Evaluation of the Risk from Potentially Toxic Elements (PTEs) in Italy’s Most Consumed Processed Fish Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Analytical Protocol
2.4. Method Validation
2.5. Statistical Analysis
2.6. Risk Characterization Protocol
3. Results and Discussion
3.1. Validation Parameters
3.2. Occurrence of PTEs in Canned Fish Products
3.3. Risk Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiesa, L.M.; Ceriani, F.; Caligara, M.; Di Candia, D.; Malandra, R.; Panseri, S.; Arioli, F. Mussels and clams from the Italian fish market. Is there a human exposition risk to metals and arsenic? Chemosphere 2018, 194, 644–649. [Google Scholar] [CrossRef] [PubMed]
- EFSA Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. EFSA J. 2014, 12, 3761. [Google Scholar] [CrossRef]
- Costa, L.G.M.; Fattori, V. Health risks associated with fish consumption focus on methylmercury, dioxins and dioxin-like PCBs. In Proceedings of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption, Rome, Italy, 25–29 January 2010. [Google Scholar]
- Ulusoy, Ş. Determination of toxic metals in canned tuna sold in developed and developing countries: Health risk assessment associated with human consumption. Mar. Pollut. Bull. 2023, 187, 114518. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Nobile, M.; Ceriani, F.; Malandra, R.; Arioli, F.; Panseri, S. Risk characterization from the presence of environmental contaminants and antibiotic residues in wild and farmed salmon from different FAO zones. Food Addit. Contam. Part A 2019, 36, 152–162. [Google Scholar] [CrossRef]
- Burger, J.; Gaines, K.F.; Boring, C.S.; Stephens, W.L.; Snodgrass, J.; Dixon, C.; Gochfeld, M. Metal levels in fish from the Savannah River: Potential hazards to fish and other receptors. Environ. Res. 2002, 89, 85–97. [Google Scholar] [CrossRef]
- Alam, M.G.M.; Tanaka, A.; Allinson, G.; Laurenson, L.J.B.; Stagnitti, F.; Snow, E.T. A comparison of trace element concentrations in cultured and wild carp (Cyprinus carpio) of Lake Kasumigaura, Japan. Ecotoxicol. Environ. Saf. 2002, 53, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Mwamburi, J. Comparative spatial metal concentrations and partitioning in bottom sediments of two tropical freshwater lake basins, Kenya. Lakes Reserv. Res. Manag. 2013, 18, 329–355. [Google Scholar] [CrossRef]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef]
- Nobile, M.; Mosconi, G.; Chiesa, L.M.; Panseri, S.; Danesi, L.; Falletta, E.; Arioli, F. Incidence of Potentially Toxic Elements and Perfluoroalkyl Substances Present in Canned Anchovy and Their Impact on Food Safety. Foods 2023, 12, 1060. [Google Scholar] [CrossRef]
- Pan, L.; Fang, G.; Wang, Y.; Wang, L.; Su, B.; Li, D.; Xiang, B. Potentially toxic element pollution levels and risk assessment of soils and sediments in the upstream river, Miyun Reservoir, China. Int. J. Environ. Res. Public Health 2018, 15, 2364. [Google Scholar] [CrossRef]
- 10 Chemicals of Public Health Concern. Available online: https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern (accessed on 15 December 2023).
- Panel, E.C. Cadmium in food-Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 980, 1–139. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Safety of aluminium from dietary intake-scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC). EFSA J. 2008, 6, 754. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks to animal and public health and the environment related to the presence of nickel in feed. EFSA J. 2015, 13, 4074. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Nielsen, E. Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, e06268. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J. 2014, 12, 3595. [Google Scholar] [CrossRef]
- Mercury Study Report to Congress. Available online: https://www.epa.gov/mercury/mercury-study-report-congress (accessed on 15 December 2023).
- Kumar, S.; Sharma, A. Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health 2019, 34, 327–338. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on lead in food. EFSA J. 2010, 8, 1570–1720. [Google Scholar] [CrossRef]
- Langrrd, S. One hundred years of chromium and cancer: A review of epidemiological evidence and selected case reports. Am. J. Ind. Med. 1990, 17, 189–214. [Google Scholar] [CrossRef]
- Agents Classified by the IARC Monographs, Volumes 1–135. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 15 December 2023).
- Hardisson, A.; Revert, C.; Gonzales-Weler, D.; Rubio, C. Aluminium exposure through the diet. Food Sci. Nutr. 2017, 3, 19. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Brocato, J.; Laulicht, F.; Costa, M. Mechanisms of nickel carcinogenesis. In Essential and Non-Essential Metals; Molecular and Integrative Toxicology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 181–197. [Google Scholar] [CrossRef]
- Mol, S. Determination of trace metals in canned anchovy and canned rainbow trouts. FCT 2011, 49, 348–351. [Google Scholar] [CrossRef]
- Alizada, N.; Malik, S.; Muzaffar, S.B. Bioaccumulation of heavy metals in tissues of Indian anchovy (Stolephorus indicus) from the UAE coast, Arabian Gulf. Mar. Pollut. Bull. 2020, 154, 111033. [Google Scholar] [CrossRef]
- Karsli, B. Determination of metal content in anchovy (Engraulis encrasicolus) from Turkey, Georgia and Abkhazia coasts of the Black Sea: Evaluation of potential risks associated with human consumption. Mar. Pollut. Bull. 2021, 165, 112108. [Google Scholar] [CrossRef]
- Girolametti, F.; Annibaldi, A.; Carnevali, O.; Pignalosa, P.; Illuminati, S.; Truzzi, C. Potential toxic elements (PTEs) in wild and farmed Atlantic bluefin tuna (Thunnus thynnus) from Mediterranean Sea: Risks and benefits for human consumption. Food Control 2021, 125, 108012. [Google Scholar] [CrossRef]
- Mmuoh, C.S. Determination of Heavy Metals and Microbiological Contamination of Frozen Mackerel (Scomber scombrus) Sold in Eke-Awka Market, Awka, Anambra State, Nigeria. In Proceedings of the Faculty of Agriculture International Conference, Azikiwe University, Awka, AN, Nigeria, 22–24 March 2023. [Google Scholar]
- Perugini, M.; Visciano, P.; Manera, M.; Zaccaroni, A.; Olivieri, V.; Amorena, M. Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ. Monit. Assess. 2014, 186, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- ISMEA 2023. Available online: https://www.ismeamercati.it/flex/cm/pages/ServeAttachment.php/L/IT/D/1%252F2%252F8%252FD.c482f98d7b1c47493508/P/BLOB%3AID%3D12636/E/pdf?mode=inline (accessed on 15 December 2023).
- Complementary Feeding: Recommendation. Available online: https://www.who.int/health-topics/complementary-feeding#tab=tab_2 (accessed on 15 December 2023).
- Osservatorio Sanità UniSalute. Available online: https://blogunisalute.it/osservatorio-sanita-unisalute-report-2021-2022/ (accessed on 15 December 2023).
- More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A. Statement on the derivation of Health-Based Guidance Values (HBGV s) for regulated products that are also nutrients. EFSA J. 2021, 19, e06479. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C. The Italian National Food Consumption Survey INRAN-SCAI 2005–06: Main results in terms of food consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [PubMed]
- Vacchina, V.; de la Calle, I.; Séby, F. Cr (VI) speciation in foods by HPLC-ICP-MS: Investigation of Cr (VI)/food interactions by size exclusion and Cr (VI) determination and stability by ion-exchange on-line separations. Anal. Bioanal. Chem. 2015, 407, 3831–3839. [Google Scholar] [CrossRef]
- Milacic, R.; Stupar, J. Simultaneous determination of chromium (III) complexes and chromium (VI) by fast protein anion-exchange liquid chromatography: Atomic absorption spectrometry. Analyst 1994, 119, 627–632. [Google Scholar] [CrossRef]
- Langard, S.; Costa, M.C. Handbook on the Toxicology of Metals; Academic Press: London, UK, 2007; Volume 24, Chapter 24; pp. 487–510. [Google Scholar]
- Food and Drug Administration. Food labeling: Serving sizes of foods that can reasonably be consumed at one eating occasion; dual-column labeling; updating, modifying, and establishing certain reference amounts customarily consumed; serving size for breath mints; and technical amendments. Final rule. Fed. Regist. 2016, 81, 34000–34047. [Google Scholar]
Reference | Analytes | Matrix | Extraction Technique | Instrumental Analysis | Limits of the Method (ng g−1) | Application Range Concentration (ng g−1) |
---|---|---|---|---|---|---|
Anchovy | ||||||
[10] | Hg, Cd, Pb, Cr, As, Sn, Al, Ni | Salted and canned anchovy | Acid digestion with HNO3, H2O2, H2O. | ICP OES | LOQ = 1.2–12 LOD = 0.40–3.6 | Hg, Cd, Pb, Cr, iAs, Sn, Al and Ni = 90.00–4940 |
[26] | Fe, Zn, Cu, Cd, Sn, Hg and Pb | Canned anchovy and canned rainbow trout | Digestion with HNO3 and H2O2. Microwave and washing. | ICP MS | / | 1.0–5.1 × 104 |
[27] | As, Cd, Co, Cr, Cu, Mn, Mo, Ni, P, Pb, V, Zn, Ca, K, Na, Mg, S and Sr | Anchovy | Digestion with nitric acid (65%). | ICP OES | LOD = 1.0–4.9 × 105 | 40–75 × 105 |
[28] | Al, Zn, Mn, Co, Cr, Cu, Fe, Ni, Cd, Pb, Se, As and Hg | Anchovy | Homogenization and drying of the samples followed by digestion with nitric acid and hydrochloric acid. Dilution and filtration. | ICP MS | LOD = 0.10–29 | 3.0–14 × 102 |
Tuna | ||||||
[4] | Cd, Pb, Hg, As | Canned tuna | Digestion with nitric acid (65%) and hydrogen peroxide (30%). Microwave. | ICP MS | LOD = 0.025–0.18 LOQ = 0.045–0.54 | 0.01–2.55 |
[29] | Cd, Pb and Fe | Wild and farmed Atlantic bluefin tuna | Homogenization and sample freezing. Microwave assisted digestion with HNO3 and H2O2. | GFAAS | / | 0.7–31,000 |
Mackerel | ||||||
[30] | Pb, Hg, Cr, As, and Cd | Mackerel | Homogenization and digestion. | AAS | / | ND—4000 |
[31] | As, Cd, Hg, Pb, Cu, Zn and Se | Different species including Mackerel | Homogenization and sample freezing. Microwave assisted digestion with HNO3, H2O2 and HF. | ICP OES | LOD = 0.0020–0.10 | 30–360 |
Analyte | Conc. (µg kg−1) | Uncertainty a % (Û) | RSDr | Horrat r b | RSDR | Horrat R b | Mean Recovery % |
---|---|---|---|---|---|---|---|
Cd | 5 | 21.1 | 16.1 | 0.460 | 15.2 | 0.435 | |
200 | 6.3 | 0.306 | 7.4 | 0.361 | 86.6 | ||
500 | 6.3 | 0.348 | 8.5 | 0.474 | |||
Pb | 5 | 21.4 | 6.1 | 0.174 | 5.95 | 0.168 | 81.0 |
200 | 6.5 | 0.305 | 8.8 | 0.408 | |||
500 | 7.1 | 0.378 | 8.5 | 0.455 | |||
Cr | 5 | 20.6 | 8.9 | 0.256 | 13.6 | 0.389 | |
200 | 8.30 | 0.405 | 11.4 | 0.552 | 85.4 | ||
500 | 5.9 | 0.331 | 10.3 | 0.570 | |||
Hg | 5 | 20.4 | 15.5 | 0.684 | 19.2 | 0.535 | |
200 | 7.6 | 0.377 | 9.2 | 0.450 | 91.1 | ||
500 | 4.3 | 0.243 | 7.6 | 0.428 | |||
Ni | 5 | 22.0 | 12.9 | 0.586 | 12.3 | 0.558 | |
200 | 2.4 | 0.115 | 9.4 | 0.439 | 81.5 | ||
500 | 2.3 | 0.125 | 9.3 | 0.498 | |||
Al | 50 | 26.2 | 3.47 | 0.378 | 5.94 | 0.651 | |
500 | 1.38 | 0.213 | 3.38 | 0.522 | 87.6 | ||
1000 | 2.80 | 0.479 | 3.73 | 0.641 |
Pb | Cd | Cr | Hg | Ni | Al | |
---|---|---|---|---|---|---|
Tuna n = 45 | ||||||
Minimum | 0.00 | 0.00 | 0.031 | 0.00 | 0.170 | 0.018 |
1st quartile | 0.010 | 0.0080 | 0.00 | 0.060 | 0.00 | 0.11 |
Median | 0.013 | 0.013 | 0.0090 | 0.093 | 0.00 | 0.13 |
3rd quartile | 0.017 | 0.020 | 0.013 | 0.14 | 0.0060 | 0.19 |
Maximum | 0.025 | 0.065 | 0.045 | 0.63 | 0.028 | 0.63 |
>LOQ % | 89 | 96 | 64 | 100 | 47 | 100 |
Different from | anchovy *** | anchovy *** | mackerel ** | anchovy *** mackerel ** | anchovy *** mackerel *** | anchovy *** mackerel *** |
Anchovy n = 28 | ||||||
Minimum | 0.012 | 0.025 | 0.00 | 0.029 | 0.018 | 0.094 |
1st quartile | 0.040 | 0.036 | 0.00 | 0.034 | 0.032 | 0.62 |
Median | 0.047 | 0.19 | 0.0030 | 0.039 | 0.21 | 1.45 |
3rd quartile | 0.053 | 0.22 | 0.0080 | 0.069 | 0.24 | 2.00 |
Maximum | 0.082 | 0.23 | 0.14 | 0.21 | 0.33 | 6.60 |
>LOQ % | 100 | 100 | 50 | 100 | 100 | 100 |
Different from | tuna *** mackerel *** | tuna *** mackerel *** | mackerel *** | tuna *** | tuna *** mackerel *** | tuna *** mackerel *** |
Mackerel n = 22 | ||||||
Minimum | 0.0090 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1st quartile | 0.010 | 0.0070 | 0.011 | 0.021 | 0.0080 | 0.00 |
Median | 0.012 | 0.013 | 0.014 | 0.027 | 0.013 | 0.00 |
3rd quartile | 0.014 | 0.018 | 0.024 | 0.042 | 0.016 | 0.00 |
Maximum | 0.022 | 0.035 | 0.083 | 0.083 | 0.054 | 0.41 |
>LOQ % | 100 | 86 | 95 | 95 | 95 | 9 |
Different from | anchovy *** | anchovy *** | tuna ** anchovy *** | anchovy *** | tuna *** anchovy *** | tuna *** anchovy *** |
HBGV | PTE | Tuna | Anchovy | Mackerel | THQ Tuna–Anchovy–Mackerel (HBGVs µg kg−1 day−1) | ||||
---|---|---|---|---|---|---|---|---|---|
EDI µg kg−1 | Skin | Reproduction Development | Developmental Neurotoxicity | Blood Pressure | Kidney | ||||
BMDL10 | Pb | 0.0022 | 0.00030 | 0.00016 | 0.0044–0.00060–0.00031 (0.5) | 0.0015–0.00020–0.00010 (0.15) | 0.0035–0.00047–0.00025 (0.63) | ||
TWI | Cd | 0.0057 | 0.00085 | 0.00025 | 0.016–0.0024–0.00069 (0.36) | ||||
TDI | Cr | 0.0040 | 0.00050 | 0.00059 | 0.000013–0.0000020–0.0000020 (300) | ||||
TWI | Hg | 0.055 | 0.00078 | 0.00059 | 0.30–0.0042–0.0032 (0.19) | ||||
TDI | Ni | 0.0025 | 0.0012 | 0.00038 | 0.00019–0.000091–0.000029 (13) | ||||
TWI | Al | 0.055 | 0.024 | 0.0029 | 0.00039–0.00017–0.000020 (143) |
Reproduction Development | Developmental Neurotoxicity | Blood Pressure | Kidney | |
---|---|---|---|---|
Ni + Cr | Pb + Hg | Pb | Pb + Cd | |
Tuna | 0.00020 | 0.30 | 0.015 | 0.019 |
Anchovy | 0.000093 | 0.0048 | 0.0020 | 0.0028 |
Mackerel | 0.000031 | 0.0035 | 0.0010 | 0.00094 |
Reproduction Development | Developmental Neurotoxicity | Blood Pressure | Kidney | ||
---|---|---|---|---|---|
Ni + Cr | Pb + Hg | Pb | Pb + Cd | ||
Tuna | median | 0.000010 | 0.17 | 0.028 | 0.019 |
3rd quart | 0.00016 | 0.25 | 0.037 | 0.027 | |
max | 0.00075 | 1.11 | 0.054 | 0.072 | |
Anchovy | median | 0.00022 | 0.0041 | 0.0042 | 0.0081 |
3rd quart | 0.00024 | 0.0064 | 0.0048 | 0.0092 | |
max | 0.00034 | 0.018 | 0.0022 | 0.011 | |
Mackerel | median | 0.000027 | 0.0044 | 0.0021 | 0.0014 |
3rd quart | 0.000034 | 0.0066 | 0.0024 | 0.0019 | |
max | 0.00012 | 0.013 | 0.0038 | 0.0035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobile, M.; Mosconi, G.; Arioli, F.; Chiesa, L.; Peloso, M.; Accurso, D.; Butovskaya, E.; Fedrizzi, G.; Curci, D.; Panseri, S. Evaluation of the Risk from Potentially Toxic Elements (PTEs) in Italy’s Most Consumed Processed Fish Products. Foods 2024, 13, 456. https://doi.org/10.3390/foods13030456
Nobile M, Mosconi G, Arioli F, Chiesa L, Peloso M, Accurso D, Butovskaya E, Fedrizzi G, Curci D, Panseri S. Evaluation of the Risk from Potentially Toxic Elements (PTEs) in Italy’s Most Consumed Processed Fish Products. Foods. 2024; 13(3):456. https://doi.org/10.3390/foods13030456
Chicago/Turabian StyleNobile, Maria, Giacomo Mosconi, Francesco Arioli, Luca Chiesa, Mariantonietta Peloso, Damiano Accurso, Elena Butovskaya, Giorgio Fedrizzi, Dalia Curci, and Sara Panseri. 2024. "Evaluation of the Risk from Potentially Toxic Elements (PTEs) in Italy’s Most Consumed Processed Fish Products" Foods 13, no. 3: 456. https://doi.org/10.3390/foods13030456
APA StyleNobile, M., Mosconi, G., Arioli, F., Chiesa, L., Peloso, M., Accurso, D., Butovskaya, E., Fedrizzi, G., Curci, D., & Panseri, S. (2024). Evaluation of the Risk from Potentially Toxic Elements (PTEs) in Italy’s Most Consumed Processed Fish Products. Foods, 13(3), 456. https://doi.org/10.3390/foods13030456