, 26, 5730. [Google Scholar] [CrossRef] [PubMed]
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Detection Method. Available online: https://www.iso.org/standard/60313.html (accessed on 12 August 2022).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection. Enumeration and Serotyping of Salmonella. Available online: https://www.iso.org/standard/56712.html (accessed on 12 August 2021).
- De Boer, E. Update on media for isolation of Enterobacteriaceae from foods. Int. J. Food Microbiol. 1998, 45, 43–53. [Google Scholar] [CrossRef] [PubMed]
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 °C. Available online: https://cdn.standards.iteh.ai/samples/26853/80aabcbaa4b5408da11f981bd1d95123/ISO-15214-1998.pdf (accessed on 12 August 2021).
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater Than 0.95. Available online: https://www.iso.org/standard/38275.html (accessed on 12 August 2021).
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less Than or Equal to 0.95. Available online: https://www.iso.org/standard/38276.html (accessed on 12 August 2021).
- ISO 1442:1997; Meat and Meat Products—Determination of Moisture Content (Reference Method). Available online: https://www.iso.org/standard/6037.html (accessed on 12 August 2021).
- PN-A-04018:1975/Az3:2002; Produkty Rolniczo-Żywnościowe—Oznaczanie Azotu Metodą Kjeldahla I Przeliczanie Na Białko. Available online: https://sklep.pkn.pl/pn-a-04018-1975-az3-2002p.html (accessed on 12 August 2021).
- ISO 8262-3:2005 [IDF 124-3:2005]; Milk Products and Milk-Based Foods—Determination of Fat Content by the Weibull-Berntrop Gravimetric Method (Reference Method)—Part 3: Special Cases. Available online: https://www.iso.org/standard/42700.html (accessed on 12 August 2021).
- ISO 1841-2:1996; Meat and Meat Products—Determination of Chloride Content—Part 2: Potentiometric Method. Available online: https://www.iso.org/standard/23756.html (accessed on 12 August 2021).
- PN-A-82060:1999; Mięso i Przetwory Mięsne —Oznaczanie Zawartości Fosforu. Available online: https://sklep.pkn.pl/pn-a-82060-1999p.html (accessed on 12 August 2021).
- Łepecka, A.; Okoń, A.; Szymański, P.; Zielińska, D.; Kajak-Siemaszko, K.; Jaworska, D.; Neffe-Skocińska, K.; Sionek, B.; Trząskowska, M.; Kołożyn-Krajewska, D.; et al. The use of unique, environmental lactic Acid Bacteria strains in the traditional production of organic cheeses from unpasteurized cow’s Milk. Molecules 2022, 27, 1097. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Paszczyk, B.; Łuczyńska, J. The comparison of fatty acid composition and lipid quality indices in hard cow, sheep, and goat cheeses. Foods 2020, 9, 1667. [Google Scholar] [CrossRef]
- ISO 13299:2016-05; Sensory Analysis–Methodology–General Guidance for Establishing a Sensory Profile. Available online: https://www.iso.org/standard/58042.html (accessed on 12 August 2021).
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. Available online: https://www.iso.org/standard/45352.html (accessed on 12 August 2021).
- Meilgaard, M.C.; Civille, G.V.; Carr, B.T. Sensory Evaluation Technique, 5th ed.; CRC Press: Boca Raton, NY, USA, 2016. [Google Scholar]
- Ioannidou, M.D.; Maggira, M.; Samouris, G. Physicochemical characteristics, fatty acids profile and lipid oxidation during ripening of graviera cheese produced with raw and pasteurized milk. Foods 2022, 11, 2138. [Google Scholar] [CrossRef]
- Mureşan, C.C.; Marc, R.A.; Semeniuc, C.A.; Socaci, S.A.; Fărcaş, A.; Fracisc, D.; Pop, C.R.; Rotar, A.; Dodan, A.; Mureşan, V.; et al. Changes in physicochemical and microbiological properties, Fatty Acid and Volatile Compound Profiles of Apuseni Cheese during Ripening. Foods 2021, 10, 258. [Google Scholar] [CrossRef]
- Pinheiro, J.S.; Sudré, B.G.S.S.; Alexandre, A.C.S.; Campolina, G.A.; Correia, E.F.; Costa Sobrinho, P.S. Influence of the starter cultures and ripening on the physicochemical and sensory characteristics of Serro artisanal cheese. Int. J. Gastron. Food Sci. 2021, 24, 100331. [Google Scholar] [CrossRef]
- Carvalho, J.D.G.; Viotto, W.H.; Kuaye, A.Y. The quality of Minas Frescal cheese produced by different technological processes. Food Control 2007, 18, 262–267. [Google Scholar] [CrossRef]
- Mallatou, H.; Pappa, E.C. Comparison of the characteristics of Teleme Cheese made from ewe’s, goat’s and cow’s milk or a mixture of ewe’s and goat’s milk. Int. J. Dairy Technol. 2005, 58, 158–163. [Google Scholar] [CrossRef]
- Schebor, C.; Chirife, J. A survey of water activity and pH values in fresh pasta packed under modified atmosphere manufactured in Argentina and Uruguay. J. Food Prot. 2000, 63, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Akın, N.; Aydemir, S.; Koçak, C.; Yıldız, M.A. Changes of free fatty acid contents and sensory properties of white pickled cheese during ripening. Food Chem. 2003, 80, 77–83. [Google Scholar] [CrossRef]
- Manzo, N.; Santini, A.; Pizzolongo, F.; Aiello, A.; Marrazzo, A.; Meca, G.; Durazzo, A.; Lucarini, M.; Romano, R. Influence of ripening on chemical characteristics of a Tratitional Italian cheese: Provolone del Monaco. Sustainability 2019, 11, 2520. [Google Scholar] [CrossRef]
- Lin, X.; Xia, Y.; Yang, Y.; Wang, G.; Zhou, W.; Ai, L. Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant. LWT 2020, 126, e109278. [Google Scholar] [CrossRef]
- Batool, M.; Nadeem, M.; Imran, M.; Khan, I.T.; Bhatti, J.A.; Ayaz, M. Lipolysis and antioxidant properties of cow and buffalo cheddar cheese in accelerated ripening. Lipids Health Dis. 2018, 17, 228. [Google Scholar] [CrossRef]
- Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R.B. Antioxidant activity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 2009, 62, 339–347. [Google Scholar] [CrossRef]
- Batool, M.; Nadeem, M.; Imran, M.; Gulzar, N.; Shahid, M.Q.; Shahbaz, M.; Ajmal, M.; Khan, I.T. Impact of vitamin e and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening. Lipids Health Dis. 2018, 17, 79. [Google Scholar] [CrossRef]
- Branciari, R.; Ranucci, D.; Trabalza-Marinucci, M.; Codini, M.; Orru, M.; Ortenzi, R.; Forte, C.; Ceccarini, M.R.; Valiani, A. Evaluation of the antioxidant properties and oxidative stability of Pecorino cheese made from the raw milk of ewes fed Rosmarinus officinalis L. leaves. Int. J. Food Sci. Technol. 2015, 50, 558–565. [Google Scholar] [CrossRef]
- Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Iacurto, M.; Tripaldi, C. Chemical characteristics and oxidative stability of buffalo mozzarella cheese produced with fresh and frozen curd. Molecules 2021, 26, 1405. [Google Scholar] [CrossRef]
- Chudy, S.; Bilska, A.; Kowalski, R.; Teichert, J. Color of milk and milk products in CIE L*a*b* space. Med. Weter./Vet. Med. Sci. 2020, 76, 77–81. [Google Scholar] [CrossRef]
- Milovanovic, B.; Djekic, I.; Miocinovic, J.; Djordjevic, V.; Lorenzo, J.M.; Barba, F.J.; Mörlein, D.; Tomasevic, I. What is the color of milk and dairy products and how is it measured? Foods 2020, 9, 1629. [Google Scholar] [CrossRef] [PubMed]
- Tomar, O. The effects of probiotic cultures on the organic acid content, texture profile and sensory attributes of Tulum Cheese. Int. J. Dairy Technol. 2019, 72, 218–228. [Google Scholar] [CrossRef]
- Ávila, M.; Garde, S.; Nuñez, M. The influence of some manufacturing and ripening parameters on the color of ewes’ milk cheese. Milchwissenschaf 2008, 63, 160–164. [Google Scholar]
- Akarca, G.; Tomar, O.; Gök, V. Effect of different packaging methods on the quality of stuffed and sliced mozzarella cheese during storage. J. Food Process. Preserv. 2015, 39, 2912–2918. [Google Scholar] [CrossRef]
- Zielińska, D.; Kolożyn-Krajewska, D. Food-Origin Lactic Acid Bacteria May Exhibit Probiotic Properties: Review. Biomed Res. Int. 2018, 2018, 5063185. [Google Scholar] [CrossRef] [PubMed]
- Baylis, C. Raw milk and raw milk cheeses as vehicles for infection by Verocytotoxin-producing Escherichia coli. Int. J. Dairy Technol. 2009, 62, 293–307. [Google Scholar] [CrossRef]
- Rowe, M.T.; Donaghy, J. Mycobacterium bovis: The importance of milk and dairy products as a cause of human tuberculosis in the UK. A review of taxonomy and culture methods, with particular reference to artisanal cheese. Int. J. Dairy Technol. 2008, 61, 317–326. [Google Scholar] [CrossRef]
- Madic, J.; Vingadassalon, N.; de Garam, C.P.; Marault, M.; Scheutz, F.; Brugere, H.; Jamet, E.; Auvray, F. Detection of Shiga toxin-producing Escherichia coli serotypes O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7 in raw-milk cheeses by using multiplex real-time PCR. Appl. Environ. Microbiol. 2011, 77, 2035–2041. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Maurizio, R. Raw and heat-treated Milk: From public health risks to nutritional quality. Beverages 2017, 3, 54. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; RossGerald, R.P.; Fitzgerald, F.; Cotter, P. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Rudol, M.; Scherer, S. High incidence of Listeria monocytogenes in European red smear cheese. Int. J. Food Microbiol. 2001, 63, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.N.; Chaudhary, V.; Singh, T.P.; Özogul, F. Retrospecting the concept and industrial significance of LAB bacteriocins. Food Biosci. 2022, 46, 101607. [Google Scholar] [CrossRef]
- Tabla, R.; Gómez, A.; Simancas, A.; Rebollo, J.E. Enterobacteriacee species during manufactujring and ripening of semi hard and soft raw ewe’s milk cheese: Gas production capacity. Small Rumin. Res. 2016, 145, 123–129. [Google Scholar] [CrossRef]
- Muñez, M.; Gaya, P.; Medina, M. Influence of manufacturing and ripeningconditions on the survival of Enterobacteriaceae in Manchego cheese. J. Dairy Sci. 1985, 68, 794–800. [Google Scholar] [CrossRef]
- Verdier-Metz, I.; Michel, V.; Delbès, C.; Montel, M.C. Do milking practicesinfluence the bacterial diversity of raw milk? Food Microbiol. 2009, 26, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Montel, M.C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 2024, 177, 136–154. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Fox, P.F.; Cogan, T.M.; Guinee, T.P. Factors that affect the quality of cheese. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; Fox, P.F., McSweeney, P.L.H., Cotter, P.D., Everett, D.W., Eds.; Elsevier Academic Press: London, UK, 2017; pp. 617–641. [Google Scholar]
- Kaminarides, S.; Litos, J.; Massouras, T.; Georgala, A. The effect of cooking time on curd composition and textural properties of sheep Halloumi cheese. Small Rumin. Res. 2015, 125, 106–114. [Google Scholar] [CrossRef]
- Türkmen, D.; Güler, Z. Influence of chymosin type and brine concentration on chemical composition, texture, microstructural and colour properties of Turkish white cheeses. Int. Dairy J. 2022, 133, 105408. [Google Scholar] [CrossRef]
- Ibáñez, R.A.; Govindasamy-Lucey, S.; Jaeggi, J.J.; Johnson, M.E.; McSweeney, P.L.H.; Lucey, J.A. Low- and reduced-fat milled curd, direct-salted Gouda cheese: Comparison of lactose standardization of cheese milk and whey dilution techniques. J. Dairy Sci. 2020, 103, 1175–1192. [Google Scholar] [CrossRef]
- Özer, B.H.; Robinson, R.K.; Grandison, A.S. Textural and microstructural properties of urfa cheese (a white-brined Turkish cheese). Int. J. Dairy Technol. 2003, 56, 171–176. [Google Scholar] [CrossRef]
- Aminifar, M.; Emam-Djome, Z. Investigation on the microstructural and textural properties of Lighvan cheese produced from bovine milk fortified with protein and gum tragacanth during ripening. Int. J. Dairy Technol. 2016, 69, 225–235. [Google Scholar] [CrossRef]
- Ozbek, C.; Guzeler, N. Effects of stabilisers in brine on soft white cheese quality parameters. Int. Dairy J. 2022, 134, 105446. [Google Scholar] [CrossRef]
- Sołowiej, B.; Cheung, I.W.Y.; Li-Chan, E.C.Y. Texture, rheology and meltability of processed cheese analogues prepared using rennet or acid casein with or without added whey proteins. Int. Dairy J. 2014, 37, 87–94. [Google Scholar] [CrossRef]
- Thapa, T.B.; Gupta, V.K. Rheology of processed cheese foods with added whey protein concentrates. Ind. J. Dairy Sci. 1992, 45, 88–92. [Google Scholar]
- Fan, X.; Ling, N.; Liu, C.; Liu, M.; Xu, J.; Zhang, T.; Zeng, T.; Wu, Z.; Pan, D. Screening of an efficient cholesterol-lowering strain of Lactiplantibacillus plantarum 54–1 and investigation of its degradation molecular mechanism. Ultrason. Sonochem. 2023, 101, 106698. [Google Scholar] [CrossRef]
- Frappier, M.; Auclair, J.; Bouasker, S.; Gunaratnam, S.; Diarra, C.; Millette, M. Screening and Characterization of Some Lactobacillaceae for Detection of Cholesterol-Lowering Activities. Probiotics Antimicrob. Prot. 2022, 14, 873–883. [Google Scholar] [CrossRef]
- Lye, H.-S.; Rusul, G.; Liong, M.T. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J. Dairy Sci. 2010, 93, 1383–1392. [Google Scholar] [CrossRef]
- Albano, C.; Morandi, S.; Silvetti, T.; Casiraghi, M.C.; Manini, F.; Brasca, M. Lactic acid bacteria with cholesterol-lowering properties for dairy applications: In vitro and in situ activity. J. Dairy Sci. 2018, 101, 10807–10818. [Google Scholar] [CrossRef]
- Barron, L.J.R.; Redondo, Y.; Aramburu, M.; Gil, P.; Pérez-Elortondo, F.J.; Albisu, M.; Nájera, A.I.; de Renobales, M.; Fernández-García, E. Volatile composition and sensory properties of industrially produced Idiazabal cheese. Int. Dairy J. 2007, 17, 1401–1414. [Google Scholar] [CrossRef]
- Montoya, D.; Boylston, T.D.; Mendonca, A. Preliminary screening of Bifidobacteria spp. and Pediococcus acidilactici in a Swiss cheese curd slurry model system: Impact on microbial viability and flavor characteristics. Int. Dairy J. 2009, 19, 605–611. [Google Scholar] [CrossRef]
- Sousa, M.J.; Ardo, Y.; McSweeney, P.L.H. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 2001, 11, 327–345. [Google Scholar] [CrossRef]
Component | Variant of Cheese | Chemical Composition [%] |
---|---|---|
Water | B1 | 46.98 ± 0.27 b |
R | 42.88 ± 0.08 a | |
Protein | B1 | 18.65 ± 0.05 a |
R | 19.90 ± 0.10 b | |
Fat | B1 | 27.50 ± 0.20 a |
R | 30.03 ± 0.13 b | |
NaCl | B1 | 1.40 ± 0.20 a |
R | 1.35 ± 0.05 a | |
Phosphorus | B1 | 0.91 ± 0.01 a |
R | 0.95 ± 0.01 a |
Parameter | Variants of Cheeses | Time of Storage (Months) | |||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | ||
pH | B1 | 5.13 ± 0.02 aB | 4.99 ± 0.02 aA | 4.92 ± 0.03 aA | 5.02 ± 0.05 aA |
R | 5.14 ± 0.01 aB | 5.03 ± 0.04 bA | 5.14 ± 0.03 bB | 5.19 ± 0.06 bB | |
Titratable Acidity (SH°) | B1 | 225.50 ± 8.87 aC | 88.0 ± 2.45 aA | 91.0 ± 2.24 bA | 129.5 ± 9.10 bB |
R | 229.25 ± 5.54 aC | 83.5 ± 6.98 aA | 79.15 ± 1.84 aA | 96.5 ± 3.84 aB | |
ORP (mV) | B1 | 398.05 ± 39.01 AB | 410.1 ± 4.78 aAB | 513.5 ± 4.32 aA | 491.9 ± 13.50 bA |
R | 479.65 ± 9.82 bAB | 392.83 ± 4.18 aA | 519.48 ± 1.15 aB | 442.68 ± 2.70 aAB | |
aw | B1 | 0.995 ± 0.007 aA | 0.975 ± 0.004 aA | 0.960 ± 0.000 aA | 0.960 ± 0.000 aA |
R | 0.975 ± 0.007 bA | 0.976 ± 0.002 aA | 0.952 ± 0.005 bA | 0.947 ± 0.005 bA | |
L* | B1 | 84.87 ± 1.37 aA | 84.82 ± 1.32 aA | 87.73 ± 1.00 bAC | 85.93 ± 1.24 bAB |
R | 85.03 ± 1.63 aAB | 84.22 ± 2.01 aA | 85.7 ± 1.83 aAB | 83.13 ± 2.35 aA | |
a* | B1 | 1.43 ± 0.13 aA | 1.40 ± 0.20 aA | 2.34 ± 0.19 bC | 1.62 ± 0.11 bB |
R | 1.37 ± 0.17 aA | 1.34 ± 0.19 aA | 1.86 ± 0.50 aB | 1.43 ± 0.22 aA | |
b* | B1 | 14.11 ± 0.80 aA | 15.09 ± 1.12 bA | 15.74 ± 1.11 aB | 15.32 ± 0.69 aB |
R | 14.93 ± 0.63 bA | 16.21 ± 0.98 bB | 17.02 ± 0.83 bC | 17.33 ± 0.51 bC |
Count of Microorganisms [log CFUg −1] | Variant/Time of Storage | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|
LAB | B1 | 8.00 ± 0.70 Aa | 9.06 ± 0.50 ABa | 9.09 ± 0.01 Ba | 9.09 ± 0.05 Ba |
R | 7.73 ± 0.21 Aa | 7.60 ± 0.02 Ab | 7.61 ± 0.01 Ab | 7.33 ± 0.26 Ab | |
Enterobacteriaceae | B1 | 6.86 ± 0.11 Aa | 7.66 ± 0.20 Aa | 7.67 ± 0.19 Aa | 6.21 ± 0.13 ABa |
R | 6.44 ± 0.08 Aa | 6.98 ± 0.11 Aa | 6.44 ± 0.52 Ab | 6.32 ± 0.25 Aa | |
Yeast and molds | B1 | 4.26 ± 0.51 Aa | 4.08 ± 0.18 Aa | 4.87 ± 0.12 Aa | 5.76 ± 0.08 ABa |
R | 3.96 ± 0.51 Aa | 3.98 ± 0.54 Aa | 5.37 ± 0.32 ABa | 4.65 ± 0.01 ABa | |
Salmonella spp. in 25 g of product | B1 | nd* | nd* | nd* | nd* |
R | nd* | nd* | nd* | nd* | |
L. monocytogenes in 25 g of product | B1 | nd* | nd* | nd* | nd* |
R | nd* | nd* | nd* | nd* |
Parameter | Variant/Time of Storage | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|
Hardness Cycle 1 [N] | B1 | 26.13 ± 2.98 ABa | 19.67 ± 2.97 Aa | 20.58 ± 2.32 ABa | 28.17 ± 3.35 Ba |
R | 50.71 ± 13.95 Ab | 29.29 ± 4.26 Bb | 25.16 ± 3.72 Ba | 35.72 ± 2.81 Ca | |
Adhesiveness [mJ] | B1 | 0.73 ± 0.44 Aa | 1.36 ± 0.72 Aa | 2.50 ± 0.51 Aa | 1.87 ± 0.42 Aa |
R | 0.70 ± 0.37 Aa | 2.07 ± 1.13 Aa | 1.50 ± 1.22 Aa | 2.48 ± 1.09 Aa | |
Hardness Cycle 2 [N] | B1 | 16.25 ± 2.31 Aa | 13,35 ± 2.15 Aa | 13.59 ± 1.51 Aa | 18.64 ± 4.19 Aa |
R | 23.25 ± 8.27 Ab | 20.45 ± 3.50 Bb | 18.07 ± 2.73 Ba | 26.27 ± 1.77 Ab | |
Cohesiveness | B1 | 0.46 ± 0.03 Aa | 0.30 ± 0.11 Ba | 0,18 ± 0.05 BCa | 0.20 ± 0.03 Ba |
R | 0.45 ± 0.11 Aa | 0.33 ± 0.05 ABa | 0.22 ± 0.02 Ba | 0.28 ± 0.07 Ba | |
Springiness [mm] | B1 | 8.71 ± 0.16 Aa | 6.06 ± 1.09 Ba | 4.54 ± 0.73 Ca | 4.51 ± 0.78 Ca |
R | 8.68 ± 0.38 Aa | 6.24 ± 0.88 Ba | 4.48 ± 0.37 Ca | 5.06 ± 0.92 Ba | |
Guminess [N] | B1 | 12.02 ± 1.70 Aa | 5.86 ± 2.25 Ba | 3.67 ± 0.86 Ba | 5.60 ± 1.41 Ba |
R | 16.63 ± 7.14 Ab | 9.47 ± 1.61 Bb | 5.63 ± 1.09 Ba | 10.01 ± 2.04 Ba | |
Chewiness [mJ] | B1 | 104.60 ± 14.32 Aa | 37.20 ± 18.92 Ba | 17.00 ± 6.19 Ba | 25.13 ± 7.11 Ba |
R | 143.38 ± 54.91 Ab | 59.46 ± 15.27 Ba | 25.32 ± 5.64 Ca | 51.90 ± 19.77 Ba |
Parameter | Variant/Time of Storage | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|
SFA [%] | B1 | 68.43 ± 0.05 Aa | 68.60 ± 0.00 Aa | 68.55 ± 0.15 Aa | 68.45 ± 0.00 Aa |
R | 68.83 ± 0.05 Aa | 69.70 ± 0.05 Aa | 68.95 ± 0.05 Aa | 68.85 ± 0.15 Aa | |
MUFA [%] | B1 | 26.55 ± 0.05 Aa | 26.40 ± 0.00 Aa | 26.50 ± 0.00 Aa | 26.45 ± 0.10 Aa |
R | 26.48 ± 0.10 Aa | 25.85 ± 0.05 Aa | 26.40 ± 0.05 Aa | 26.35 ± 0.15 Aa | |
PUFA [%] | B1 | 3.18 ± 0.05 Aa | 3.15 ± 0.05 Ab | 3.10 ± 0.05 Ab | 3.10 ± 0.00 Ab |
R | 3.08 ± 0.00 Aa | 2.85 ± 0.00 Aa | 2.95 ± 0.05 Aa | 2.90 ± 0.00 Aa | |
trans [%] | B1 | 1.85 ± 0.05 Ab | 1.80 ± 0.00 Ab | 1.85 ± 0.00 Ab | 1.85 ± 0.05 Ab |
R | 1.62 ± 0.05 Aa | 1.60 ± 0.00 Aa | 1.65 ± 0.05 Aa | 1.65 ± 0.05 Aa | |
n-3 [%] | B1 | 0.40 ± 0.00 Aa | 0.40 ± 0.00 Aa | 0.40 ± 0.00 Aa | 0.40 ± 0.00 Aa |
R | 0.40 ± 0.00 Aa | 0.40 ± 0.00 Aa | 0.40 ± 0.00 Aa | 0.40 ± 0.00 Aa | |
n-6 [%] | B1 | 2.30 ± 0.00 Aa | 2.25 ± 0.05 Ab | 2.20 ± 0.05 Aa | 2.23 ± 0.01 Ab |
R | 2.10 ± 0.00 Aa | 1.95 ± 0.05 Aa | 2.05 ± 0.05 Aa | 2.00 ± 0.00 Aa | |
Cholesterol [mg/100 g] | B1 | 29.05 ± 2.15 Ba | 24.68 ± 0.42 Aa | 25.35 ± 0.45 Aa | 25.00 ± 0.25 Aa |
R | 47.98 ± 1.00 Bb | 47.25 ± 2.05 Bb | 42.62 ± 0.65 Ab | 54.48 ± 1.80 Cb |
Parameter | Variant/Time of Storage | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|
AI | B1 | 2.71 ± 0.00 Aa | 2.75 ± 0.00 Aa | 2.73 ± 0.00 Aa | 2.73 ± 0.00 Aa |
R | 2.76 ± 0.00 Aa | 2.78 ± 0.02 Aa | 2.78 ± 0.00 Aa | 2.79 ± 0.01 Aa | |
TI | B1 | 2.08 ± 0.00 Aa | 2.11 ± 0.00 Aa | 2.09 ± 0.00 Aa | 2.09 ± 0.00 Aa |
R | 2.12 ± 0.00 Aa | 2.20 ± 0.02 Aa | 2.13 ± 0.00 Aa | 2.14 ± 0.00 Aa | |
DFA | B1 | 40.73 ± 0.04 Aa | 40.55 ± 0.05 Aa | 40.30 ± 0.03 Aa | 40.40 ± 0.00 Aa |
R | 40.26 ± 0.02 Aa | 39.70 ± 0.01 Aa | 40.05 ± 0.01 Aa | 39.85 ± 0.06 Aa | |
OFA | B1 | 46.70 ± 0.00 Aa | 47.15 ± 0.03 Aa | 46.75 ± 0.05 Aa | 46.80 ± 0.02 Aa |
R | 47.30 ± 0.05 Aa | 48.20 ± 0.01 Aa | 47.50 ± 0.05 Aa | 47.50 ± 0.00 Aa | |
H/H | B1 | 0.50 ± 0.00 Aa | 0.49 ± 0.01 Aa | 0.49 ± 0.01 Aa | 0.49 ± 0.00 Aa |
R | 0.48 ± 0.00 Aa | 0.46 ± 0.01 Aa | 0.48 ± 0.02 Aa | 0.47 ± 0.02 Aa | |
HPI | B1 | 0.38 ± 0.01 Aa | 0.37 ± 0.00 Aa | 0.37 ± 0.00 Aa | 0.37 ± 0.00 Aa |
R | 0.37 ± 0.00 Aa | 035 ± 0.00 Aa | 0.37 ± 0.00 Aa | 0.36 ± 0.00 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sionek, B.; Okoń, A.; Łepecka, A.; Zielińska, D.; Jaworska, D.; Kajak-Siemaszko, K.; Neffe-Skocińska, K.; Trząskowska, M.; Karbowiak, M.; Szymański, P.; et al. The Role of Autochthonous Levilactobacillus brevis B1 Starter Culture in Improving the Technological and Nutritional Quality of Cow’s Milk Acid-Rennet Cheeses—Industrial Model Study. Foods 2024, 13, 392. https://doi.org/10.3390/foods13030392
Sionek B, Okoń A, Łepecka A, Zielińska D, Jaworska D, Kajak-Siemaszko K, Neffe-Skocińska K, Trząskowska M, Karbowiak M, Szymański P, et al. The Role of Autochthonous Levilactobacillus brevis B1 Starter Culture in Improving the Technological and Nutritional Quality of Cow’s Milk Acid-Rennet Cheeses—Industrial Model Study. Foods. 2024; 13(3):392. https://doi.org/10.3390/foods13030392
Chicago/Turabian StyleSionek, Barbara, Anna Okoń, Anna Łepecka, Dorota Zielińska, Danuta Jaworska, Katarzyna Kajak-Siemaszko, Katarzyna Neffe-Skocińska, Monika Trząskowska, Marcelina Karbowiak, Piotr Szymański, and et al. 2024. "The Role of Autochthonous Levilactobacillus brevis B1 Starter Culture in Improving the Technological and Nutritional Quality of Cow’s Milk Acid-Rennet Cheeses—Industrial Model Study" Foods 13, no. 3: 392. https://doi.org/10.3390/foods13030392
APA StyleSionek, B., Okoń, A., Łepecka, A., Zielińska, D., Jaworska, D., Kajak-Siemaszko, K., Neffe-Skocińska, K., Trząskowska, M., Karbowiak, M., Szymański, P., Dolatowski, Z. J., & Kołożyn-Krajewska, D. (2024). The Role of Autochthonous Levilactobacillus brevis B1 Starter Culture in Improving the Technological and Nutritional Quality of Cow’s Milk Acid-Rennet Cheeses—Industrial Model Study. Foods, 13(3), 392. https://doi.org/10.3390/foods13030392