Proteomics Analysis Reveals the Underlying Factors of Mucilage Disappearance in Brasenia schreberi and Its Influence on Nutrient Accumulation
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Measurement of Chlorophyll Content of the BS Samples
2.3. Measurement of Sugar Content of the BS Samples
2.4. Measurement of Protein Content of the BS Samples
2.5. Measurement of Water Parameters of the Habitat
2.6. Proteomics Identification of the BS Samples
2.6.1. Protein Extraction and Digestion
2.6.2. Proteomic Analysis
2.7. Tryptophan Metabolic Analysis of the BS Samples
2.8. NMR Analysis
2.9. Statistical Analysis and Results Visualization
3. Results
3.1. Chlorophyll, Sugar, and Protein Contents in the BS Samples
3.2. Differences in Water Parameters between Sampling Sites
3.3. Differentially Expressed Proteins (DEPs) in Different BS Groups
3.4. Functional Annotation of DEPs
3.5. Changes in the Metabolite Content in the Tryptophan Metabolic Pathway
3.6. Changes in the Metabolic Phenotype
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haroon, A.; Tahoun, U.; Sabae, S.; Hamza, W. Biological Characterization of Water in Damietta Branch of the Nile River, Egypt. Pak. J. Biol. Sci. 2020, 23, 861–882. [Google Scholar] [CrossRef]
- Haroon, A.; Daboor, S. Nutritional status, antimicrobial and anti-biofilm activity of Potamogeton nodosus Poir. Egypt. J. Aquat. Biol. Fish. 2019, 23, 81–93. [Google Scholar] [CrossRef]
- Uka, U.; Chukwuka, K.S. Utilization of Aquatic Macrophytes in Nigerian Freshwater Ecosystem. J. Fish. Aquat. Sci. 2011, 6, 490–498. [Google Scholar] [CrossRef]
- Kakuta, M.; Misaki, A. Polysaccharide of “Junsai (Brasenia schreberi J. F. Gmel)” Mucilage: Constitution and Linkage analysis. Agric. Biol. Chem. 1979, 43, 993–1005. [Google Scholar] [CrossRef]
- Kim, H.; Wang, Q.; Shoemaker, C.F.; Zhong, F.; Bartley, G.E.; Yokoyama, W.H. Polysaccharide gel coating of the leaves of Brasenia schreberi lowers plasma cholesterol in hamsters. J. Tradit. Complement. Med. 2015, 5, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Yu, X.; Liu, J.; Li, J.; Ai, T.; Yin, C.; Liu, H.; Qin, R. A special polysaccharide hydrogel coated on Brasenia schreberi: Preventive effects against ulcerative colitis via modulation of gut microbiota. Food Funct. 2023, 14, 3564–3575. [Google Scholar] [CrossRef] [PubMed]
- Legault, J.; Perron, T.; Mshvildadze, V.; Girard-Lalancette, K.; Perron, S.; Laprise, C.; Sirois, P.; Pichette, A. Antioxidant and Anti-Inflammatory Activities of Quercetin 7-O-β-d-Glucopyranoside from the Leaves of Brasenia schreberi. J. Med. Food 2011, 14, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Luan, D.; Ning, K.; Shao, P.; Sun, P. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi. Int. J. Biol. Macromol. 2019, 135, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Li, J.; Pan, F.; Fu, J.; Zhou, W.; Lu, S.; Li, P.; Zhou, C. Environmental factors influencing mucilage accumulation of the endangered Brasenia schreberi in China. Sci. Rep. 2018, 8, 17955. [Google Scholar] [CrossRef] [PubMed]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Li, X.; Li, J. Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Storage Process 2013, 13, 24–27. [Google Scholar]
- Subroto, E.; Lembong, E.; Filianty, F.; Rossi, I.; Primalia, G. The analysis techniques of amino acid and protein in food and agricultural products. Int. J. Sci. Technol. Res. 2020, 9, 29–36. [Google Scholar]
- Snigur, D.; Chebotarev, A.; Bulat, K.; Duboviy, V. Fast room temperature cloud point extraction procedure for spectrophotometric determination of phosphate in water samples. Anal. Biochem. 2020, 597, 113671. [Google Scholar] [CrossRef]
- Simas, R.G.; Krebs Kleingesinds, E.; Pessoa Junior, A.; Long, P.F. An improved method for simple and accurate colorimetric determination of l-asparaginase enzyme activity using Nessler’s reagent. J. Chem. Technol. Biotechnol. 2021, 96, 1326–1332. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Zhou, B.; Xu, M.; Wu, Z.; Liang, J.; Zhou, L. Improving solid–liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation. J. Hazard. Mater. 2020, 398, 122989. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, Z.; Ivezić, V.; Kerovec, D.; Rebekić, A. Foliar Zinc-Selenium and Nitrogen Fertilization Affects Content of Zn, Fe, Se, P, and Cd in Wheat Grain. Plants 2021, 10, 1549. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Zhang, D.; Wang, X.; Wei, S.; Zhao, Y.; Ding, Q.; Ma, L. Differential expression pattern of the proteome in response to cadmium stress based on proteomics analysis of wheat roots. BMC Genom. 2020, 21, 343. [Google Scholar] [CrossRef]
- Vitalini, S.; Dei Cas, M.; Rubino, F.M.; Vigentini, I.; Foschino, R.; Iriti, M.; Paroni, R. LC-MS/MS-based profiling of tryptophan-related metabolites in healthy plant foods. Molecules 2020, 25, 311. [Google Scholar] [CrossRef]
- Sehlakgwe, P.F.; Lall, N.; Prinsloo, G. 1H-NMR metabolomics and LC-MS analysis to determine seasonal variation in a cosmeceutical plant Leucosidea sericea. Front. Pharmacol. 2020, 11, 219. [Google Scholar] [CrossRef]
- Carpita, N.; Tierney, M.; Campbell, M. Molecular biology of the plant cell wall: Searching for the genes that define structure, architecture and dynamics. In Plant Cell Walls; Springer: Dordrecht, The Netherlands, 2001; Volume 47, pp. 1–5. [Google Scholar]
- Somerville, C.R.; Bauer, S.; Brininstool, G.; Facette, M.; Hamann, T.; Milne, J.; Osborne, E.; Paradez, A.; Persson, S.; Raab, T.K. Toward a Systems Approach to Understanding Plant Cell Walls. Science 2004, 306, 2206–2211. [Google Scholar] [CrossRef]
- Schnittger, A.; Hülskamp, M. Trichome morphogenesis: A cell-cycle perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 823–826. [Google Scholar]
- Kobayashi, M.; Matoh, T.; Azuma, J. Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiol. 1996, 110, 1017–1020. [Google Scholar] [CrossRef]
- An, Q.; Ehlers, K.; Kogel, K.H.; van Bel, A.J.; Hückelhoven, R. Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol. 2006, 172, 563–576. [Google Scholar] [CrossRef]
- Rutter, B.D.; Innes, R.W. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. Plant Physiol. 2016, 173, 728–741. [Google Scholar] [CrossRef]
- Dunyak, B.M.; Gestwicki, J.E. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J. Med. Chem. 2016, 59, 9622–9644. [Google Scholar] [CrossRef]
- Takahashi, N.; Hayano, T.; Suzuki, M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 1989, 337, 473–475. [Google Scholar] [CrossRef]
- Vener, A.V. Peptidyl-prolyl isomerases and regulation of photosynthetic functions. In Regulation of Photosynthesis; Springer: Berlin/Heidelberg, Germany, 2001; pp. 177–193. [Google Scholar]
- Nielsen, T.H.; Rung, J.H.; Villadsen, D. Fructose-2,6-bisphosphate: A traffic signal in plant metabolism. Trends Plant Sci. 2004, 9, 556–563. [Google Scholar] [CrossRef]
- Thompsonk, A.; Sorad, M.; Crossk, S.; St. Germain, G.M.; Cottenie, K. Mucilage reduces leaf herbivory in Schreber’s watershield, Brasenia schreberi J.F. Gmel. (Cabombaceae). Botany 2014, 92, 412–416. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- Liu, J.-R.; Miao, H.; Deng, D.-Q.; Vaziri, N.D.; Li, P.; Zhao, Y.-Y. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation. Cell. Mol. Life Sci. 2021, 78, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Hényková, E.; Vránová, H.P.; Amakorová, P.; Pospíšil, T.; Žukauskaitė, A.; Vlčková, M.; Urbánek, L.; Novák, O.; Mareš, J.; Kaňovský, P.; et al. Stable isotope dilution ultra-high performance liquid chromatography–tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid. J. Chromatogr. A 2016, 1437, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.C. Tryptophan nutrition and metabolism: An overview. Adv. Exp. Med. Biol. 1991, 294, 345–358. [Google Scholar] [PubMed]
- Jing, H.; Yang, X.; Zhang, J.; Liu, X.; Zheng, H.; Dong, G.; Nian, J.; Feng, J.; Xia, B.; Qian, Q.; et al. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat. Commun. 2015, 6, 7395. [Google Scholar] [CrossRef] [PubMed]
Water Parameters | Sites | p-Value | |||
---|---|---|---|---|---|
Site1–1 | Site1–2 | Site2 | Site1–1/Site2 | Site1–2/Site2 | |
Total phosphorus content (mg/L) | 0.07 ± 0.02 | 0.07 ± 0.02 | 0.05 ± 0.01 | >0.05 | >0.05 |
Total nitrogen content (mg/L) | 0.50 ± 0.4 | 0.61 ± 0.2 | 1.67 ± 0.1 | <0.05 | <0.05 |
Selenium content (mg/L) | <0.0004 | <0.0004 | <0.0004 | ||
Zinc content (mg/L) | <0.006 | <0.006 | <0.006 | ||
Ammonia Nitrogen content (mg/L) | 0.09 ± 0.02 | 0.11 + 0.02 | 0.14 + 0.04 | >0.05 | >0.05 |
pH value | 7.21 ± 0.01 | 7.03 ± 0.01 | 6.8 ± 0.01 | <0.05 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, T.; Liu, H.; Wan, J.; Lu, B.; Yu, X.; Liu, J.; Yimamu, A.; Aishan, S.; Liu, C.; Qin, R. Proteomics Analysis Reveals the Underlying Factors of Mucilage Disappearance in Brasenia schreberi and Its Influence on Nutrient Accumulation. Foods 2024, 13, 518. https://doi.org/10.3390/foods13040518
Ai T, Liu H, Wan J, Lu B, Yu X, Liu J, Yimamu A, Aishan S, Liu C, Qin R. Proteomics Analysis Reveals the Underlying Factors of Mucilage Disappearance in Brasenia schreberi and Its Influence on Nutrient Accumulation. Foods. 2024; 13(4):518. https://doi.org/10.3390/foods13040518
Chicago/Turabian StyleAi, Tingyang, Hong Liu, Jiawei Wan, Bojie Lu, Xiujuan Yu, Jiao Liu, Aidiya Yimamu, Saimire Aishan, Caixiang Liu, and Rui Qin. 2024. "Proteomics Analysis Reveals the Underlying Factors of Mucilage Disappearance in Brasenia schreberi and Its Influence on Nutrient Accumulation" Foods 13, no. 4: 518. https://doi.org/10.3390/foods13040518
APA StyleAi, T., Liu, H., Wan, J., Lu, B., Yu, X., Liu, J., Yimamu, A., Aishan, S., Liu, C., & Qin, R. (2024). Proteomics Analysis Reveals the Underlying Factors of Mucilage Disappearance in Brasenia schreberi and Its Influence on Nutrient Accumulation. Foods, 13(4), 518. https://doi.org/10.3390/foods13040518