Nutritional, Textural, and Sensory Attributes of Protein Bars Formulated with Mycoproteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Protein Bars
2.3. Proximate Composition Analysis
2.4. Change in Bar Hardness
2.5. In Vitro Protein Digestibility Test
2.6. Microstructure
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussions
3.1. Proximate Composition Analysis of HPNBs
3.2. Change in Bar Hardness
3.3. In Vitro Protein Digestibility Test
3.4. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Zheng, Y.; Zhong, Y.; Wang, D.; Xu, J.; Liu, R.; Deng, Y. A novel protein bar formulated with hempseed protein and Tenebrio molitor larvae protein: Nutritional, sensory characterization and hardening, volatile profile changes assessment. J. Food Process. Preserv. 2022, 46, e16276. [Google Scholar] [CrossRef]
- Samuel Kerenhappuch, S.; Nazni, P. Pearl millet protein bar: Nutritional, organoleptic, textural characterization, and in-vitro protein and starch digestibility. J. Food Sci. Technol. 2020, 57, 3467–3473. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, K.; Zhao, X.; Li, J.; Yu, R.; Fu, R.; He, Y.; Zhao, P.; Oh, K.-C.; Hou, J. High-protein nutrition bars: Hardening mechanisms and anti-hardening methods during storage. Food Control 2021, 127, 108–127. [Google Scholar] [CrossRef]
- Loveday, S.M.; Hindmarsh, J.P.; Creamer, L.K.; Singh, H. Physicochemical changes in a model protein bar during storage. Food Res. Int. 2009, 42, 798–806. [Google Scholar] [CrossRef]
- Banach, J.C.; Clark, S.; Lamsal, B.P. Texture and other changes during storage in model high-protein nutrition bars formulated with modified milk protein concentrates. Food Sci. Technol. 2014, 56, 77–86. [Google Scholar] [CrossRef]
- Diaz, J.T.; Foegeding, E.A.; Lila, M.A. Whey protein-polyphenol aggregate particles mitigate bar hardening reactions in high protein bars. Food Sci. Technol. 2021, 138, 110747. [Google Scholar] [CrossRef]
- Alves, A.C.; Tavares, G.M. Mixing animal and plant proteins: Is this a way to improve protein techno-functionalities? Food Hydrocoll. 2019, 97, 105171. [Google Scholar] [CrossRef]
- Coelho, M.O.C.; Monteyne, A.J.; Dunlop, M.V.; Harris, H.C.; Morrison, D.J.; Stephens, F.B.; Wall, B.T. Mycoprotein as a possible alternative source of dietary protein to support muscle and metabolic health. Nutr. Rev. 2020, 78, 486–497. [Google Scholar] [CrossRef]
- Upcraft, T.; Tu, W.-C.; Johnson, R.; Finnigan, T.; Van Hung, N.; Hallett, J.; Guo, M. Protein from renewable resources: Mycoprotein production from agricultural residues. Green Chem. Int. J. Green Chem. Resour. GC 2021, 23, 515–5165. [Google Scholar] [CrossRef]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for plant-based diets: Challenges and innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of Plant-Based Milk Alternatives for Improved Flavour and Nutritional Value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef]
- Thomas, A.B.; Shetane, T.D.; Singha, R.G.; Nanda, R.K.; Poddar, S.S.; Shirsat, A. Employing central composite design for evaluation of biomass production by Fusarium venenatum: In vivo antioxidant and antihyperlipidemic properties. Appl. Biochem. Biotech. 2017, 183, 91–109. [Google Scholar] [CrossRef]
- Jacobson, M.F.; Deporter, J. Self-reported adverse reactions associated with mycoprotein (Quorn-brand) containing foods. Ann. Allergy Asthma Immunol. 2018, 120, 626–630. [Google Scholar] [CrossRef]
- Finnigan, T.; Needham, L.; Abbott, C. Chapter 19-Mycoprotein: A healthy new protein with a low environmental impact. In Sustainable Protein Sources; Nadathus, S.R., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 305–325. [Google Scholar]
- Saeed, F.; Afzaal, M.; Khalid, A.; Shah, Y.A.; Ateeq, H.; Islam, F.; Akram, N.; Ejaz, A.; Nayik, G.A.; Shah, M.A. Role of mycoprotein as a non-meat protein in food security and sustainability: A review. Int. J. Food Prop. 2023, 26, 683–695. [Google Scholar] [CrossRef]
- Derbyshire, E.J. Is There Scope for a Novel Mycelium Category of Proteins alongside Animals and Plants? Foods 2020, 9, 1151. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Farooq, S.; Alhamoud, Y.; Li, C.; Zhang, H. A Review on Mycoprotein: History, Nutritional Composition, Production Methods, and Health Benefits. Trends Food Sci. Technol. 2022, 121, 14–29. [Google Scholar] [CrossRef]
- Dunlop, M.V.; Kilroe, S.P.; Bowtell, J.L.; Finnigan, T.J.A.; Salmon, D.L.; Wall, B.T. Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: A dose–response study. Br. J. Nutr. 2017, 118, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Allai, F.M.; Dar, B.N.; Gul, K.; Adnan, M.; Ashraf, S.A.; Hassan, M.I.; Pasupuleti, V.R.; Azad, Z.R.A.A. Development of Protein Rich Pregelatinized Whole Grain Cereal Bar Enriched with Nontraditional Ingredient: Nutritional, Phytochemical, Textural, and Sensory Characterization. Front. Nutr. 2022, 9, 870819. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Labuza, T.P. Effect of Cysteine on Lowering Protein Aggregation and Subsequent Hardening of Whey Protein Isolate (WPI) Protein Bars in WPI/Buffer Model Systems. J. Agric. Food Chem. 2010, 58, 7970–7979. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Imtiaz, S.R.; Kuhn-Sherlock, B.; Campbell, M. Effect of dairy protein blends on texture of high protein bars. J. Texture Stud. 2012, 43, 275–286. [Google Scholar] [CrossRef]
- Karakurt, G.; Özkaya, B.; Saka, İ. Chemical composition and quality characteristics of cookies enriched with microfluidized flaxseed flour. Food Sci. Technol. 2022, 154, 112773. [Google Scholar] [CrossRef]
- Lima, D.S.; Egea, M.B.; Cabassa, I.d.C.C.; Almeida, A.B.d.; Sousa, T.L.d.; Lima, T.M.d.; Loss, R.A.; Volp, A.C.P.; Vasconcelos, L.G.d.; Dall’Oglio, E.L.; et al. Technological quality and sensory acceptability of nutritive bars produced with Brazil nut and baru almond coproducts. LWT 2021, 137, 110467. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Szydłowska, A.; Zielińska, D.; Łepecka, A.; Trząskowska, M.; Neffe-Skocińska, K.; Kołożyn-Krajewska, D. Development of Functional High-Protein Organic Bars with the Addition of Whey Protein Concentrate and Bioactive Ingredients. Agriculture 2020, 10, 390. [Google Scholar] [CrossRef]
- Manore, M.M. Exercise and the Institute of Medicine Recommendations for Nutrition. Curr. Sports Med. Rep. 2005, 4, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Pandya, A.; Mehta, M.; Sankavaram, K. The Relationship between Macronutrient Distribution and Type 2 Diabetes in Asian Indians. Nutrients 2021, 13, 4406. [Google Scholar] [CrossRef]
- McMahon, D.J.; Adams, S.L.; McManus, W.R. Hardening of High-Protein Nutrition Bars and Sugar/Polyol-Protein Phase Separation. J. Food Sci. 2009, 74, E312–E321. [Google Scholar] [CrossRef]
- Colosimo, R.; Warren, F.J.; Finnigan, T.J.; Wilde, P.J. Protein bioaccessibility from mycoprotein hyphal structure: In vitro investigation of underlying mechanisms. Food Chem. 2020, 330, 127–252. [Google Scholar] [CrossRef] [PubMed]
- Colosimo, R.; Warren, F.J.; Edwards, C.H.; Ryden, P.; Dyer, P.S.; Finnigan, T.J.; Wilde, P.J. Comparison of the behavior of fungal and plant cell wall during gastrointestinal digestion and resulting health effects: A review. Trends Food Sci. Technol. 2021, 110, 132–141. [Google Scholar] [CrossRef]
- Colosimo, R.; Mulet-Cabero, A.I.; Warren, F.J.; Edwards, C.H.; Finnigan, T.J.; Wilde, P.J. Mycoprotein ingredient structure reduces lipolysis and binds bile salts during simulated gastrointestinal digestion. Food Funct. 2020, 11, 10896–10906. [Google Scholar] [CrossRef] [PubMed]
Ingredient (g/100 g) | PB00 | PB10 | PB20 | PB30 |
---|---|---|---|---|
Whey protein isolate | 40 | 36 | 32 | 28 |
Mycoprotein | - | 10 | 20 | 30 |
Cooked rice powder | 18 | 12 | 6 | - |
Glycerol | 16 | 16 | 16 | 16 |
Liquid sorbitol | 20 | 20 | 20 | 20 |
20% (w/w) salt solution | 1 | 1 | 1 | 1 |
Butter | 5 | 5 | 5 | 5 |
Nutritional Composition | Protein (%) | Fat (%) | Carbohydrate (%) | Dietary Fiber (%) | Ash (%) | Moisture (%) | Energy (kcal/100 g) |
---|---|---|---|---|---|---|---|
PB00 | 37.63 ± 0.43 a | 6.89 ± 0.12 c | 43.46 ± 0.88 a | 0.95 ± 0.12 a | 1.26 ± 0.08 a | 9.47 ± 0.24 c | 386.37 ± 6.32 a |
PB10 | 37.11 ± 0.26 a | 8.06 ± 0.31 b | 37.69 ± 1.21 b | 4.92 ± 0.56 b | 1.54 ± 0.12 bc | 10.21 ± 0.16 ab | 371.74 ± 8.67 b |
PB20 | 36.58 ± 0.35 b | 9.22 ± 0.24 a | 32.38 ± 0.67 c | 8.90 ± 0.64 c | 1.81 ± 0.20 c | 10.47 ± 0.08 a | 360.58 ± 6.24 c |
PB30 | 36.06 ± 0.42 c | 10.38 ± 0.89 a | 28.22 ± 1.21 d | 12.87 ± 1.10 d | 2.09 ± 0.06 c | 10.18 ± 0.15 b | 350.54 ± 10.53 c |
Attribute | PB00 | PB10 | PB20 | PB30 |
---|---|---|---|---|
Appearance | 7.95 ± 1.03 a | 7.89 ± 1.10 a | 6.74 + 1.08 b | 6.29 ± 1.17 b |
Color | 8.00 ± 0.94 a | 8.08 ± 0.95 a | 7.16 ± 1.05 b | 6.55 ± 1.26 b |
Odor | 7.11 ± 1.66 ns | 7.24 ± 1.42 ns | 7.00 ± 0.88 ns | 7.47 ± 1.07 ns |
Taste | 7.58 ± 1.43 a | 7.05 ± 1.35 a,b | 6.68 ± 1.34 b | 6.50 ± 1.40 b |
Aftertaste | 7.16 ± 1.34 ns | 7.11 ± 1.56 ns | 6.66 ± 1.55 ns | 6.37 ± 1.57 ns |
Texture | 7.68 ± 1.20 a | 7.45 ± 1.34 a,b | 6.66 ± 1.37 b | 6.53 ± 1.87 b |
Overall acceptability | 7.67 ± 1.24 a | 7.63 ± 1.13 a,b | 6.79 ± 1.24 b | 6.24 ± 1.25 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, X.-Y.; Ding, Y.; Bu, Q.-Y.; Wang, Q.-H.; Zhao, G.-P. Nutritional, Textural, and Sensory Attributes of Protein Bars Formulated with Mycoproteins. Foods 2024, 13, 671. https://doi.org/10.3390/foods13050671
You X-Y, Ding Y, Bu Q-Y, Wang Q-H, Zhao G-P. Nutritional, Textural, and Sensory Attributes of Protein Bars Formulated with Mycoproteins. Foods. 2024; 13(5):671. https://doi.org/10.3390/foods13050671
Chicago/Turabian StyleYou, Xiao-Yan, Yue Ding, Qing-Yun Bu, Qin-Hong Wang, and Guo-Ping Zhao. 2024. "Nutritional, Textural, and Sensory Attributes of Protein Bars Formulated with Mycoproteins" Foods 13, no. 5: 671. https://doi.org/10.3390/foods13050671
APA StyleYou, X.-Y., Ding, Y., Bu, Q.-Y., Wang, Q.-H., & Zhao, G.-P. (2024). Nutritional, Textural, and Sensory Attributes of Protein Bars Formulated with Mycoproteins. Foods, 13(5), 671. https://doi.org/10.3390/foods13050671