Unpacking the Global Rice Trade Network: Centrality, Structural Holes, and the Nexus of Food Insecurity
Abstract
:1. Introduction
2. Methods and Data
2.1. Trade Network Analysis
2.2. Regression Model
2.3. Data
3. Results
3.1. Network-Level Structure and Dynamics of the Global Rice Trade Network
3.2. Node-Level Distribution of Centrality and Structural Holes
3.3. Causal Estimates of Network Variables and Food Insecurity
3.3.1. Estimation of the Main Model
3.3.2. Robustness Check and Endogeneity Mitigation
3.3.3. Heterogeneity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Country Code (M49) | Country | Code in This Paper |
4 | Afghanistan | AFG |
8 | Albania | ALB |
12 | Algeria | DZA |
24 | Angola | AGO |
28 | Antigua and Barbuda | ATG |
32 | Argentina | ARG |
51 | Armenia | ARM |
36 | Australia | AUS |
40 | Austria | AUT |
31 | Azerbaijan | AZE |
44 | Bahamas | BHS |
48 | Bahrain | BHR |
50 | Bangladesh | BGD |
52 | Barbados | BRB |
112 | Belarus | BLR |
56 | Belgium | BEL |
58 | Belgium-Luxembourg | BLX |
84 | Belize | BLZ |
204 | Benin | BEN |
64 | Bhutan | BTN |
68 | Bolivia (Plurinational State of) | BOL |
70 | Bosnia and Herzegovina | BIH |
72 | Botswana | BWA |
76 | Brazil | BRA |
96 | Brunei Darussalam | BRN |
100 | Bulgaria | BGR |
854 | Burkina Faso | BFA |
108 | Burundi | BDI |
132 | Cabo Verde | CPV |
116 | Cambodia | KHM |
120 | Cameroon | CMR |
124 | Canada | CAN |
140 | Central African Republic | CAF |
148 | Chad | TCD |
152 | Chile | CHL |
344 | China, Hong Kong SAR | HKG |
446 | China, Macao SAR | MAC |
156 | China, mainland | CHN |
158 | China, Taiwan Province of | TWN |
170 | Colombia | COL |
174 | Comoros | COM |
178 | Congo | COG |
184 | Cook Islands | COK |
188 | Costa Rica | CRI |
384 | Côte d’Ivoire | CIV |
191 | Croatia | HRV |
192 | Cuba | CUB |
196 | Cyprus | CYP |
203 | Czechia | CZE |
200 | Czechoslovakia | CSK |
408 | Democratic People’s Republic of Korea | PRK |
180 | Democratic Republic of the Congo | ZAR |
208 | Denmark | DNK |
262 | Djibouti | DJI |
212 | Dominica | DMA |
214 | Dominican Republic | DOM |
218 | Ecuador | ECU |
818 | Egypt | EGY |
222 | El Salvador | SLV |
226 | Equatorial Guinea | GNQ |
232 | Eritrea | ERI |
233 | Estonia | EST |
748 | Eswatini | SWZ |
231 | Ethiopia | ETH |
230 | Ethiopia PDR | ETF |
234 | Faroe Islands | FRO |
242 | Fiji | FJI |
246 | Finland | FIN |
250 | France | FRA |
254 | French Guiana | GUF |
258 | French Polynesia | PYF |
266 | Gabon | GAB |
270 | Gambia | GMB |
268 | Georgia | GEO |
276 | Germany | DEU |
288 | Ghana | GHA |
300 | Greece | GRC |
308 | Grenada | GRD |
312 | Guadeloupe | GLP |
320 | Guatemala | GTM |
324 | Guinea | GIN |
624 | Guinea-Bissau | GNB |
328 | Guyana | GUY |
332 | Haiti | HTI |
340 | Honduras | HND |
348 | Hungary | HUN |
352 | Iceland | ISL |
356 | India | IND |
360 | Indonesia | IDN |
364 | Iran (Islamic Republic of) | IRN |
368 | Iraq | IRQ |
372 | Ireland | IRL |
376 | Israel | ISR |
380 | Italy | ITA |
388 | Jamaica | JAM |
392 | Japan | JPN |
400 | Jordan | JOR |
398 | Kazakhstan | KAZ |
404 | Kenya | KEN |
296 | Kiribati | KIR |
414 | Kuwait | KWT |
417 | Kyrgyzstan | KGZ |
418 | Lao People’s Democratic Republic | LAO |
428 | Latvia | LVA |
422 | Lebanon | LBN |
426 | Lesotho | LSO |
430 | Liberia | LBR |
434 | Libya | LBY |
440 | Lithuania | LTU |
442 | Luxembourg | LUX |
450 | Madagascar | MDG |
454 | Malawi | MWI |
458 | Malaysia | MYS |
462 | Maldives | MDV |
466 | Mali | MLI |
470 | Malta | MLT |
584 | Marshall Islands | MHL |
474 | Martinique | MTQ |
478 | Mauritania | MRT |
480 | Mauritius | MUS |
484 | Mexico | MEX |
583 | Micronesia (Federated States of) | FSM |
496 | Mongolia | MNG |
499 | Montenegro | MONT |
504 | Morocco | MAR |
508 | Mozambique | MOZ |
104 | Myanmar | MMR |
516 | Namibia | NAM |
520 | Nauru | NRU |
524 | Nepal | NPL |
528 | Netherlands (Kingdom of the) | NLD |
540 | New Caledonia | NCL |
554 | New Zealand | NZL |
558 | Nicaragua | NIC |
562 | Niger | NER |
566 | Nigeria | NGA |
570 | Niue | NIU |
807 | North Macedonia | MKD |
578 | Norway | NOR |
512 | Oman | OMN |
586 | Pakistan | PAK |
275 | Palestine | PALE |
591 | Panama | PAN |
598 | Papua New Guinea | PNG |
600 | Paraguay | PRY |
604 | Peru | PER |
608 | Philippines | PHL |
616 | Poland | POL |
620 | Portugal | PRT |
630 | Puerto Rico | PRI |
634 | Qatar | QAT |
410 | Republic of Korea | KOR |
498 | Republic of Moldova | MDA |
638 | Réunion | REU |
642 | Romania | ROM |
643 | Russian Federation | RUS |
646 | Rwanda | RWA |
659 | Saint Kitts and Nevis | KNA |
662 | Saint Lucia | LCA |
670 | Saint Vincent and the Grenadines | VCT |
882 | Samoa | WSM |
678 | Sao Tome and Principe | STP |
682 | Saudi Arabia | SAU |
686 | Senegal | SEN |
688 | Serbia | SERI |
891 | Serbia and Montenegro | SER |
690 | Seychelles | SYC |
694 | Sierra Leone | SLE |
702 | Singapore | SGP |
703 | Slovakia | SVK |
705 | Slovenia | SVN |
90 | Solomon Islands | SLB |
706 | Somalia | SOM |
710 | South Africa | ZAF |
728 | South Sudan | SSUD |
724 | Spain | ESP |
144 | Sri Lanka | LKA |
729 | Sudan | SUDA |
736 | Sudan (former) | SDN |
740 | Suriname | SUR |
752 | Sweden | SWE |
756 | Switzerland | CHE |
760 | Syrian Arab Republic | SYR |
762 | Tajikistan | TJK |
764 | Thailand | THA |
626 | Timor-Leste | TMP |
768 | Togo | TGO |
772 | Tokelau | TKL |
776 | Tonga | TON |
780 | Trinidad and Tobago | TTO |
788 | Tunisia | TUN |
792 | Türkiye | TUR |
795 | Turkmenistan | TKM |
798 | Tuvalu | TUV |
800 | Uganda | UGA |
804 | Ukraine | UKR |
784 | United Arab Emirates | ARE |
826 | United Kingdom of Great Britain and Northern Ireland | GBR |
834 | United Republic of Tanzania | TZA |
840 | United States of America | USA |
858 | Uruguay | URY |
810 | USSR | SVU |
860 | Uzbekistan | UZB |
548 | Vanuatu | VUT |
862 | Venezuela (Bolivarian Republic of) | VEN |
704 | Viet Nam | VNM |
887 | Yemen | YEM |
890 | Yugoslav SFR | YUG |
894 | Zambia | ZMB |
716 | Zimbabwe | ZWE |
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Jayne, T.S. Sources and Effects of Instability in the World Rice Market; FAO: Rome, Italy, 1993. [Google Scholar] [CrossRef]
- Nguyen, H.T.M.; Do, H.; Kay, A.; Kompas, T. Rice policy in a transitional economy: Balancing the social and political objectives. Food Secur. 2020, 12, 549–566. [Google Scholar] [CrossRef]
- World Bank. Food Security Update 27 July 2023. Available online: https://thedocs.worldbank.org/en/doc/40ebbf38f5a6b68bfc11e5273e1405d4-0090012022/food-security-update (accessed on 15 December 2023).
- Wailes, E.J. Rice: Global trade, protectionist policies, and the impact of trade liberalization. In Global Agricultural Trade and Developing Countries; World Bank: Washington, DC, USA, 2005; Volume 185, pp. 177–194. [Google Scholar]
- Anderson, K. Trade-related food policies in a more volatile climate and trade environment. Food Policy 2022, 109, 102253. [Google Scholar] [CrossRef]
- Zeigler, R. Perspective: Time to unleash rice. Nature 2014, 514, S66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, Y.; Feng, Z.; Xiao, C.; Lang, T.; Du, W.; Liu, Y. Risk of global external cereals supply under the background of the covid-19 pandemic: Based on the perspective of trade network. Foods 2021, 10, 1168. [Google Scholar] [CrossRef]
- Van Berkum, S. How trade can drive inclusive and sustainable food system outcomes in food deficit low-income countries. Food Secur. 2021, 13, 1541–1554. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Anderson, W. International trade and the stability of food supplies in the Global South. Environ. Res. Lett. 2020, 15, 074005. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, L.J.; Hubbard, C. Food security in the United Kingdom: External supply risks. Food Policy 2013, 43, 142–147. [Google Scholar] [CrossRef]
- Fair, K.R.; Bauch, C.T.; Anand, M. Dynamics of the Global Wheat Trade Network and Resilience to Shocks. Sci. Rep. 2017, 7, 7177. [Google Scholar] [CrossRef]
- Tamea, S.; Laio, F.; Ridolfi, L. Global effects of local food-production crises: A virtual water perspective. Sci. Rep. 2016, 6, 18803. [Google Scholar] [CrossRef] [PubMed]
- Puma, M.J.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 2015, 10, 024007. [Google Scholar] [CrossRef]
- Burkholz, R.; Schweitzer, F. International crop trade networks: The impact of shocks and cascades. Environ. Res. Lett. 2019, 14, 114013. [Google Scholar] [CrossRef]
- Scott, J. Social network analysis: Developments, advances, and prospects. Soc. Netw. Anal. Min. 2011, 1, 21–26. [Google Scholar] [CrossRef]
- Jafari, Y.; Engemann, H.; Zimmermann, A. Food trade and regional trade agreements—A network perspective. Food Policy 2023, 119, 102516. [Google Scholar] [CrossRef]
- Gutiérrez-Moya, E.; Adenso-Díaz, B.; Lozano, S. Analysis and vulnerability of the international wheat trade network. Food Secur. 2021, 13, 113–128. [Google Scholar] [CrossRef]
- Krijkamp, A.R.; Knoben, J.; Oerlemans, L.A.G.; Leenders, R.T.A.J. An ace in the hole: The effects of (in)accurately observed structural holes on organizational reputation positions in whole networks. J. Bus. Res. 2021, 129, 703–713. [Google Scholar] [CrossRef]
- Raj, S.; Brinkley, C.; Ulimwengu, J. Connected and extracted: Understanding how centrality in the global wheat supply chain affects global hunger using a network approach. PLoS ONE 2022, 17, e0269891. [Google Scholar] [CrossRef]
- Wu, F.; Guclu, H. Global Maize Trade and Food Security: Implications from a Social Network Model. Risk Anal. 2013, 33, 2168–2178. [Google Scholar] [CrossRef]
- Sartori, M.; Schiavo, S. Connected we stand: A network perspective on trade and global food security. Food Policy 2015, 57, 114–127. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002; pp. 12–15. [Google Scholar]
- Hanneman, R.; Riddle, M. Introduction to Social Network Methods. 2005. Available online: https://LibreTexts.org (accessed on 4 August 2023).
- SageHogan, B. Analyzing social networks. In The Sage Handbook of Online Research Methods; SAGE: Thousand Oaks, CA, USA, 2008; pp. 141–160. [Google Scholar]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Graham, A.V.; McLevey, J.; Browne, P.; Crick, T. Structural diversity is a poor proxy for information diversity: Evidence from 25 scientific fields. Soc. Netw. 2022, 70, 55–63. [Google Scholar] [CrossRef]
- Burt, R.S. Structural holes and good ideas. Am. J. Sociol. 2004, 110, 349–399. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. In Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Lazaroiu, G.; Andronie, M.; Uţă, C.; Hurloiu, I. Trust Management in Organic Agriculture: Sustainable Consumption Behavior, Environmentally Conscious Purchase Intention, and Healthy Food Choices. Front. Public Health 2019, 7, 340. [Google Scholar] [CrossRef] [PubMed]
- Majerova, J.; Sroka, W.; Krizanova, A.; Gajanova, L.; Lazaroiu, G.; Nadanyiova, M. Sustainable brand management of alimentary goods. Sustainability 2020, 12, 556. [Google Scholar] [CrossRef]
- Zhao, L.; Poh, C.N.; Wu, J.; Zhao, X.; He, Y.; Yang, H. Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. Innov. Food Sci. Emerg. Technol. 2022, 76, 102917. [Google Scholar] [CrossRef]
- Chai, Y.; Yu, Y.; Zhu, H.; Li, Z.; Dong, H.; Yang, H. Identification of common buckwheat (Fagopyrum esculentum Moench) adulterated in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) flour based on near-infrared spectroscopy and chemometrics. Curr. Res. Food Sci. 2023, 7, 100573. [Google Scholar] [CrossRef] [PubMed]
- FAO; FAOSTAT. Trade: Detailed Trade Matrix. 2023. Available online: https://www.fao.org/faostat/en/#data/TM (accessed on 2 July 2023).
- Cramer, G.L.; Wailes, E.J.; Shui, S. Impacts of Liberalizing Trade in the World Rice Market. Am. J. Agric. Econ. 1993, 75, 219–226. [Google Scholar] [CrossRef]
- Akhter, S. Market integration between surplus and deficit rice markets during global food crisis period. Aust. J. Agric. Resour. Econ. 2017, 61, 172–188. [Google Scholar] [CrossRef]
- Childs, N. Rice Outlook. 2014. Available online: https://www.ers.usda.gov/webdocs/outlooks/38859/46657_rcs-14e.pdf?v=8688.1 (accessed on 4 August 2023).
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023. In Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Dupas, M.C.; Halloy, J.; Chatzimpiros, P. Time dynamics and invariant subnetwork structures in the world cereals trade network. PLoS ONE 2019, 14, e0216318. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, C. Evolution of global food trade patterns and its implications for food security based on complex network analysis. Foods 2021, 10, 2657. [Google Scholar] [CrossRef]
- FAO. The State of Agricultural Commodity Markets 2022. In The Geography of Food and Agricultural Trade: Policy Approaches for Sustainable Development; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Debnath, D.; Babu, S.; Ghosh, P.; Helmar, M. The impact of India’s food security policy on domestic and international rice market. J. Policy Model. 2018, 40, 265–283. [Google Scholar] [CrossRef]
- Dithmer, J.; Abdulai, A. Does trade openness contribute to food security? A dynamic panel analysis. Food Policy 2017, 69, 218–230. [Google Scholar] [CrossRef]
- Su, F.; Liu, Y.; Chen, S.J.; Fahad, S. Towards the impact of economic policy uncertainty on food security: Introducing a comprehensive heterogeneous framework for assessment. J. Clean. Prod. 2023, 386, 135792. [Google Scholar] [CrossRef]
Classification | Measure | Description |
---|---|---|
Network Size | Number of Ties | Number of connections of each node |
Avg Degree | Average number of connections of each node | |
Density | Proportion of the actual existing trade links to all possible trade links | |
Diameter | Maximum geodesic distance | |
Sum Strength | Sum of the trade volume of all the ties | |
Network Centralization | Deg Centralization | Degree of distribution in the network compared to a perfectly centralized network |
Out-Centralization | Degree of centralization in the export direction | |
In-Centralization | Degree of centralization in the import direction | |
Indeg H-Index | Calculated by the largest number x, such that there are x vertices of the in-degree of at least x. It helps identify the most influential nodes based on the number of incoming connections | |
K-Core Index | Subgraph where all nodes have at least k connections to other nodes in the subgraph | |
Indeg Corr | In-degree correlation or assortativity of the network | |
Outdeg Corr | Out-degree correlation or assortativity of the network | |
Maximum Strength | Highest trade volume on the connections | |
Avg Strength | Average trade volume on the connections | |
Network Connectivity | Components | Sets of nodes that are connected to each other but not to nodes outside the set |
Component Ratio | Indicates how many distinct disconnected clusters or subgraphs exist within the network | |
Compactness | Mean of all the reciprocal distances—it is a measure of how closely knit a network is | |
Breadth | Equals one minus the compactness. | |
Connectedness | Extent to which all nodes in the network are reachable from any other node | |
Fragmentation | Complement of connectedness (1-Connectedness), representing the proportion of vertex pairs that are unreachable. It measures how much a network breaks into disconnected components | |
Transitivity/Closure | Calculated by the number of nonvacuous transitive triples divided by number of paths of length 2. It reflects the degree of clustering in the network | |
Avg Distance | Average geodesic distance among reachable pairs | |
Prop within 3 | Calculates the proportion of nodes within three steps from each node | |
SD Distance | Standard deviation of the geodesic distances among reachable pairs: a lower SD distance indicates a more homogeneous network in terms of how close or far nodes are from each other | |
Wiener Index | Sum of the geodesic distances between all pairs of nodes. It is a measure of the total closeness or connectedness of the network | |
Dependency Sum | Calculated by the sum of all the geodesic distance minus n(n-1). It measures the extent to which nodes in the network are dependent on one another | |
Nulls | Proportion of dyads (pairs of nodes) that have no links | |
Mutuals | Proportion of dyads that have reciprocated links | |
Asymmetrics | Proportion of dyads that have an unreciprocated links and assess the asymmetry in relationships between nodes | |
Arc Reciprocity | Number of reciprocated arcs (connections between nodes) divided by the total number of arcs | |
Dyad Reciprocity | Number of reciprocated dyads divided by the total number of dyads |
Classification | Measure | 1986 | 2021 | Change from 1986 to 2021 | Values from 1986 to 2021 | |
---|---|---|---|---|---|---|
Mean | Std. Dev. | |||||
Network Size | Number of Ties | 426 | 2149 | 404.46% | 1354.278 | 604.202 |
Avg Degree | 2.029 | 10.233 | 404.34% | 6.449 | 2.877 | |
Density | 1.00% | 4.90% | 3.9 pp | 3.10% | 1.40% | |
Diameter | 7 | 6 | −14.29% | 5.972 | 0.609 | |
Sum Strength | 5,863,727 | 50,943,092 | 768.78% | 25,553,666 | 14,421,910 | |
Network Centralization | Deg Centralization | 25.20% | 69.90% | 44.7 pp | 47.60% | 14.50% |
Out−Centralization | 23.10% | 73.40% | 50.3 pp | 49.20% | 16.40% | |
In−Centralization | 7.20% | 17.20% | 10 pp | 12.30% | 3.50% | |
Indeg H−Index | 8 | 20 | 150.00% | 15.056 | 4.105 | |
K−core index | 7 | 18 | 157.14% | 13.333 | 3.84 | |
Indeg Corr | 10.90% | 12.40% | 1.5 pp | 8.50% | 1.70% | |
Outdeg Corr | 21.60% | 30.60% | 9 pp | 27.80% | 3.20% | |
Maximum Strength | 856,952 | 2,479,740 | 189.37% | 1,742,748 | 1,075,720 | |
Avg Strength | 13,764.62 | 23,705.49 | 72.22% | 17,743 | 3368 | |
Network Connectivity: Components, Distance, and Reciprocity | Components | 180 | 117 | −35.00% | 143.278 | 23.911 |
Component Ratio | 85.60% | 55.50% | −30.1 pp | 68.10% | 11.40% | |
Compactness | 4.50% | 20.80% | 16.3 pp | 13.50% | 5.70% | |
Breadth | 95.50% | 79.20% | −16.3 pp | 86.50% | 5.70% | |
Connectedness | 10.50% | 42.50% | 32 pp | 29.00% | 11.80% | |
Fragmentation | 89.50% | 57.50% | −32 pp | 71.00% | 11.80% | |
Transitivity/Closure | 22.50% | 34.70% | 12.2 pp | 31.90% | 4.40% | |
Avg Distance | 2.788 | 2.334 | −16.28% | 2.538 | 0.119 | |
Prop Within 3 | 8.10% | 39.60% | 31.5 pp | 25.20% | 10.80% | |
SD Distance | 1.049 | 0.803 | −23.45% | 0.914 | 0.088 | |
Wiener Index | 12,895 | 43,509 | 237.41% | 31,884 | 12,427 | |
Dependency Sum | 8269 | 24,871 | 200.77% | 19,170 | 7277 | |
Nulls | 98.20% | 91.30% | −7.03 pp | 94.42% | 2.40% | |
Mutuals | 0.10% | 1.10% | 1 pp | 0.60% | 0.30% | |
Asymmetrics | 1.70% | 7.70% | 6 pp | 5.00% | 2.10% | |
Arc Reciprocity | 13.10% | 21.90% | 8.8 pp | 18.10% | 2.60% | |
Dyad Reciprocity | 7.00% | 12.30% | 5.3 pp | 10.00% | 1.60% |
Rank | Outdegree | Outstrength | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1986 | 1992 | 2008 | 2014 | 2021 | 1986 | 1992 | 2008 | 2014 | 2021 | |
1 | USA | PAK | IND | IND | IND | THA | THA | THA | IND | IND |
2 | FRA | CHN | PAK | PAK | PAK | USA | VNM | USA | THA | THA |
3 | THA | IND | THA | THA | THA | URY | USA | IND | VNM | PAK |
4 | IND | USA | USA | USA | USA | ARG | PAK | VNM | PAK | VNM |
5 | BLX | THA | CHN | ITA | ITA | ITA | CHN | PAK | USA | USA |
Rank | Outcloseness | Betweenness | ||||||||
1986 | 1992 | 2008 | 2014 | 2021 | 1986 | 1992 | 2008 | 2014 | 2021 | |
1 | USA | PAK | IND | IND | IND | USA | USA | USA | USA | USA |
2 | THA | USA | PAK | PAK | PAK | FRA | CHN | PAK | PAK | IND |
3 | IND | IND | THA | THA | THA | BLX | DEU | ITA | NER | DEU |
4 | ITA | THA | USA | USA | USA | CAN | BLX | FRA | FRA | FRA |
5 | FRA | CHN | CHN | VNM | ITA | IND | FRA | DEU | ZAF | ZAF |
Variables | Mean | Median | Maximum | Minimum | Std. Dev. | Observations | Cross Sections |
---|---|---|---|---|---|---|---|
PoU (Y1) | 9.730 | 5.700 | 67.800 | 0.000 | 11.414 | 3578 | 180 |
Outdegree | 9.623 | 1.000 | 158.000 | 0.000 | 20.950 | 3578 | 180 |
Indegree | 9.589 | 8.000 | 48.000 | 0.000 | 6.794 | 3578 | 180 |
Constraint | 0.847 | 0.796 | 2.000 | 0.053 | 0.417 | 3578 | 180 |
lnGDP | 8.427 | 8.421 | 11.804 | 4.464 | 1.520 | 3578 | 180 |
CIDR | 24.969 | 29.300 | 100.000 | −654.900 | 65.565 | 3578 | 180 |
Variables | Y1 | Ye | YGFSI | |||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Outdegree | −0.0875 *** (0.0090) | −0.0223 ** (0.0102) | −0.00955 (0.0075) | −0.0056 (0.0075) | −0.0049 (0.0101) | 0.0248 *** (0.0068) | ||
Indegree | −0.4071 *** (0.0282) | −0.2715 *** (0.0335) | 0.0802 *** (0.0254) | 0.0836 *** (0.0252) | 0.1328 *** (0.0346) | −0.0585 ** (0.0234) | ||
Constraint | 5.9956 *** (0.4464) | 3.2319 *** (0.5493) | 3.1268 *** (0.4025) | 2.7464 *** (0.4035) | −4.2332 *** (0.5630) | −1.6367 *** (0.5261) | ||
lnGDP | −5.2677 *** (0.0951) | −5.2847 *** (0.0945) | 6.1921 *** (0.1326) | 7.3275 *** (0.1112) | ||||
CIDR | 0.0146 *** (0.0021) | −0.0148 *** (0.0029) | −0.0047 ** (0.0022) | |||||
C | 10.5727 *** (0.2064) | 13.6344 *** (0.3273) | 4.6497 *** (0.4212) | 9.8103 *** (0.7091) | 50.7964 *** (0.9043) | 50.8285 *** (0.8983) | 70.4679 *** (1.1104) | −1.0727 (1.1104) |
Period Fixed | yes | yes | yes | yes | yes | yes | yes | yes |
Adjusted R2 | 0.0348 | 0.0639 | 0.0568 | 0.0775 | 0.5047 | 0.5112 | 0.4796 | 0.8410 |
Root Mean Square Error (RMSE) | 11.1792 | 11.0092 | 11.0506 | 10.9260 | 8.0048 | 7.9507 | 10.7679 | 4.9141 |
Akaike Information Criterion (AIC) | 7.6783 | 7.6476 | 7.6551 | 7.6336 | 7.0119 | 6.9989 | 7.6061 | 6.0503 |
N | 3578 | 3578 | 3578 | 3578 | 3578 | 3578 | 3438 | 1063 |
Variables | Y1 | |||
---|---|---|---|---|
(9) | (10) | (11) | (12) | |
Foutdegree | −0.5405 *** (0.0227) | 0.0117 (0.0232) | ||
Findegree | −1.1711 *** (0.0429) | 0.0836 * (0.0449) | ||
Fconstraint | 21.7579 *** (0.8111) | 10.2260 *** (0.8570) | ||
lnGDP | −4.9552 *** (0.1066) | |||
CIDR | 0.0055 ** (0.0023) | |||
C | 14.9884 *** (0.2823) | 20.9377 *** (0.4451) | −8.5592 *** (0.7035) | 41.8448 *** (1.2393) |
Period Fixed | yes | yes | yes | yes |
Adjusted R2 | 0.1457 | 0.1809 | 0.1758 | 0.5260 |
RMSE | 10.5170 | 10.2980 | 10.3305 | 7.8294 |
AIC | 7.5562 | 7.5141 | 7.5204 | 6.9682 |
N | 3578 | 3578 | 3578 | 3578 |
Variables | Y1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(13) Asia | (14) Europe | (15) Africa | (16) Americas | (17) Oceania | (18) Latin America and the Caribbean | (19) Sub-Saharan Africa | (20) Least Developed Countries | (21) Low-Income Food Deficit Countries | (22) Net Food Importing Developing Countries | |
Outdegree | 0.0404 *** (0.0104) | 0.0141 * (0.0075) | −0.0424 (0.042) | −0.0162 (0.0197) | −0.0622 (0.0455) | 0.0151 (0.0214) | 0.01270 (0.0098) | −0.0092 (0.0129) | −0.017 (0.012) | 0.0059 (0.0097) |
Indegree | −0.1565 ** (0.0608) | 0.0013 (0.0212) | −0.1857 ** (0.0827) | 0.3504 *** (0.0452) | −0.1575 (0.097) | 0.1641 *** (0.0591) | 0.0093 (0.0377) | 0.0248 (0.0462) | 0.0697 (0.0468) | 0.0671 * (0.0372) |
Constraint | 5.1172 *** (0.7871) | 1.7048 *** (0.3798) | 1.838 (1.145) | 1.1429 * (0.5928) | 0.8969 (1.1536) | 3.0079 *** (0.9492) | 4.2521 *** (0.6564) | 2.576 *** (0.7964) | 2.8272 *** (0.8312) | 3.0544 *** (0.5998) |
lnGDP | −4.5185 *** (0.2035) | −1.3490 *** (0.1048) | −6.3877 ** (0.4061) | −8.968 *** (0.309) | −2.7963 *** (0.3983) | −4.9565 *** (0.2344) | −3.6216 *** (0.1532) | −4.5878 *** (0.2096) | −4.9471 *** (0.2169) | −5.0795 *** (0.1449) |
CIDR | 0.0252 *** (0.007) | 0.0007 (0.0015) | 0.0647** (0.0129) | 0.0086 *** (0.0027) | 0.0022 (0.0056) | 0.0245 *** (0.0064) | 0.0101 *** (0.0029) | 0.0112 *** (0.0033) | 0.0161 *** (0.0034) | 0.0165 *** (0.003) |
C | 42.1185 *** (1.8082) | 12.7839 *** (1.0867) | 62.0539 ** (2.9525) | 83.3066 *** (2.7234) | 33.4787 *** (3.4923) | 45.9739 *** (2.0703) | 35.3609 *** (1.5306) | 45.4294 *** (2.0144) | 48.8116 *** (2.0918) | 48.8239 *** (1.4183) |
Period Fixed | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes |
Adjusted R2 | 0.5113 | 0.2235 | 0.2322 | 0.6023 | 0.4733 | 0.4331 | 0.4718 | 0.4548 | 0.5002 | 0.5250 |
RMSE | 6.9060 | 2.8114 | 10.7551 | 5.6087 | 4.9136 | 8.4673 | 6.4570 | 7.2436 | 7.1866 | 7.4745 |
AIC | 6.7598 | 4.9699 | 7.6404 | 6.3648 | 6.2900 | 7.1904 | 6.6249 | 6.8616 | 6.8468 | 6.8974 |
N | 910 | 805 | 1005 | 664 | 194 | 649 | 918 | 819 | 806 | 1424 |
Cross-Sections | 45 | 39 | 51 | 35 | 10 | 33 | 46 | 41 | 41 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xiao, Q.; Wu, H.; Li, J. Unpacking the Global Rice Trade Network: Centrality, Structural Holes, and the Nexus of Food Insecurity. Foods 2024, 13, 604. https://doi.org/10.3390/foods13040604
Li J, Xiao Q, Wu H, Li J. Unpacking the Global Rice Trade Network: Centrality, Structural Holes, and the Nexus of Food Insecurity. Foods. 2024; 13(4):604. https://doi.org/10.3390/foods13040604
Chicago/Turabian StyleLi, Junjie, Qin Xiao, Haixia Wu, and Jianping Li. 2024. "Unpacking the Global Rice Trade Network: Centrality, Structural Holes, and the Nexus of Food Insecurity" Foods 13, no. 4: 604. https://doi.org/10.3390/foods13040604
APA StyleLi, J., Xiao, Q., Wu, H., & Li, J. (2024). Unpacking the Global Rice Trade Network: Centrality, Structural Holes, and the Nexus of Food Insecurity. Foods, 13(4), 604. https://doi.org/10.3390/foods13040604