Production, Composition and Nutritional Properties of Organic Milk: A Critical Review
Abstract
:1. Introduction
2. An Introduction to Organic Milk Production
Organic Milk Production Regulations
3. Milk Production Systems
3.1. Conventional Systems
3.1.1. Traditional System
3.1.2. Intensive System
3.2. Organic System
Milk Production System | ||
---|---|---|
Management Practice | Organic | Conventional |
Pasture access | Required | Not required |
Nutrition | All feed must be certified organic | Concentrate feed |
Antibiotics use | In emergencies, for veterinary indication | Allowed, for veterinary indication |
Parasiticide use | In emergencies, for veterinary indication | Allowed, for veterinary indication |
Growth Hormone use | Prohibited | Allowed, for veterinary indication |
Weed Management | Crop rotation, hand weeding, mulches | Chemical Herbicides |
Pest Management | Crop rotation, Companion Planting, trap crops, promotion of beneficial insects and natural predators | Chemical Pesticides |
Green House Gas Emissions | Lower per unit of area | Higher per unit of area |
Fertilizers | Organic fertilizers only | High dependence on synthetic NPK fertilizers |
Genetically Modified Organisms | Prohibited | Allowed |
Synthetic food Additives | Prohibited | Allowed |
Milk Yields | Lower on average | Higher on average |
Shelf Life | Higher on average | Lower on average |
Product Price | Higher on average | Lower on average |
Soil Impact | Reduced soil loss, increased organic matter, water-holding capacity and microbial diversity | Increased soil loss and erosion, lower water holding capacity, lower carbon storage and microbial diversity |
Water Consumption | Lower | Higher |
Energy Usage | Low intensity of energy use (higher energy efficiency) | High intensity of non-renewable energy use (agrochemicals, machinery, water pumping etc.) |
Impact on Landscape | Larger floral and faunal biodiversity. Diverse agricultural landscapes | Loss of biodiversity in agricultural landscapes, Unified agricultural landscapes (monocultures) |
4. Impact of Production Systems on Farm Performance and Raw Milk Composition
4.1. Milk Yield
4.2. Udder Health and Somatic Cell Count (SCC)
4.3. Microbiological Quality
4.4. Mastitis
4.5. Volatile Organic Compounds
4.6. Protein
4.7. Vitamins
4.8. Carbohydrates
4.9. Fats
4.10. Minerals and Heavy Metals
Organic System | Conventional Systems | ||
---|---|---|---|
Proteins | Organic Milk | Traditional Milk | Intensive Milk |
Total Protein (%) | 3.1–3.26 | 3.1–3.24 | 3.48 |
Casein (%) | 2.54 | 2.52 | 2.78 |
Whey protein (%) | 0.72–0.84 | 0.72–0.84 | 0.70–0.82 |
β-Lactoglobulin (g/L) | 3.32–3.35 | 3.26–3.58 | 3.01–3.28 |
α-Lactalbumin (g/L) | 1.07–1.19 | 1.05–1.21 | 0.98–1.14 |
Bovine serum albumin (g/L) | 0.43 | 0.44 | 0.41–0.49 |
Lactoferrin (mg/L) | 123.8–125.9 | 109.80–130.62 | 94.01–121.23 |
Lysozyme (µg/L) | 11.14 | 9.92–10.71 | 6.90–12.13 |
Vitamins | Organic Milk | Traditional Milk | Intensive Milk |
Vitamin A (retinol) (mg/L) | 0.468–0.800 | 0.410–0.556 | 0.347–0.465 |
β-carotene (mg/L) | 0.195–0.580 | 0.231–0.252 | 0.175–0.190 |
Vitamin E (α-tocopherol) (mg/L) | 1.358–2.655 | 1.656–1.953 | 1.075–1.302 |
Vitamin D3 (cholecalciferol) (μg/L) | 0.461–0.768 | 0.610–1.212 | 0.589–0.700 |
Carbohydrates | Organic Milk | Traditional Milk | Intensive Milk |
Lactose (%) | 4.80–5 | 4.7–5 | nd |
3 Hex (Trisa) (m/z) | 60.82–61.11 | 51.37–55.86 | nd |
3 Hex, 1 NeuAc (m/z) | 11.83–14.60 | 9.24–12.42 | nd |
4 Hex, 1 HexNAc (m/z) | 0.87–0.93 | 0.63–0.69 | nd |
3 Hex, 2 HexNAc (m/z) | 0.31–0.33 | 0.25 | nd |
Fat | Organic Milk | Traditional Milk | Intensive Milk |
Fat (%) | 3.7–4 | 3.8–4 | 3.8–4 |
SFAs (g/100 g) | 66.28 | 59.03–64.74 | 67.69–71.41 |
MUFAs (g/100 g) | 26.11–34.07 | 30.33–32.16 | 21.87–28.15 |
Oleic acid (c9 C18:1) | 20 | 16.10–22.66 | 16.16–17.20 |
Vaccenic acid (t11 C18:1) (g/100 g) | 1.22–2.00 | 1.18–7.00 | 0.80–2.00 |
PUFAs (g/100 g) | 3.85–5.36 | 3.69–5.32 | 1.65–3.77 |
Eicosapentaenoic acid, EPA (C20:5 n-3) (g/100 g) | 0.05 | 0.08 | 0.05 |
Conjugated linoleic acid, CLA (cis9 trans11) (g/100 g) | 0.83–1.53 | 0.54–0.93 | 0.42–1.19 |
Linoleic acid, LA (C18:2 n-6) (g/100 g) | 0.59–2.08 | 1.17–2.18 | 1.4–2.39 |
α-linolenic acid, ALA (C18:3 n-3) (g/100 g) | 0.44–1.05 | 0.49–1.25 | 0.39–0.42 |
γ-linolenic acid, GLA (C18:3 n-6) (g/100 g) | 0.11 | 0.13 | 0.12 |
Proportion 18:3n3: 18:3n6 | 1.35 | 0.60–2.77 | 1.26 |
Minerals and Heavy Metals | Organic Milk | Conventional Milk | |
Calcium (mg/L) | 971.33–1161 | 1170–1417.76 | |
Iron (mg/L) | 0.26–0.67 | 0.26–0.47 | |
Manganese (mg/L) | 0.023–0.047 | 0.022–0.139 | |
Copper (mg/L) | 0.023–0.084 | 0.038–0.161 | |
Iodine(mg/L) | 0.013–0.283 | 0.071–6.540 | |
Aluminium (mg/L) | 0.76 | 0.63 | |
Potassium (mg/L) | 1509–1896.92 | 1514–1844.37 | |
Sodium (mg/L) | 366.59 | 476.35 | |
Magnesium (mg/L) | 86.21 | 113.87–118.50 | |
Zinc (mg/L) | 2.86–3.96 | 2.96–4.39 | |
Selenium (mg/L) | 0.002–0.020 | 0.008–0.040 | |
Cobalt (mg/L) | 0.001 | 0.001 | |
Strontium (mg/L) | 0.166 | 0.202 |
5. Perceived Health Benefits of Organic and Conventional Milk
6. Global Market for Organic Milk Products
7. Future Challenges and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD-FAO. Agricultural Outlook 2018–2027. Available online: https://www.fao.org/documents/card/en/c/I9166EN (accessed on 1 February 2024).
- FAO. The Global Dairy Sector: Facts. 2019. Available online: http://www.dairydeclaration.org/Portals/153/Content/Documents/DDOR%20Global%20Dairy%20Facts%202019.pdf (accessed on 1 February 2024).
- Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.S.; Kabisch, J.; Böhnlein, C.; Franz, C.M.A.P. Microbial quality and safety of milk and milk products in the 21st century. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2013–2049. [Google Scholar] [CrossRef]
- Cimmino, F.; Catapano, A.; Petrella, L.; Villano, I.; Tudisco, R.; Cavaliere, G. Role of Milk Micronutrients in Human Health. Front. Biosci. -Landmark 2023, 28, 41. [Google Scholar] [CrossRef]
- Lin, T.; Meletharayil, G.; Kapoor, R.; Abbaspourrad, A. Bioactives in bovine milk: Chemistry, technology, and applications. Nutr. Rev. 2021, 79, 48–69. [Google Scholar] [CrossRef]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental impacts of organic and conventional agricultural products–Are the differences captured by life cycle assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chu, F.; Dolgui, A.; Chu, C.; Zhou, W.; Piramuthu, S. Recent advances and opportunities in sustainable food supply chain: A model-oriented review. Int. J. Prod. Res. 2018, 56, 5700–5722. [Google Scholar] [CrossRef]
- Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Appl. Soil Ecol. 2018, 123, 714–728. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Knorr, D. Organic agriculture and foods: Advancing process-product integrations. Crit. Rev. Food Sci. Nutr. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lambotte, M.; De Cara, S.; Brocas, C.; Bellassen, V. Organic farming offers promising mitigation potential in dairy systems without compromising economic performances. J. Environ. Manag. 2023, 334, 117405. [Google Scholar] [CrossRef]
- Organic Agriculture: FAQ. 2021. Available online: http://www.fao.org/organicag/oa-faq/oa-faq1/en/ (accessed on 1 February 2024).
- Yu, Y.; He, Y. Information disclosure decisions in an organic food supply chain under competition. J. Clean. Prod. 2021, 292, 125976. [Google Scholar] [CrossRef]
- Kumar, D.; Willer, H.; Ravisankar, N.; Kumar, A. Current Scenario of Organic Farming Worldwide. In Transforming Organic Agri-Produce into Processed Food Products; Apple Academic Press: Palm Bay, FL, USA, 2023; pp. 1–24. [Google Scholar]
- David, R.A.R.; Silva, M.A.d.; Lopes, C.F.; Ferreira, M.C.d.Q.; Carvalho, F.V.d.B.; Santos, C.A.F.d.; Lima, N.S.; Vieira, T.A.d.S.; Moreira, T.M.d.O.; Moreira, E.d.O. O LEITE ORGÂNICO: ASPECTOS GERAIS E COLABORAÇÃO PARA O DESENVOLVIMENTO SUSTENTÁVEL. Avanços Ciênc. Tecnol. Aliment. 2021, 5, 267–284. [Google Scholar]
- Nechaev, V.; Mikhailushkin, P.; Alieva, A. Trends in demand on the organic food market in the European countries. In Proceedings of the 2018 International Scientific Conference “Investment, Construction, Real Estate: New Technologies and Special-Purpose Development Priorities”, Irkutsk, Russia, 26–27 April 2018; p. 07008. [Google Scholar]
- Giampieri, F.; Mazzoni, L.; Cianciosi, D.; Alvarez-Suarez, J.M.; Regolo, L.; Sánchez-González, C.; Capocasa, F.; Xiao, J.; Mezzetti, B.; Battino, M. Organic vs conventional plant-based foods: A review. Food Chem. 2022, 383, 132352. [Google Scholar] [CrossRef] [PubMed]
- Willer, H.; Lernoud, J. The World of Organic Agriculture. STATISTICS and Emerging Trends 2023; Research Institute of Organic Agriculture FiBL: Frick, Switzerland; IFOAM-Organics International: Bonn, Germany, 2023. [Google Scholar]
- Kapsdorferova, Z.; Čereš, M.; ŠVikruhovÁ, P.; ZÁBojnÍKovÁ, V.; Kataniková, R. Challenges and innovative approaches in the agricultural and food industry and changing consumer behaviour in the milk and milk products market: Case of Slovakia. Agric. Econ./Zemědělská Ekon. 2023, 69. [Google Scholar] [CrossRef]
- Kumar, S.R.; Prajapati, S.; Parambil, J.V. Current Status of Organic Processed Food Products in the World. In Transforming Organic Agri-Produce into Processed Food Products: Post-COVID-19 Challenges and Opportunitie; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Grodkowski, G.; Gołębiewski, M.; Slósarz, J.; Grodkowska, K.; Kostusiak, P.; Sakowski, T.; Puppel, K. Organic Milk Production and Dairy Farming Constraints and Prospects under the Laws of the European Union. Animals 2023, 13, 1457. [Google Scholar] [CrossRef] [PubMed]
- Manuelian, C.L.; Penasa, M.; da Costa, L.; Burbi, S.; Righi, F.; De Marchi, M. Organic livestock production: A bibliometric review. Animals 2020, 10, 618. [Google Scholar] [CrossRef] [PubMed]
- Brodziak, A.; Wajs, J.; Zuba-Ciszewska, M.; Król, J.; Stobiecka, M.; Jańczuk, A. Organic versus Conventional Raw Cow Milk as Material for Processing. Animals 2021, 11, 2760. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A systematic literature review and meta-and redundancy analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Manuelian, C.L.; Vigolo, V.; Burbi, S.; Righi, F.; Simoni, M.; De Marchi, M. Detailed comparison between organic and conventional milk from Holstein-Friesian dairy herds in Italy. J. Dairy Sci. 2022, 105, 5561–5572. [Google Scholar] [CrossRef]
- Liu, N.; Parra, H.A.; Pustjens, A.; Hettinga, K.; Mongondry, P.; Van Ruth, S.M. Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta 2018, 184, 128–135. [Google Scholar] [CrossRef]
- Gomes, S.I.F.; van Bodegom, P.M.; van Agtmaal, M.; Soudzilovskaia, N.A.; Bestman, M.; Duijm, E.; Speksnijder, A.; van Eekeren, N. Microbiota in dung and milk differ between organic and conventional dairy farms. Front. Microbiol. 2020, 11, 1746. [Google Scholar] [CrossRef]
- Rozenberg, S.; Body, J.-J.; Bruyere, O.; Bergmann, P.; Brandi, M.L.; Cooper, C.; Devogelaer, J.-P.; Gielen, E.; Goemaere, S.; Kaufman, J.-M. Effects of dairy products consumption on health: Benefits and beliefs—A commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2016, 98, 1–17. [Google Scholar] [CrossRef]
- Barański, M.; Rempelos, L.; Iversen, P.O.; Leifert, C. Effects of organic food consumption on human health; the jury is still out! Food Nutr. Res. 2017, 61, 1287333. [Google Scholar] [CrossRef]
- Butler, G.; Stergiadis, S. Organic milk: Does it confer health benefits? In Milk and Dairy Foods; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–143. [Google Scholar]
- Calabro, G.; Vieri, S. Limits and potential of organic farming towards a more sustainable European agri-food system. Br. Food J. 2023, 126, 223–236. [Google Scholar] [CrossRef]
- Hirsch, S.; Koppenberg, M. Market power and profitability of organic versus conventional dairy farmers in the EU. In Proceedings of the 2023 Annual Meeting, Washington, DC, USA, 23–25 July 2023. [Google Scholar]
- Kononets, Y.; Konvalina, P.; Bartos, P.; Smetana, P. The evolution of organic food certification. Front. Sustain. Food Syst. 2023, 7, 1167017. [Google Scholar] [CrossRef]
- Dinçer, M.A.M.; Arslan, Y.; Okutan, S.; Dil, E. An inquiry on organic food confusion in the consumer perception: A qualitative perspective. Br. Food J. 2023, 125, 1420–1436. [Google Scholar] [CrossRef]
- Banerjee, M.; Shanthakumar, S. International and National Policies on Organic Agriculture. In Transforming Organic Agri-Produce into Processed Food Products: Post-COVID-19 Challenges and Opportunitie; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.H.; Tavendale, M.H.; Deadman, C.; Shadbolt, N.M.; Otter, D.E. Invited review: Organic and conventionally produced milk—An evaluation of factors influencing milk composition. J. Dairy Sci. 2015, 98, 721–746. [Google Scholar] [CrossRef] [PubMed]
- Adesogan, A.T.; Dahl, G.E. MILK Symposium Introduction: Dairy production in developing countries. J. Dairy Sci. 2020, 103, 9677–9680. [Google Scholar] [CrossRef] [PubMed]
- Reardon, T.; Lu, L.; Zilberman, D. Links among innovation, food system transformation, and technology adoption, with implications for food policy: Overview of a special issue. Food Policy 2019, 83, 285–288. [Google Scholar] [CrossRef]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy intensification: Drivers, impacts and alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Cele, L.P.; Hennessy, T.; Thorne, F. Evaluating farm and export competitiveness of the Irish dairy industry: Post-quota analysis. Compet. Rev. Int. Bus. J. 2022, 32, 1–20. [Google Scholar] [CrossRef]
- McAuliffe, S.; Gilliland, T.J.; Hennessy, D. Comparison of pasture-based feeding systems and a total mixed ration feeding system on dairy cow milk production. In Proceedings of the 26th General Meeting of the European Grassland Federation, Trondheim, Norway, 4–8 September 2016. [Google Scholar]
- Smid, A.-M.C.; Weary, D.M.; Von Keyserlingk, M.A.G. The influence of different types of outdoor access on dairy cattle behavior. Front. Vet. Sci. 2020, 7, 257. [Google Scholar] [CrossRef] [PubMed]
- Joubran, A.M.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F. Invited review: A 2020 perspective on pasture-based dairy systems and products. J. Dairy Sci. 2021, 104, 7364–7382. [Google Scholar] [CrossRef] [PubMed]
- Magan, J.B.; O′Callaghan, T.F.; Kelly, A.L.; McCarthy, N.A. Compositional and functional properties of milk and dairy products derived from cows fed pasture or concentrate-based diets. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2769–2800. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Faulkner, H.; McAuliffe, S.; O’Sullivan, M.G.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; Stanton, C.; Ross, R.P. Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. J. Dairy Sci. 2016, 99, 9441–9460. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, T.F.; Mannion, D.T.; Hennessy, D.; McAuliffe, S.; O’Sullivan, M.G.; Leeuwendaal, N.; Beresford, T.P.; Dillon, P.; Kilcawley, K.N.; Sheehan, J.J. Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese. J. Dairy Sci. 2017, 100, 6053–6073. [Google Scholar] [CrossRef]
- Timlin, M.; Fitzpatrick, E.; McCarthy, K.; Tobin, J.T.; Murphy, E.G.; Pierce, K.M.; Murphy, J.P.; Hennessy, D.; O’Donovan, M.; Harbourne, N. Impact of varying levels of pasture allowance on the nutritional quality and functionality of milk throughout lactation. J. Dairy Sci. 2023, 106, 6597–6622. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef]
- van den Pol-van Dasselaar, A.; Hennessy, D.; Isselstein, J. Grazing of dairy cows in Europe—An in-depth analysis based on the perception of grassland experts. Sustainability 2020, 12, 1098. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. Preference of dairy cows: Indoor cubicle housing with access to a total mixed ration vs. access to pasture. Appl. Anim. Behav. Sci. 2011, 130, 1–9. [Google Scholar] [CrossRef]
- Legrand, A.L.; Von Keyserlingk, M.A.G.; Weary, D.M. Preference and usage of pasture versus free-stall housing by lactating dairy cattle. J. Dairy Sci. 2009, 92, 3651–3658. [Google Scholar] [CrossRef] [PubMed]
- Armbrecht, L.; Lambertz, C.; Albers, D.; Gauly, M. Does access to pasture affect claw condition and health in dairy cows? Vet. Rec. 2018, 182, 79. [Google Scholar] [CrossRef] [PubMed]
- Firth, C.L.; Laubichler, C.; Schleicher, C.; Fuchs, K.; Käsbohrer, A.; Egger-Danner, C.; Köfer, J.; Obritzhauser, W. Relationship between the probability of veterinary-diagnosed bovine mastitis occurring and farm management risk factors on small dairy farms in Austria. J. Dairy Sci. 2019, 102, 4452–4463. [Google Scholar] [CrossRef] [PubMed]
- Mee, J.F.; Boyle, L.A. Assessing whether dairy cow welfare is “better” in pasture-based than in confinement-based management systems. N. Z. Vet. J. 2020, 68, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Morales-Almaráz, E.; Soldado, A.; González, A.; Martínez-Fernández, A.; Domínguez-Vara, I.; de la Roza-Delgado, B.; Vicente, F. Improving the fatty acid profile of dairy cow milk by combining grazing with feeding of total mixed ration. J. Dairy Res. 2010, 77, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bermúdez, R.; Miranda, M.; Baudracco, J.; Fouz, R.; Pereira, V.; López-Alonso, M. Breeding for organic dairy farming: What types of cows are needed? J. Dairy Res. 2019, 86, 3–12. [Google Scholar] [CrossRef]
- Santoni, M.; Verdi, L.; Imran Pathan, S.; Napoli, M.; Dalla Marta, A.; Dani, F.R.; Pacini, G.C.; Ceccherini, M.T. Soil microbiome biomass, activity, composition and CO2 emissions in a long-term organic and conventional farming systems. Soil Use Manag. 2023, 39, 588–605. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Orjales, I.; Lopez-Alonso, M.; Miranda, M.; Alaiz-Moretón, H.; Resch, C.; López, S. Dairy cow nutrition in organic farming systems. Comparison with the conventional system. Animal 2019, 13, 1084–1093. [Google Scholar] [CrossRef]
- Health, E.P.o.A.; Animal, W.; Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; et al. Welfare of dairy cows. EFSA J. 2023, 21, e07993. [Google Scholar]
- Wagner, K.; Brinkmann, J.; Bergschmidt, A.; Renziehausen, C.; March, S. The effects of farming systems (organic vs. conventional) on dairy cow welfare, based on the Welfare Quality® protocol. Animal 2021, 15, 100301. [Google Scholar] [CrossRef]
- Åkerfeldt, M.P.; Gunnarsson, S.; Bernes, G.; Blanco-Penedo, I. Health and welfare in organic livestock production systems—A systematic mapping of current knowledge. Org. Agric. 2021, 11, 105–132. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Zeng, Z. Antimicrobial use and antimicrobial resistance in food animals. Environ. Sci. Pollut. Res. 2018, 25, 18377–18384. [Google Scholar] [CrossRef] [PubMed]
- Foutz, C.A.; Godden, S.M.; Bender, J.B.; Diez-Gonzalez, F.; Akhtar, M.; Vatulin, A. Exposure to antimicrobials through the milk diet or systemic therapy is associated with a transient increase in antimicrobial resistance in fecal Escherichia coli of dairy calves. J. Dairy Sci. 2018, 101, 10126–10141. [Google Scholar] [CrossRef] [PubMed]
- Ager, E.; Carvalho, T.; Silva, E.; Ricke, S.; Hite, J. Global trends in antimicrobial resistance on organic and conventional farms. bioRxiv 2023, 13, 22608. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Organic Agriculture and Greenhouse Gas Emissions. In Organic Agriculture and Climate Change; Springer: Berlin/Heidelberg, Germany, 2022; pp. 129–175. [Google Scholar]
- Brito, A.F.; Silva, L.H.P. Symposium review: Comparisons of feed and milk nitrogen efficiency and carbon emissions in organic versus conventional dairy production systems. J. Dairy Sci. 2020, 103, 5726–5739. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Obiedzińska, A.; Kazimierczak, R.; Rembiałkowska, E. Environmental impact of organic vs. conventional agriculture-a review. J. Res. Appl. Agric. Eng. 2016, 61, 204–211. [Google Scholar]
- Kilcawley, K.N.; Faulkner, H.; Clarke, H.J.; O’Sullivan, M.G.; Kerry, J.P. Factors influencing the flavour of bovine milk and cheese from grass based versus non-grass based milk production systems. Foods 2018, 7, 37. [Google Scholar] [CrossRef]
- Król, J.; Brodziak, A.; Topyła, B. The nutritional value of the milk of Simmental cows in relation to the season and production system. Anim. Prod. Rev. 2016, 6, 20–24. [Google Scholar]
- Sapbamrer, R.; Thammachai, A. A systematic review of factors influencing farmers’ adoption of organic farming. Sustainability 2021, 13, 3842. [Google Scholar] [CrossRef]
- Poudel, S.P.; Acharya, R.; Chetri, D.K. Somatic cell count: An indicator of intramammary infection in dairy animals. Matrix Sci. Pharma 2021, 5, 49–53. [Google Scholar] [CrossRef]
- Stocco, G.; Summer, A.; Cipolat-Gotet, C.; Zanini, L.; Vairani, D.; Dadousis, C.; Zecconi, A. Differential somatic cell count as a novel indicator of milk quality in dairy cows. Animals 2020, 10, 753. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.-S.; Ariton, A.-M. Udder health monitoring for prevention of bovine mastitis and improvement of milk quality. Bioengineering 2022, 9, 608. [Google Scholar] [CrossRef]
- Moradi, M.; Omer, A.K.; Razavi, R.; Valipour, S.; Guimarães, J.T. The relationship between milk somatic cell count and cheese production, quality and safety: A review. Int. Dairy J. 2021, 113, 104884. [Google Scholar] [CrossRef]
- Orjales, I.; Lopez-Alonso, M.; Miranda, M.; Rodríguez-Bermúdez, R.; Rey-Crespo, F.; Villar, A. The main factors affecting somatic cell count in organic dairy farming. Span. J. Agric. Res. 2017, 15, e06SC02. [Google Scholar] [CrossRef]
- Orjales, I.; López-Alonso, M.; Rodríguez-Bermúdez, R.; Rey-Crespo, F.; Villar, A.; Miranda, M. Use of homeopathy in organic dairy farming in Spain. Homeopathy 2016, 105, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Orjales, I.; López-Alonso, M.; Rodríguez-Bermúdez, R.; Rey-Crespo, F.; Villar, A.; Miranda, M. Is lack of antibiotic usage affecting udder health status of organic dairy cattle? J. Dairy Res. 2016, 83, 464–467. [Google Scholar] [CrossRef] [PubMed]
- FDA. Grade “A” Pasteurized Milk Ordinance; FDA: Silver Spring, MD, USA, 2017.
- Martin, N.H.; Evanowski, R.L.; Wiedmann, M. Invited review: Redefining raw milk quality—Evaluation of raw milk microbiological parameters to ensure high-quality processed dairy products. J. Dairy Sci. 2023, 106, 1502–1517. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar]
- Dean, C.J.; Slizovskiy, I.B.; Crone, K.K.; Pfennig, A.X.; Heins, B.J.; Caixeta, L.S.; Noyes, N.R. Investigating the cow skin and teat canal microbiomes of the bovine udder using different sampling and sequencing approaches. J. Dairy Sci. 2021, 104, 644–661. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, J.; Williams, J.E.; McGuire, M.A.; Peterson, H.K.; Östensson, K.; Agenäs, S.; Dicksved, J.; Waller, K.P. Microbiota of bovine milk, teat skin, and teat canal: Similarity and variation due to sampling technique and milk fraction. J. Dairy Sci. 2020, 103, 7322–7330. [Google Scholar] [CrossRef]
- Dean, C.J.; Deng, Y.; Wehri, T.J.; Ray, T.; Peña-Mosca, F.; Crooker, B.A.; Godden, S.M.; Caixeta, L.S.; Noyes, N. The impact of kit, environment and sampling contamination on the observed microbiome of bovine milk. bioRxiv 2023. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Khan, M.Z.; Wang, J.; Chen, T.; Alugongo, G.M.; Li, S.; Cao, Z. Bovine milk microbiota: Key players, origins, and potential contributions to early-life gut development. J. Adv. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Hagey, J.V.; Bhatnagar, S.; Heguy, J.M.; Karle, B.M.; Price, P.L.; Meyer, D.; Maga, E.A. Fecal microbial communities in a large representative cohort of California dairy cows. Front. Microbiol. 2019, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Loor, J.J.; Elolimy, A.A.; McCann, J.C. Dietary impacts on rumen microbiota in beef and dairy production. Anim. Front. 2016, 6, 22–29. [Google Scholar] [CrossRef]
- Zhang, R.; Huo, W.; Zhu, W.; Mao, S. Characterization of bacterial community of raw milk from dairy cows during subacute ruminal acidosis challenge by high-throughput sequencing. J. Sci. Food Agric. 2015, 95, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Mbareche, H.; Veillette, M.; Bilodeau, G.J.; Duchaine, C. Fungal bioaerosols at five dairy farms: A novel approach to describe workers’ exposure. bioRxiv 2018, 308825. [Google Scholar] [CrossRef]
- Guzzon, R.; Carafa, I.; Tuohy, K.; Cervantes, G.; Vernetti, L.; Barmaz, A.; Larcher, R.; Franciosi, E. Exploring the microbiota of the red-brown defect in smear-ripened cheese by 454-pyrosequencing and its prevention using different cleaning systems. Food Microbiol. 2017, 62, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Tommasoni, C.; Fiore, E.; Lisuzzo, A.; Gianesella, M. Mastitis in Dairy Cattle: On-Farm Diagnostics and Future Perspectives. Animals 2023, 13, 2538. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulou, A.; Holohan, R.; Rea, M.C.; Warda, A.K.; Hill, C.; Ross, R.P. Bovine mastitis is a polymicrobial disease requiring a polydiagnostic approach. Int. Dairy J. 2019, 99, 104539. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Iqbal Yatoo, M.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. Vet. Q. 2021, 41, 107–136. [Google Scholar] [CrossRef]
- Peña-Mosca, F.; Dean, C.; Machado, V.; Fernandes, L.; Pinedo, P.; Doster, E.; Heins, B.; Sharpe, K.; Ray, T.; Feijoo, V.; et al. Investigation of intramammary infections in primiparous cows during early lactation on organic dairy farms. J. Dairy Sci. 2023, 106, 9377–9392. [Google Scholar] [CrossRef] [PubMed]
- Pol, M.; Ruegg, P.L. Relationship between antimicrobial drug usage and antimicrobial susceptibility of gram-positive mastitis pathogens. J. Dairy Sci. 2007, 90, 262–273. [Google Scholar] [CrossRef]
- Cicconi-Hogan, K.M.; Gamroth, M.; Richert, R.; Ruegg, P.L.; Stiglbauer, K.E.; Schukken, Y.H. Risk factors associated with bulk tank standard plate count, bulk tank coliform count, and the presence of Staphylococcus aureus on organic and conventional dairy farms in the United States. J. Dairy Sci. 2013, 96, 7578–7590. [Google Scholar] [CrossRef]
- Tikofsky, L.L.; Barlow, J.W.; Santisteban, C.; Schukken, Y.H. A comparison of antimicrobial susceptibility patterns for Staphylococcus aureus in organic and conventional dairy herds. Microb. Drug Resist. 2003, 9, 39–45. [Google Scholar] [CrossRef]
- Hamilton, C.; Emanuelson, U.; Forslund, K.; Hansson, I.; Ekman, T. Mastitis and related management factors in certified organic dairy herds in Sweden. Acta Vet. Scand. 2006, 48, 1–7. [Google Scholar] [CrossRef]
- Valle, P.S.; Lien, G.; Flaten, O.; Koesling, M.; Ebbesvik, M. Herd health and health management in organic versus conventional dairy herds in Norway. Livest. Sci. 2007, 112, 123–132. [Google Scholar] [CrossRef]
- Richert, R.M.; Cicconi, K.M.; Gamroth, M.J.; Schukken, Y.H.; Stiglbauer, K.E.; Ruegg, P.L. Risk factors for clinical mastitis, ketosis, and pneumonia in dairy cattle on organic and small conventional farms in the United States. J. Dairy Sci. 2013, 96, 4269–4285. [Google Scholar] [CrossRef]
- Hardeng, F.; Edge, V.L. Mastitis, ketosis, and milk fever in 31 organic and 93 conventional Norwegian dairy herds. J. Dairy Sci. 2001, 84, 2673–2679. [Google Scholar] [CrossRef]
- Mullen, K.A.E.; Sparks, L.G.; Lyman, R.L.; Washburn, S.P.; Anderson, K.L. Comparisons of milk quality on North Carolina organic and conventional dairies. J. Dairy Sci. 2013, 96, 6753–6762. [Google Scholar] [CrossRef]
- Ueda, Y.; Asakuma, S.; Miyaji, M.; Akiyama, F. Effect of time at pasture and herbage intake on profile of volatile organic compounds of dairy cow milk. Anim. Sci. J. 2016, 87, 117–125. [Google Scholar] [CrossRef]
- Aprea, E.; Biasioli, F.; Carlin, S.; Endrizzi, I.; Gasperi, F. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: Solid-phase microextraction/gas chromatography—Mass spectrometry (SPME/GC−MS) and proton-transfer reaction−mass spectrometry (PTR−MS). J. Agric. Food Chem. 2009, 57, 4011–4018. [Google Scholar] [CrossRef]
- Vazquez-Landaverde, P.A.; Torres, J.A.; Qian, M.C. Quantification of trace volatile sulfur compounds in milk by solid-phase microextraction and gas chromatography–pulsed flame photometric detection. J. Dairy Sci. 2006, 89, 2919–2927. [Google Scholar] [CrossRef]
- Calvo, M.M.; de la Hoz, L. Flavour of heated milks. A review. Int. Dairy J. 1992, 2, 69–81. [Google Scholar] [CrossRef]
- Urbach, G. Effect of feed on flavor in dairy foods. J. Dairy Sci. 1990, 73, 3639–3650. [Google Scholar] [CrossRef]
- Smigic, N.; Djekic, I.; Tomasevic, I.; Stanisic, N.; Nedeljkovic, A.; Lukovic, V.; Miocinovic, J. Organic and conventional milk–insight on potential differences. Br. Food J. 2017, 119, 366–376. [Google Scholar] [CrossRef]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.H.; Fong, B.; Tavendale, M.H.; Deadman, C.; Shadbolt, N.M.; Otter, D.E. Pasture feeding conventional cows removes differences between organic and conventionally produced milk. Food Chem. 2017, 229, 805–813. [Google Scholar] [CrossRef]
- Liu, N.; Koot, A.; Hettinga, K.; De Jong, J.; van Ruth, S.M. Portraying and tracing the impact of different production systems on the volatile organic compound composition of milk by PTR-(Quad) MS and PTR-(ToF) MS. Food Chem. 2018, 239, 201–207. [Google Scholar] [CrossRef]
- Clarke, H.J.; Griffin, C.; Rai, D.K.; O’Callaghan, T.F.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Dietary compounds influencing the sensorial, volatile and phytochemical properties of bovine milk. Molecules 2019, 25, 26. [Google Scholar] [CrossRef] [PubMed]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “grass-fed” milk story: Understanding the impact of pasture feeding on the composition and quality of bovine milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef]
- Gallina Toschi, T.; Bendini, A.; Barbieri, S.; Valli, E.; Cezanne, M.L.; Buchecker, K.; Canavari, M. Organic and conventional nonflavored yogurts from the Italian market: Study on sensory profiles and consumer acceptability. J. Sci. Food Agric. 2012, 92, 2788–2795. [Google Scholar] [CrossRef]
- Bloksma, J.; Adriaansen-Tennekes, R.; Huber, M.; van de Vijver, L.P.L.; Baars, T.; de Wit, J. Comparison of organic and conventional raw milk quality in the Netherlands. Biol. Agric. Hortic. 2008, 26, 69–83. [Google Scholar] [CrossRef]
- Manzocchi, E.; Martin, B.; Bord, C.; Verdier-Metz, I.; Bouchon, M.; De Marchi, M.; Constant, I.; Giller, K.; Kreuzer, M.; Berard, J. Feeding cows with hay, silage, or fresh herbage on pasture or indoors affects sensory properties and chemical composition of milk and cheese. J. Dairy Sci. 2021, 104, 5285–5302. [Google Scholar] [CrossRef] [PubMed]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Barłowska, J. Differences in bioactive protein and vitamin status of milk from certified organic and conventional farms. Int. J. Dairy Technol. 2018, 71, 321–332. [Google Scholar] [CrossRef]
- Kiczorowska, B.; Samolińska, W.; Marczuk, J.; Winiarska-Mieczan, A.; Klebaniuk, R.; Kowalczuk-Vasilev, E.; Kiczorowski, P.; Zasadna, Z. Comparative effects of organic, traditional, and intensive production with probiotics on the fatty acid profile of cow’s milk. J. Food Compos. Anal. 2017, 63, 157–163. [Google Scholar] [CrossRef]
- Qin, N.; Faludi, G.; Beauclercq, S.; Pitt, J.; Desnica, N.; Pétursdóttir, Á.; Newton, E.E.; Angelidis, A.; Givens, I.; Juniper, D. Macromineral and trace element concentrations and their seasonal variation in milk from organic and conventional dairy herds. Food Chem. 2021, 359, 129865. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Duche, R.T.; Wandhare, A.G.; Sian, J.K.; Singh, B.P.; Sihag, M.K.; Singh, K.S.; Sangwan, V.; Talan, S.; Panwar, H. Milk-derived antimicrobial peptides: Overview, applications, and future perspectives. Probiotics Antimicrob. Proteins 2023, 15, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Florek, M. Bioactive compound levels and sensory quality of partially skimmed organic yoghurts: Effects of the milk treatment, production season and starter culture. Int. J. Dairy Technol. 2021, 74, 139–147. [Google Scholar] [CrossRef]
- Król, J.; Brodziak, A.; Zaborska, A.; Litwińczuk, Z. Comparison of whey proteins and lipophilic vitamins between four cow breeds maintained in intensive production system. Mljekarstvo/Dairy 2017, 67. [Google Scholar] [CrossRef]
- Wójcik-Saganek, A. Nutritional Value and Technological Suitability of Farm Milk Together with a Technical and Economic Analysis of the Efficiency of Its Production. Doctoral Dissertation, The University of Life Sciences in Lublin, Lublin, Poland, 2019. [Google Scholar]
- Zhao, X.; Xu, X.-X.; Liu, Y.; Xi, E.-Z.; An, J.-J.; Tabys, D.; Liu, N. The in vitro protective role of bovine lactoferrin on intestinal epithelial barrier. Molecules 2019, 24, 148. [Google Scholar] [CrossRef]
- Anand, R.; Mohan, L.; Bharadvaja, N. Disease prevention and treatment using β-carotene: The ultimate provitamin A. Rev. Bras. Farmacogn. 2022, 32, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A.; Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Vitamins in milk and dairy products. In Dairy Chemistry and Biochemistry; Springer: Berlin/Heidelberg, Germany, 2015; pp. 271–297. [Google Scholar]
- Liao, S.; Omage, S.O.; Börmel, L.; Kluge, S.; Schubert, M.; Wallert, M.; Lorkowski, S. Vitamin E and metabolic health: Relevance of interactions with other micronutrients. Antioxidants 2022, 11, 1785. [Google Scholar] [CrossRef] [PubMed]
- Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant activity of milk and dairy products. Animals 2022, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshea, F.R. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality—Invited review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef]
- Kuczyńska, B.; Nałęcz-Tarwacka, T.; Puppel, K.; Gołębiewski, M.; Grodzki, H.; Slósarz, J. The content of bioactive components in milk depending on cow feeding model in certified ecological farms. J. Res. Appl. Agric. Eng 2011, 56, 7–13. [Google Scholar]
- Fong, B.; Ma, K.; McJarrow, P. Quantification of bovine milk oligosaccharides using liquid chromatography–selected reaction monitoring–mass spectrometry. J. Agric. Food Chem. 2011, 59, 9788–9795. [Google Scholar] [CrossRef]
- Kiely, L.J.; Busca, K.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria. FEMS Microbiol. Rev. 2023, 47, fuad056. [Google Scholar] [CrossRef]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-chain fatty acids—An underexplored class of dairy-derived fatty acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef]
- O’Callaghan, T.F. The benefits of pasture-based dairy. Ir. Food 2019, 1, 34–35. [Google Scholar]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef]
- Tzamaloukas, O.; Neofytou, M.C.; Simitzis, P.E.; Miltiadou, D. Effect of farming system (organic vs. conventional) and season on composition and fatty acid profile of bovine, caprine and ovine milk and retail Halloumi cheese produced in Cyprus. Foods 2021, 10, 1016. [Google Scholar] [CrossRef]
- Vanbergue, E.; Peyraud, J.L.; Ferlay, A.; Miranda, G.; Martin, P.; Hurtaud, C. Effects of feeding level, type of forage and milking time on milk lipolytic system in dairy cows. Livest. Sci. 2018, 217, 116–126. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, R.; Kang, R.; Meng, J.; Ao, C. Milk fatty acids profiles and milk production from dairy cows fed different forage quality diets. Anim. Nutr. 2016, 2, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leifert, C.; Peterman, L.; Butler, G.; Faergeman, O.; Abel-Caines, S.; Baranski, M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci. Nutr. 2018, 6, 681–700. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M.; Butler, G.; Latif, M.A.; Leifert, C.; Davis, D.R. Organic production enhances milk nutritional quality by shifting fatty acid composition: A United States–wide, 18-month study. PLoS ONE 2013, 8, e82429. [Google Scholar] [CrossRef] [PubMed]
- Tsiafoulis, C.G.; Papaemmanouil, C.; Alivertis, D.; Tzamaloukas, O.; Miltiadou, D.; Balayssac, S.; Malet-Martino, M.; Gerothanassis, I.P. NMR-based μetabolomics of the lipid fraction of organic and conventional bovine milk. Molecules 2019, 24, 1067. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.A.; Innocent, G.; Grove-White, D.; Cripps, P.; McLean, W.G.; Howard, C.V.; Mihm, M. Comparing the fatty acid composition of organic and conventional milk. J. Dairy Sci. 2006, 89, 1938–1950. [Google Scholar] [CrossRef] [PubMed]
- Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. Int. Dairy J. 2008, 18, 976–982. [Google Scholar] [CrossRef]
- Butler, G.; Stergiadis, S.; Seal, C.; Eyre, M.; Leifert, C. Fat composition of organic and conventional retail milk in northeast England. J. Dairy Sci. 2011, 94, 24–36. [Google Scholar] [CrossRef]
- Adler, S.A.; Jensen, S.K.; Govasmark, E.; Steinshamn, H. Effect of short-term versus long-term grassland management and seasonal variation in organic and conventional dairy farming on the composition of bulk tank milk. J. Dairy Sci. 2013, 96, 5793–5810. [Google Scholar] [CrossRef]
- Miyamoto, J.; Igarashi, M.; Watanabe, K.; Karaki, S.-i.; Mukouyama, H.; Kishino, S.; Li, X.; Ichimura, A.; Irie, J.; Sugimoto, Y. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat. Commun. 2019, 10, 4007. [Google Scholar] [CrossRef]
- Khiaosa-Ard, R.; Klevenhusen, F.; Soliva, C.R.; Kreuzer, M.; Leiber, F. Transfer of linoleic and linolenic acid from feed to milk in cows fed isoenergetic diets differing in proportion and origin of concentrates and roughages. J. Dairy Res. 2010, 77, 331–336. [Google Scholar] [CrossRef]
- Ferreiro, T.; Gayoso, L.; Rodríguez-Otero, J.L. Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk. J. Dairy Sci. 2015, 98, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.; Chatzidimitriou, E.; Leifert, C.; Butler, G. Evidence that forage-fed cows can enhance milk quality. Sustainability 2020, 12, 3688. [Google Scholar] [CrossRef]
- Bauman, D.E.; Lock, A.L.; Conboy Stephenson, R.; Linehan, K.; Ross, R.P.; Stanton, C. Conjugated linoleic acid: Biosynthesis and nutritional significance. In Advanced Dairy Chemistry; Springer: Cham, Switzerland, 2020; Volume 2, pp. 67–106. [Google Scholar]
- Badawy, S.; Liu, Y.; Guo, M.; Liu, Z.; Xie, C.; Marawan, M.A.; Ares, I.; Lopez-Torres, B.; Martínez, M.; Maximiliano, J.-E. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res. Int. 2023, 172, 113158. [Google Scholar] [CrossRef] [PubMed]
- Manuelian, C.L.; Penasa, M.; Visentin, G.; Zidi, A.; Cassandro, M.; De Marchi, M. Mineral composition of cow milk from multibreed herds. Anim. Sci. J. 2018, 89, 1622–1627. [Google Scholar] [CrossRef] [PubMed]
- Litwińczuk, Z.; Koperska, N.; Chabuz, W.; Kędzierska-Matysek, M. Basic chemical composition and mineral content of the milk of cows of various breeds raised on organic farms and on traditional farms using intensive and traditional feeding systems. Med. Weter. 2018, 74, 309–313. [Google Scholar] [CrossRef]
- Stergiadis, S.; Qin, N.; Faludi, G.; Beauclercq, S.; Pitt, J.; Desnica, N.; Pétursdóttir, Á.H.; Newton, E.E.; Angelidis, A.E.; Givens, I. Mineral concentrations in bovine milk from farms with contrasting grazing management. Foods 2021, 10, 2733. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, C.A.; Harasim, E. Chemical properties of soil in four-field crop rotations under organic and conventional farming systems. Agronomy 2020, 10, 1045. [Google Scholar] [CrossRef]
- Rodríguez-Bermúdez, R.; López-Alonso, M.; Miranda, M.; Fouz, R.; Orjales, I.; Herrero-Latorre, C. Chemometric authentication of the organic status of milk on the basis of trace element content. Food Chem. 2018, 240, 686–693. [Google Scholar] [CrossRef]
- López-Alonso, M.; Rey-Crespo, F.; Herrero-Latorre, C.; Miranda, M. Identifying sources of metal exposure in organic and conventional dairy farming. Chemosphere 2017, 185, 1048–1055. [Google Scholar] [CrossRef]
- Boudebbouz, A.; Boudalia, S.; Bousbia, A.; Habila, S.; Boussadia, M.I.; Gueroui, Y. Heavy metals levels in raw cow milk and health risk assessment across the globe: A systematic review. Sci. Total Environ. 2021, 751, 141830. [Google Scholar] [CrossRef]
- Varol, M.; Sünbül, M.R. Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environ. Res. 2020, 184, 109298. [Google Scholar] [CrossRef]
- Ziarati, P.; Shirkhan, F.; Mostafidi, M.; Zahedi, M.T. An overview of the heavy metal contamination in milk and dairy products. Acta Sci. Pharm. Sci. 2018, 2, 1–14. [Google Scholar]
- Zwierzchowski, G.; Ametaj, B.N. Minerals and heavy metals in the whole raw milk of dairy cows from different management systems and countries of origin: A meta-analytical study. J. Agric. Food Chem. 2018, 66, 6877–6888. [Google Scholar] [CrossRef] [PubMed]
- Seğmenoğlu, M.S.; Baydan, E. Comparison of heavy metal levels of organic and conventional milk and milk products in Turkey. Turk. J. Agric. -Food Sci. Technol. 2021, 9, 696–700. [Google Scholar] [CrossRef]
- Stergiadis, S.; Berlitz, C.B.; Hunt, B.; Garg, S.; Givens, D.I.; Kliem, K.E. An update to the fatty acid profiles of bovine retail milk in the United Kingdom: Implications for nutrition in different age and gender groups. Food Chem. 2019, 276, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Pustjens, A.M.; Erasmus, S.W.; Yang, Y.; Hettinga, K.; van Ruth, S.M. Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands. Food Chem. 2020, 314, 126153. [Google Scholar] [CrossRef] [PubMed]
- Ormston, S.; Qin, N.; Faludi, G.; Pitt, J.; Gordon, A.W.; Theodoridou, K.; Yan, T.; Huws, S.A.; Stergiadis, S. Implications of organic dairy management on herd performance and milk fatty acid profiles and interactions with season. Foods 2023, 12, 1589. [Google Scholar] [CrossRef] [PubMed]
- Soedamah-Muthu, S.S.; Guo, J. Dairy consumption and cardiometabolic diseases: Evidence from prospective studies. In Milk and Dairy Foods; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–28. [Google Scholar]
- Wang, W.; Wu, Y.; Zhang, D. Association of dairy products consumption with risk of obesity in children and adults: A meta-analysis of mainly cross-sectional studies. Ann. Epidemiol. 2016, 26, 870–882.e872. [Google Scholar] [CrossRef]
- Chen, M.; Pan, A.; Malik, V.S.; Hu, F.B. Effects of dairy intake on body weight and fat: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 735–747. [Google Scholar] [CrossRef]
- Booth, A.O.; Huggins, C.E.; Wattanapenpaiboon, N.; Nowson, C.A. Effect of increasing dietary calcium through supplements and dairy food on body weight and body composition: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2015, 114, 1013–1025. [Google Scholar] [CrossRef]
- Soedamah-Muthu, S.S.; De Goede, J. Dairy consumption and cardiometabolic diseases: Systematic review and updated meta-analyses of prospective cohort studies. Curr. Nutr. Rep. 2018, 7, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Dong, J.Y.; Wu, Z.W.; Li, W.; Qin, L.Q. Dairy consumption and risk of type 2 diabetes mellitus: A meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011, 65, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, T.A.; Hafekost, K.; Mitrou, F.; Lawrence, D. Food sources of saturated fat and the association with mortality: A meta-analysis. Am. J. Public Health 2013, 103, e31–e42. [Google Scholar] [CrossRef] [PubMed]
- Drouin-Chartier, J.-P.; Li, Y.; Ardisson Korat, A.V.; Ding, M.; Lamarche, B.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in dairy product consumption and risk of type 2 diabetes: Results from 3 large prospective cohorts of US men and women. Am. J. Clin. Nutr. 2019, 110, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; De Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose–response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef]
- Alexander, D.D.; Bylsma, L.C.; Vargas, A.J.; Cohen, S.S.; Doucette, A.; Mohamed, M.; Irvin, S.R.; Miller, P.E.; Watson, H.; Fryzek, J.P. Dairy consumption and CVD: A systematic review and meta-analysis. Br. J. Nutr. 2016, 115, 737–750. [Google Scholar] [CrossRef]
- Chen, G.-C.; Wang, Y.; Tong, X.; Szeto, I.M.Y.; Smit, G.; Li, Z.-N.; Qin, L.-Q. Cheese consumption and risk of cardiovascular disease: A meta-analysis of prospective studies. Eur. J. Nutr. 2017, 56, 2565–2575. [Google Scholar] [CrossRef]
- Power, M.L.; Heaney, R.P.; Kalkwarf, H.J.; Pitkin, R.M.; Repke, J.T.; Tsang, R.C.; Schulkin, J. The role of calcium in health and disease. Am. J. Obstet. Gynecol. 1999, 181, 1560–1569. [Google Scholar] [CrossRef]
- Kalkwarf, H.J.; Khoury, J.C.; Lanphear, B.P. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am. J. Clin. Nutr. 2003, 77, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Huncharek, M.; Muscat, J.; Kupelnick, B. Impact of dairy products and dietary calcium on bone-mineral content in children: Results of a meta-analysis. Bone 2008, 43, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Bailey, R.L.; Lappe, J.; O’Brien, K.O.; Wang, D.D.; Sahni, S.; Weaver, C.M. Dairy intake and bone health across the lifespan: A systematic review and expert narrative. Crit. Rev. Food Sci. Nutr. 2021, 61, 3661–3707. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R. Dairy products and bone health. Aging Clin. Exp. Res. 2022, 99, 1256S–1262S. [Google Scholar] [CrossRef] [PubMed]
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The world cancer research fund/American institute for cancer research third expert report on diet, nutrition, physical activity, and cancer: Impact and future directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Ralston, R.A.; Truby, H.; Palermo, C.E.; Walker, K.Z. Colorectal cancer and nonfermented milk, solid cheese, and fermented milk consumption: A systematic review and meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2014, 54, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Shen, M.; Du, S.; Chen, T.; Zou, S. The association between dairy intake and breast cancer in Western and Asian populations: A systematic review and meta-analysis. J. Breast Cancer 2015, 18, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.-Y.; Zhang, L.; He, K.; Qin, L.-Q. Dairy consumption and risk of breast cancer: A meta-analysis of prospective cohort studies. Breast Cancer Res. Treat. 2011, 127, 23–31. [Google Scholar] [CrossRef]
- Lumsden, A.L.; Mulugeta, A.; Hyppönen, E. Milk consumption and risk of twelve cancers: A large-scale observational and Mendelian randomisation study. Clin. Nutr. 2023, 42, 1–8. [Google Scholar] [CrossRef]
- Palupi, E.; Jayanegara, A.; Ploeger, A.; Kahl, J. Comparison of nutritional quality between conventional and organic dairy products: A meta-analysis. J. Sci. Food Agric. 2012, 92, 2774–2781. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Oléagineux Corps Gras Lipides 2010, 17, 267–275. [Google Scholar] [CrossRef]
- Kummeling, I.; Thijs, C.; Huber, M.; van de Vijver, L.P.L.; Snijders, B.E.P.; Penders, J.; Stelma, F.; Van Ree, R.; van den Brandt, P.A.; Dagnelie, P.C. Consumption of organic foods and risk of atopic disease during the first 2 years of life in the Netherlands. Br. J. Nutr. 2008, 99, 598–605. [Google Scholar] [CrossRef]
- Christensen, J.S.; Asklund, C.; Skakkebæk, N.E.; Jørgensen, N.; Andersen, H.R.; Jørgensen, T.M.; Olsen, L.H.; Høyer, A.P.; Moesgaard, J.; Thorup, J. Association between organic dietary choice during pregnancy and hypospadias in offspring: A study of mothers of 306 boys operated on for hypospadias. J. Urol. 2013, 189, 1077–1082. [Google Scholar] [CrossRef]
- Murali, A.P.; Trząskowska, M.; Trafialek, J. Microorganisms in Organic Food-Issues to Be Addressed. Microorganisms 2023, 11, 1557. [Google Scholar] [CrossRef]
- Sadiq, M.; Paul, J.; Bharti, K. Dispositional traits and organic food consumption. J. Clean. Prod. 2020, 266, 121961. [Google Scholar] [CrossRef]
- Rana, J.; Paul, J. Consumer behavior and purchase intention for organic food: A review and research agenda. J. Retail. Consum. Serv. 2017, 38, 157–165. [Google Scholar] [CrossRef]
- Precedence Research. Organic Dairy Market. 2022. Available online: https://www.precedenceresearch.com/organic-dairy-market#:~:text=The%20global%20organic%20dairy%20market,10.1%25%20from%202022%20to%202030.&text=The%20organic%20dairy%20products%20are,reared%20using%20organic%20farming%20techniques (accessed on 1 February 2024).
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.; Greene, C.; Raszap Skorbiansky, S.; Hitaj, C.; Ha, K.; Cavigelli, M.; Ferrier, P.; McBride, W. US Organic Production, Markets, Consumers, and Policy, 2000–21; United States Department of Agriculture (USDA): Washington, DC, USA, 2023.
- Willer, H.; Schaack, D.; Lernoud, J. Organic farming and market development in Europe and the European Union. In The World of Organic Agriculture. Statistics and Emerging Trends 2019; Research Institute of Organic Agriculture FiBL: Frick, Switzerland; IFOAM-Organics International: Bonn, Germany, 2019; pp. 217–254. [Google Scholar]
- Willer, H.; Sorensen, N.; Yussefi-Menzler, M. The world of organic agriculture 2008: Summary. In the World of Organic Agriculture; Routledge: London, UK, 2010; pp. 15–22. [Google Scholar]
- EU Agricultural Outlook 2021-31: Lower Demand for Feed to Impact Arable Crops. December 2021. Available online: https://agriculture.ec.europa.eu/news/eu-agricultural-outlook-2021-31-lower-demand-feed-impact-arable-crops-2021-12-09_en (accessed on 1 February 2024).
- Maji, S.; Meena, B.S.; Paul, P.; Rudroju, V. Prospect of organic dairy farming in India: A review. Asian J. Dairy Food Res. 2017, 36, 1–8. [Google Scholar] [CrossRef]
- Mahesh, M.S. Integrated organic farming and organic milk production: Opportunities and challenges in India. Indian Dairym. 2013, 65, 56–60. [Google Scholar]
- KPMG. Global Organic Milk Production Market Report. Available online: https://ciorganicos.com.br/wp-content/uploads/2020/09/global-organic-milk-production-market-report.pdf (accessed on 1 February 2024).
- Managi, S.; Yamamoto, Y.; Iwamoto, H.; Masuda, K. Valuing the influence of underlying attitudes and the demand for organic milk in Japan. Agric. Econ. 2008, 39, 339–348. [Google Scholar] [CrossRef]
- McBride, W.D. Characteristics, Costs, and Issues for Organic Dairy Farming; DIANE Publishing: Collingdale, PA, USA, 2010; Volume 82. [Google Scholar]
- Sabunevica, S.; Zagorska, J. Organic Milk as Medium for Lactic Acid Bacteria Growth: A Review. Rural Sustain. Res. 2023, 49, 73–86. [Google Scholar] [CrossRef]
Country | Pasture Access | Nutrition | Antibiotics Use | Organic Conversion Period | Regulation |
---|---|---|---|---|---|
European Union | Year-round, weather permitting | ≥60% of daily dry matter intake must consist of roughage, fresh or dried fodder, or silage. | Permitted under veterinary recommendation. ≥2 day milk withdrawal. ≥3 treatments or ≥1 treatment (if productive lifecycle is <1 y) will cause animal to lose its organic status. | Land conversion period of 24-months. Animals must be under organic management ≥6 months. | Regulation (EU) 2018/848 of the European Parliament and of the Council. |
United States | ≥120 days annually | ≥30% of daily dry matter intake must come from pasture during grazing season. | Prohibited. Usage will cause animal to lose its organic status. | Animals must be under organic management ≥12 months. | Organic foods production act provisions 2023. |
Canada | ≥120 days annually | ≥30% of daily dry matter intake must come from pasture during grazing season. 60% of dry matter intake consists of hay, fresh/dried fodder, or silage. | Permitted under veterinary recommendation. ≥30 day milk withdrawal. ≥2 treatments, 12 month transition period before regaining organic status. | Animals must be under organic management ≥12 months. | Organic Production Systems General Principles and Management Standards 2021. |
Japan | ≥2 days per week, year-round | ≥50% of daily dry matter intake must consist of roughage, fresh or dried fodder, or silage. | Permitted under veterinary recommendation. | Animals must be under organic management ≥6 months. | Japanese Agricultural Standard for Organic Livestock Products, 2018. |
New Zealand | ≥150 days annually | ≥50% of daily dry matter intake must consist of roughage, fresh or dried fodder, or silage. | Prohibited. Usage will cause animal to lose its organic status. | Animals must be under organic management ≥12 months. | AsureQuality Organic Standard For Primary Producers, 2018. |
Australia | Year-round, weather permitting | 100% of daily dry matter intake must be sourced from organic or bio-dynamic feed. | Permitted under veterinary recommendation. 180 day transition period before regaining organic status. | Animals must be under organic management ≥6 months. | National Standard for Organic and Bio-Dynamic Produce, 2022. |
China | Year-round, weather permitting | ≥60% of daily dry matter intake must consist of roughage, fresh or dried fodder, or silage. | Permitted under veterinary recommendation. | Animals must be under organic management ≥6 months. | China Organic Standard GB/T 19630-2019. |
India | Year-round, weather permitting | ≥85% of daily dry matter intake must be sourced from organic feed | Permitted under veterinary recommendation. | Land conversion period of 24 months. Animals must be under organic management ≥6 months. | Agricultural and Processed Food Products Export Development Authority (APEDA) 2018. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linehan, K.; Patangia, D.V.; Ross, R.P.; Stanton, C. Production, Composition and Nutritional Properties of Organic Milk: A Critical Review. Foods 2024, 13, 550. https://doi.org/10.3390/foods13040550
Linehan K, Patangia DV, Ross RP, Stanton C. Production, Composition and Nutritional Properties of Organic Milk: A Critical Review. Foods. 2024; 13(4):550. https://doi.org/10.3390/foods13040550
Chicago/Turabian StyleLinehan, Kevin, Dhrati V. Patangia, Reynolds Paul Ross, and Catherine Stanton. 2024. "Production, Composition and Nutritional Properties of Organic Milk: A Critical Review" Foods 13, no. 4: 550. https://doi.org/10.3390/foods13040550
APA StyleLinehan, K., Patangia, D. V., Ross, R. P., & Stanton, C. (2024). Production, Composition and Nutritional Properties of Organic Milk: A Critical Review. Foods, 13(4), 550. https://doi.org/10.3390/foods13040550