Impact of Two Brown Seaweed (Ascophyllum nodosum L.) Biostimulants on the Quantity and Quality of Yield in Cucumber (Cucumis sativus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Sampling
2.2. Extraction and Determination of Plastid Pigments and Tocopherols
2.3. Chemicals
2.4. Statistical Analysis
3. Results
3.1. Yield of Cucumbers
3.2. Fruit Parameters
3.3. Plastid Pigments and Tocopherols in Cucumber
3.3.1. Plastid Pigments and Tocopherols in Cucumber Flesh
3.3.2. Plastid Pigments and Tocopherols in Cucumber Skin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Welbaum, G.E. Vegetable Production and Practices; CAB International: Wallingforth, UK, 2015; 486p. [Google Scholar]
- Baratova, M.; Kosimova, S.; Bustonova, S. Biostimulant application in the cultivation of cucumber (Cucumis sativus L.): A case study of Andijan region. IOP Conf. Ser. Earth Environ. Sci. 2021, 939, 012093. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Shariatpanahi, M.E.; Ahmadi, B.; Soltanloo, H.; Lotfi, M.; Zarifi, E. Efficient Parthenogenesis Induction and In Vitro Haploid Plant Regeneration in Cucumber (Cucumis sativus L.) Using Putrescine, Spermidine, and Cycocel. J. Plant Growth Regul. 2018, 37, 1127–1134. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef] [PubMed]
- de Paula, B.S.; Feltrim, D.; Engel, D.C.H.; Baptistella, J.L.C.; Rodrigues, M.; Engel, E.; Mazzafera, P. Algae-based biostimulants increase yield and quality of mini tomatoes under protected cultivation. JSFA Rep. 2022, 2, 155–160. [Google Scholar] [CrossRef]
- Zamljen, T.; Hudina, M.; Veberič, R.; Slatnar, A. Biostimulative effect of amino acids and green algae extract on capsaicinoid and other metabolite contents in fruits of Capsicum spp. Chem. Biol. Technol. Agric. 2021, 8, 63. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B.J. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.-R.; Hajirezaei, M.; Hofius, D.; Sonnewald, U.; Voll, L.M. Specific Roles of α- and γ-Tocopherol in Abiotic Stress Responses of Transgenic Tobacco. Plant Physiol. 2007, 143, 1720–1738. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Holländer-Czytko, H.; Oettmeier, W.; Trebst, A.J. Tocopherol as singlet oxygen scavenger in photosystem II. J. Plant Physiol. 2005, 162, 749–757. [Google Scholar] [CrossRef]
- Kopczewski, T.; Kuźniak, E.; Kornaś, A.; Rut, G.; Nosek, M.; Ciereszko, I.; Szczepaniak, L. Local and Systemic Changes in Photosynthetic Parameters and Antioxidant Activity in Cucumber Challenged with Pseudomonas syringae pv lachrymans. J. Mol. Sci. 2020, 21, 6378. [Google Scholar] [CrossRef]
- Wu, S.; Guo, Y.; Adil, M.F.; Sehar, S.; Cai, B.; Xiang, Z.; Tu, Y.; Zhao, D.; Shamsi, I.H. Comparative Proteomic Analysis by iTRAQ Reveals that Plastid Pigment Metabolism Contributes to Leaf Color Changes in Tobacco (Nicotiana tabacum) during Curing. Int. J. Mol. Sci. 2020, 21, 2394. [Google Scholar] [CrossRef]
- Kräutler, B. Breakdown of Chlorophyll in Higher Plants—Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death. Angew. Chem. Int. Ed. 2016, 55, 4882–4907. [Google Scholar] [CrossRef]
- Karppinen, K.; Zoratti, L.; Sarala, M.; Carvalho, E.; Hirsimäki, J.; Mentula, H.; Martens, S.; Häggman, H.; Jaakola, L. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. BMC Plant Biol. 2016, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Schmitzer, V.; Sircelj, H.; Stampar, F.; Slatnar, A. Physico-chemical characterization of Cornus kousa Burg. fruit: Determining optimal maturity for fresh consumption. J. Sci. Food Agric. 2021, 101, 778–785. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 January 2024).
- Hassan, S.M.; Ashour, M.; Sakai, N.; Zhang, L.; Hassanien, H.A.; Gaber, A.; Ammar, G. Impact of Seaweed Liquid Extract Biostimulant on Growth, Yield, and Chemical Composition of Cucumber (Cucumis sativus). Agriculture 2021, 11, 320. [Google Scholar] [CrossRef]
- Vijayanand, N.; Ramya, S.S.; Rathinavel, S. Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant. Asian Pac. J. Reprod. 2014, 3, 150–155. [Google Scholar] [CrossRef]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef]
- Francke, A.; Majkowska-Gadomska, J.; Kaliniewicz, Z.; Jadwisieńczak, K. No Effect of Biostimulants on the Growth, Yield and Nutritional Value of Shallots Grown for Bunch Harvest. Agronomy 2022, 12, 1156. [Google Scholar] [CrossRef]
- Stasio, E.d.; Rouphael, Y.; Colla, G.; Raimondi, G.; Giordano, M.; Pannico, A.; El-Nakhel, C.; de Pascale, S. The influence of Ecklonia maxima seaweed extract on growth, photosynthetic activity and mineral composition of Brassica rapa L. subsp. sylvestris under nutrient stress conditions. Eur. J. Hortic. Sci. 2017, 82, 286–293. [Google Scholar] [CrossRef]
- Lefi, E.; Badri, M.; Hamed, S.B.; Talbi, S.; Mnafgui, W.; Ludidi, N.; Chaieb, M. Influence of Brown Seaweed (Ecklonia maxima) Extract on the Morpho-Physiological Parameters of Melon, Cucumber, and Tomato Plants. Agronomy 2023, 13, 2745. [Google Scholar] [CrossRef]
- Shan, N.; Gan, Z.; Nie, J.; Liu, H.; Wang, Z.; Sui, X. Comprehensive Characterization of Fruit Volatiles and Nutritional Quality of Three Cucumber (Cucumis sativus L.) Genotypes from Different Geographic Groups after Bagging Treatment. Foods 2020, 9, 294. [Google Scholar] [CrossRef]
- Tarantino, A.; Lops, F.; Disciglio, G.; Lopriore, G. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis®’ apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci. Hortic. 2018, 239, 26–34. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Testolin, R.; Zanotelli, D.; Andreotti, C. Effect of Biostimulants on Apple Quality at Harvest and after Storage. Agronomy 2020, 10, 1214. [Google Scholar] [CrossRef]
- Gitau, M.M.; Farkas, A.; Ördög, V.; Maróti, G. Evaluation of the biostimulant effects of two Chlorophyta microalgae on tomato (Solanum lycopersicum). J. Clean. Prod. 2022, 364, 132689. [Google Scholar] [CrossRef]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital. J. Agron. 2021, 16. [Google Scholar] [CrossRef]
- Abd-Elkader, D.Y.; Mohamed, A.A.; Feleafel, M.N.; Al-Huqail, A.A.; Salem, M.Z.M.; Ali, H.M.; Hassan, H.S. Photosynthetic Pigments and Biochemical Response of Zucchini (Cucurbita pepo L.) to Plant-Derived Extracts, Microbial, and Potassium Silicate as Biostimulants Under Greenhouse Conditions. Front. Plant Sci. 2022, 13, 879545. [Google Scholar] [CrossRef]
- Sosnowski, J.; Jankowski, K.; Truba, M.; Malinowska, E. Effect of Ecklonia maxima extract on photosynthesis activity and chlorophyll content of Medicago × varia Martyn leaves. Chil. J. Agric. Res. 2019, 79, 257–265. [Google Scholar] [CrossRef]
- Stirk, W.A.; Rengasamy, K.R.; Kulkarni, M.G.; van Staden, J. Plant biostimulants from seaweed: An overview. In The Chemical Biology of Plant Biostimulants; Wiley: Hoboken, NJ, USA, 2020; pp. 31–55. [Google Scholar]
Control | Fitostim® Alga | Phylgreen® |
---|---|---|
Phylgreen® | Control | Fitostim® Alga |
Fitostim® Alga | Phylgreen® | Control |
Dry Weight | Number of Fruits | Fruit Part | Treatment | Harvest Date | Total Pigments | Total Tocopherol | Yield | Color | |
---|---|---|---|---|---|---|---|---|---|
Dry weight | 0.5258 | −0.0061 | −0.2037 | 0.5641 | 0.0193 | −0.0304 | 0.5358 | 0.0461 | |
Number of fruits | −0.0104 | −0.0597 | 0.7878 | 0.0648 | −0.0346 | 0.9936 | 0.2493 | ||
Fruit part | −0.0142 | −0.0286 | 0.9709 | 0.9562 | −0.0096 | 0.9636 | |||
Treatment | −0.0175 | −0.0049 | −0.0418 | −0.1389 | 0.8963 | ||||
Harvest date | 0.0125 | −0.1451 | 0.7895 | 0.4678 | |||||
Total pigments | 0.9518 | 0.0613 | 0.9862 | ||||||
Total tocopherol | −0.0353 | 0.5377 | |||||||
Yield | 0.0579 |
8 June 2018 (1st Harvest) | 20 June 2018 (2nd Harvest) | 4 July 2018 (3rd Harvest) | Average Measured Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Phylgreen® | Fitostim® Algae | Control | Phylgreen® | Fitostim® Algae | Control | Phylgreen® | Fitostim® Algae | Control | Phylgreen® | Fitostim® Algae | ||
Skin color | a* | −3.85 ± 0.37 a,† | −3.04 ± 0.36 b | −4.03 ± 0.48 a | −3.78 ± 0.51 a | −3.61 ± 0.07 a | −3.63 ± 0.10 a | −4.90 ± 0.20 a | −4.11 ± 0.22 a | −4.44 ± 0.60 a | −4.17 ± 0.24 a | −3.58 ± 0.71 b | −4.03 ± 0.31 a |
b* | 5.47 ± 0.68 a | 4.32 ± 1.66 b | 6.49 ± 0.63 a | 5.28 ± 0.96 a | 4.72 ± 0.17 a | 4.63 ± 0.32 a | 7.78 ± 0.53 a | 5.74 ± 0.60 c | 6.35 ± 1.43 b | 6.17 ± 0.22 a | 4.92 ± 0.30 b | 5.82 ± 0.42 a | |
L* | 23.48 ± 0.71 a | 21.47 ± 2.26 b | 20.81 ± 1.53 c | 25.12 ± 1.62 a | 23.99 ± 0.99 a | 24.09 ± 0.50 a | 25.11 ± 0.53 a | 23.47 ± 0.67 b | 23.55 ± 1.04 b | 24.56 ± 0.99 a | 22.97 ± 1.42 b | 22.81 ± 1.22 b | |
Dry weight | 3.47 ± 0.11 b | 3.47 ± 0.21 b | 3.66 ± 0.17 a | 3.89 ± 0.05 a | 3.79 ± 0.27 a | 3.89 ± 0.31 a | 4.27 ± 0.42 a | 4.08 ± 0.20 a | 3.90 ± 0.27 a | 3.87 ± 0.11 a | 3.78 ± 0.15 a | 3.81 ± 0.13 a | |
Flesh diameter | 27.04 ± 0.66 a | 26.46 ± 0.67 a | 26.09 ± 0.49 a | 29.08 ± 0.37 a | 26.90 ± 0.33 a | 29.53 ± 0.39 a | 29.49 ± 1.28 a | 28.60 ± 1.00 a | 27.00 ± 1.23 a | 28.53 ± 1.04 a | 27.32 ± 0.99 a | 27.54 ± 1.23 a | |
Placenta diameter | 22.50 ± 1.20 a | 21.56 ± 1.10 a | 21.71 ± 0.95 a | 21.18 ± 1.04 a | 21.02 ± 1.31 a | 20.76 ± 0.39 a | 20.44 ± 1.65 a | 20.84 ± 1.20 a | 20.07 ± 1.05 a | 21.37 ± 2.44 a | 21.14 ± 1.99 a | 20.84 ± 2.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamljen, T.; Šircelj, H.; Veberič, R.; Hudina, M.; Slatnar, A. Impact of Two Brown Seaweed (Ascophyllum nodosum L.) Biostimulants on the Quantity and Quality of Yield in Cucumber (Cucumis sativus L.). Foods 2024, 13, 401. https://doi.org/10.3390/foods13030401
Zamljen T, Šircelj H, Veberič R, Hudina M, Slatnar A. Impact of Two Brown Seaweed (Ascophyllum nodosum L.) Biostimulants on the Quantity and Quality of Yield in Cucumber (Cucumis sativus L.). Foods. 2024; 13(3):401. https://doi.org/10.3390/foods13030401
Chicago/Turabian StyleZamljen, Tilen, Helena Šircelj, Robert Veberič, Metka Hudina, and Ana Slatnar. 2024. "Impact of Two Brown Seaweed (Ascophyllum nodosum L.) Biostimulants on the Quantity and Quality of Yield in Cucumber (Cucumis sativus L.)" Foods 13, no. 3: 401. https://doi.org/10.3390/foods13030401
APA StyleZamljen, T., Šircelj, H., Veberič, R., Hudina, M., & Slatnar, A. (2024). Impact of Two Brown Seaweed (Ascophyllum nodosum L.) Biostimulants on the Quantity and Quality of Yield in Cucumber (Cucumis sativus L.). Foods, 13(3), 401. https://doi.org/10.3390/foods13030401