Simultaneous Analysis of Nicarbazin, Diclazuril, Toltrazuril, and Its Two Metabolites in Chicken Muscle and Eggs by In-Syringe Dispersive Solid-Phase Filter Clean-Up Followed by Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Standard Solutions’ Preparation
2.3. Sample Preparation
2.3.1. Chicken Muscle and Egg Samples Preparation
2.3.2. Sample Analysis
2.3.3. Optimization for Sample Extraction Conditions
2.3.4. Recovery in Different Clean-Up Material
2.3.5. Matrix Effects after DSPE Material Clean-Up
2.3.6. Method Recovery
2.3.7. Accuracy and Precision
2.4. Instrumentation
3. Results and Discussion
3.1. Extraction and Clean-Up
3.2. Selection of Mass Spectrometry Conditions
3.3. Method Validation
3.3.1. Linear Range and LODs
3.3.2. Recovery and Relative Standard Deviation
3.3.3. Accuracy and Precision
3.4. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kadykalo, S.; Roberts, T.; Thompson, M.; Wilson, J.; Lang, M.; Espeisse, O. The value of anticoccidials for sustainable global poultry production. Int. J. Antimicrob. Agents 2018, 51, 304–310. [Google Scholar] [CrossRef]
- Dubois, M.; Pierret, G.; Delahaut, P. Efficient and sensitive detection of residues of nine coccidiostats in egg and muscle by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 813, 181–189. [Google Scholar] [CrossRef]
- Clarke, L.; Fodey, T.L.; Crooks, S.R.; Moloney, M.; O’Mahony, J.; Delahaut, P.; O’Kennedy, R.; Danaher, M. A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci. 2014, 97, 358–374. [Google Scholar] [CrossRef]
- Olsen, J.; Bjorklund, E.; Krogh, K.A.; Hansen, M. Development of an analytical methodology for the determination of the antiparasitic drug toltrazuril and its two metabolites in surface water, soil and animal manure. Anal. Chim. Acta 2012, 755, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Pineda, C.; Navarro-Ruiz, J.L.; Lopez-Osorio, S.; Chaparro-Gutierrez, J.J.; Gomez-Osorio, L.M. Chicken Coccidiosis: From the Parasite Lifecycle to Control of the Disease. Front. Vet. Sci. 2021, 8, 787653. [Google Scholar] [CrossRef] [PubMed]
- Mortier, L.; Daeseleire, E.; Van Peteghem, C. Liquid chromatographic tandem mass spectrometric determination of five coccidiostats in poultry eggs and feed. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 820, 261–270. [Google Scholar] [CrossRef]
- Rydchuk, M.; Plotytsia, S.; Zasadna, Z.; Yanovych, D. Simple and efficient UPLC-ESI-MS/MS method for multi-residue analysis of 14 coccidiostatic agents in poultry liver and muscle tissues. Food Control 2023, 152, 109815. [Google Scholar] [CrossRef]
- Dubreil-Cheneau, E.; Bessiral, M.; Roudaut, B.; Verdon, E.; Sanders, P. Validation of a multi-residue liquid chromatography-tandem mass spectrometry confirmatory method for 10 anticoccidials in eggs according to Commission Decision 2002/657/EC. J. Chromatogr. A 2009, 1216, 8149–8157. [Google Scholar] [CrossRef]
- Ai, L.; Sun, H.; Wang, F.; Chen, R.; Guo, C. Determination of diclazuril, toltrazuril and its two metabolites in poultry tissues and eggs by gel permeation chromatography-liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2011, 879, 1757–1763. [Google Scholar] [CrossRef]
- Dendougui-Tadjine, F.; Pröhl, R.; Spies, D.; Hamann, F.; Schulz, F.; Terhalle, W.; Lange, N.; Scheid, S.; Polzer, J. Residue depletion of toltrazuril and its metabolites in egg after an authorised application in hens. Food Control 2023, 147, 109596. [Google Scholar] [CrossRef]
- Mortier, L.; Daeseleire, E.; Huyghebaert, G.; Grijspeerdt, K.; Peteghem, C.V. Detection of Residues of the Coccidiostat Diclazuril in Poultry Tissues by Liquid Chromatography−Tandem Mass Spectrometry after Withdrawal of Medicated Feed. J. Agric. Food Chem. 2005, 53, 905–911. [Google Scholar] [CrossRef]
- Mulder, P.P.J.; Balzer-Rutgers, P.; te Brinke, E.M.; Bolck, Y.J.C.; Berendsen, B.J.A.; Gerçek, H.; Schat, B.; van Rhijn, J.A. Deposition and depletion of the coccidiostats toltrazuril and halofuginone in eggs. Anal. Chim. Acta 2005, 529, 331–337. [Google Scholar] [CrossRef]
- Huo, M.; Ma, W.; Zhou, K.; Xu, X.; Liu, Z.; Huang, L. Migration and toxicity of toltrazuril and its main metabolites in the environment. Chemosphere 2022, 302, 134888. [Google Scholar] [CrossRef] [PubMed]
- Bacila, D.M.; Feddern, V.; Mafra, L.I.; Scheuermann, G.N.; Molognoni, L.; Daguer, H. Current research, regulation, risk, analytical methods and monitoring results for nicarbazin in chicken meat: A perspective review. Food Res. Int. 2017, 99, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-m.; Yu, X.-w.; Lu, M.; Huang, B.-f.; Ren, Y.-p. Study of the matrix effects of tetrodotoxin and its content in cooked seafood by liquid chromatography with triple quadrupole mass spectrometry. J. Sep. Sci. 2015, 38, 3374–3382. [Google Scholar] [CrossRef] [PubMed]
- Matabudul, D.K.; Lumley, I.D.; Points, J.S. The determination of 5 anticoccidial drugs (nicarbazin, lasalocid, monensin, salinomycin and narasin) in animal livers and eggs by liquid chromatography linked with tandem mass spectrometry (LC-MS-MS). Analyst 2002, 127, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Hernando, M.D.; Mezcua, M.; Suárez-Barcena, J.M.; Fernández-Alba, A.R. Liquid chromatography with time-of-flight mass spectrometry for simultaneous determination of chemotherapeutant residues in salmon. Anal. Chim. Acta 2006, 562, 176–184. [Google Scholar] [CrossRef]
- Gentili, A.; Perret, D.; Marchese, S. Liquid chromatography-tandem mass spectrometry for performing confirmatory analysis of veterinary drugs in animal-food products. TrAC Trends Anal. Chem. 2005, 24, 704–733. [Google Scholar] [CrossRef]
- Martinez-Villalba, A.; Moyano, E.; Martins, C.P.; Galceran, M.T. Fast liquid chromatography/tandem mass spectrometry (highly selective selected reaction monitoring) for the determination of toltrazuril and its metabolites in food. Anal. Bioanal. Chem. 2010, 397, 2893–2901. [Google Scholar] [CrossRef]
- Moloney, M.; Clarke, L.; O’Mahony, J.; Gadaj, A.; O’Kennedy, R.; Danaher, M. Determination of 20 coccidiostats in egg and avian muscle tissue using ultra high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1253, 94–104. [Google Scholar] [CrossRef]
- Qian, M.R.; Chen, Z.M.; Tao, X.X.; Yao, F.; Xu, X.M. In-syringe dispersive solid phase filter extraction cleanup followed by liquid chromatography-triple quadrupole mass spectrometry for fast determination of colchicine in plasma/urine. J. Pharm. Biomed. Anal. 2023, 228, 115317. [Google Scholar] [CrossRef] [PubMed]
- Nouri, N.; Sereshti, H. Electrospun polymer composite nanofiber-based in-syringe solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC-FD for determination of aflatoxins in soybean. Food Chem. 2019, 289, 33–39. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, Y.; Zhang, L.; Wang, C.; Guo, C.; Fei, C.; Zhang, K.; Wang, X.; Liu, Y.; Wang, M.; et al. Development and validation of an UPLC-UV method for determination of a novel triazine coccidiostat ethanamizuril and its metabolite M3 in chicken tissues. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1059, 1–6. [Google Scholar] [CrossRef]
- Hernández, F.; Ibáñez, M.; Sancho, J.V.; Pozo, Ó.J. Comparison of Different Mass Spectrometric Techniques Combined with Liquid Chromatography for Confirmation of Pesticides in Environmental Water Based on the Use of Identification Points. Anal. Chem. 2004, 76, 4349–4357. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; He, H.L.; Zhu, Y.; Feng, L.; Ying, Y.; Huang, B.F.; Shen, H.T.; Han, J.L.; Ren, Y.P. Simultaneous determination of 3-monochloropropane-1,2-diol and acrylamide in food by gas chromatography-triple quadrupole mass spectrometry with coupled column separation. Anal. Chim. Acta 2013, 760, 93–99. [Google Scholar] [CrossRef] [PubMed]
Analytes | Sample | Extraction Method | Clean-Up Method | m/z | LOD | LOQ |
---|---|---|---|---|---|---|
NICA [16] | Egg | H2O; ACN | Silica SPE | 301/137 301/107 | 1 | 2.5 |
DIZ; TOZ; TZS; TZSO [9] | Muscle; egg | Ethylacetate | GPC | DIZ: 404/334 TOZ: 424/424 * TZS: 456/456 * TZSO: 440/371 | 0.4 for DIZ and TOZ; 0.6 for TZSO and TZS | 1.2 for DIZ and TOZ; 1.8 for TZSO and TZS |
TOZ; TZS; TZSO [19] | Meat product | ACN | Silica SPE | APCI TOZ: 356.1/256.0 356.1/129.9 TZSO: 371.1/371.1 * 371.1/271.1 TZS: 388.1/288.0 388.1/248.0 | 0.5 for TOZ and TZS 5 for TZSO | / |
DIZ; NICA [8] | Chicken liver | ACN | HLB SPE | DIZ: 407/336 405/334 NICA: 301/137 301/107 | 1 for DIZ 2 for NICA | 3 for DIZ 5 for NICA |
DIZ; NICA; TOZ; TZS; TZSO [20] | Muscle; egg | ACN | / | NICA: 301.1/107.0 301.1/136.9 TOZ: 424.2/424.2 * TZS: 456.2/456.2 * TZSO: 440.1/440.1 * DIZ: 405.0/333.9 407.0/335.9 | / | 1 |
DIZ; NICA; TOZ; TZS; TZSO [7] | Poultry liver; muscle | Phosphate-citrate buffer (pH 9.7); ACN | Ethylacetate; dichloromethane; hexane | NICA: 301.1/106.9 301.1/136.0 TOZ: 424.0/424.0 * 424.0/41.8 TZS: 456.2/456.2 * 456.2/41.9 TZSO: 440.2/371.2 440.2/41.9 DIZ: 405.0/334.0 405.0/301.0 407.0/336.0 | 2 for NICA 2 for DIZ 1.2 for TOZ 1.6 for TZS 3.2 for TZSO | 6.6 for NICA 6.6 for DIZ 4.1 for TOZ 5.4 for TZS 10.5 for TZSO |
Compound | m/z, Precursor Ion | m/z, Product Ion | Collision Energy (eV) | IS Group |
---|---|---|---|---|
DIZ | 405 407 | 334 336 | 18 18 | DIZ-13C315N2 |
TOZ | 424 425 | 42 42 | 20 20 | TOZ-D3 |
TZSO | 440 440 | 42 371 | 15 20 | TOZ-D3 |
TZS | 456 457 | 42 42 | 20 20 | TOZ-D3 |
DNC | 301 301 | 137 107 | 15 33 | DNC-D8 |
DIZ-13C315N2 | 410 412 | 336 338 | 18 18 | / |
TOZ-D3 | 427 428 | 42 42 | 20 20 | / |
DNC-D8 | 309 309 | 141 111 | 15 33 | / |
Analytes | Linear Range (μg/kg) | Correlation Coefficient R | LOD (μg/kg) | LOQ (μg/kg) |
---|---|---|---|---|
DIZ | 1–200 | 0.999 | 0.1 | 0.3 |
DNC | 1–200 | 0.997 | 0.1 | 0.3 |
TOZ | 1–200 | 0.998 | 0.3 | 1 |
TZSO | 1–200 | 0.994 | 0.3 | 1 |
TZS | 1–200 | 0.998 | 0.3 | 1 |
Analytes | Matrix | Eggs | Muscle | ||||
---|---|---|---|---|---|---|---|
Spiked (μg/kg) | 1 | 10 | 20 | 1 | 100 | 200 | |
DIZ | Recovery (%) | 92.1 | 94.2 | 92.1 | 103.7 | 98.3 | 94.8 |
RSD (%) | 3.3 | 5.1 | 3.5 | 8.2 | 6.1 | 3.1 | |
TOZ | Recovery (%) | 94.7 | 97.9 | 95.3 | 102.9 | 94.8 | 97.7 |
RSD (%) | 4.1 | 8.1 | 4.1 | 5.8 | 6.5 | 7.9 | |
TZSO | Recovery (%) | 92.6 | 105.2 | 93.5 | 102.5 | 94.9 | 96.5 |
RSD (%) | 3.1 | 5.4 | 3.0 | 14.4 | 4.1 | 7.4 | |
TZS | Recovery (%) | 90.1 | 96.8 | 95.3 | 101.2 | 94.6 | 94.6 |
RSD (%) | 4.9 | 3.6 | 3.4 | 8.6 | 6.1 | 7.2 | |
DNC | Recovery (%) | 95.4 | 92.6 | 100.2 | 101.1 | 94.0 | 98.2 |
RSD (%) | 4.0 | 6.2 | 7.4 | 11.4 | 4.4 | 5.4 |
Matrix | Spiked (μg/kg) | Analytes | DIZ | TOZ | TZSO | TZS | DNC | |
---|---|---|---|---|---|---|---|---|
Eggs | 10 | Intraday | Recovery (%) | 92.5 | 92.0 | 96.8 | 90.5 | 93.1 |
RSD (%) | 5.4 | 3.1 | 3.8 | 6.9 | 6.4 | |||
Interday | Recovery (%) | 96.0 | 92.0 | 89.9 | 91.6 | 90.7 | ||
RSD (%) | 6.2 | 4.1 | 7.6 | 7.6 | 6.0 | |||
Muscle | 200 | Intraday | Recovery (%) | 97.4 | 94.6 | 99.1 | 93.8 | 92.9 |
RSD (%) | 2.4 | 5.4 | 2.9 | 4.1 | 3.1 | |||
Interday | Recovery (%) | 94.1 | 100.5 | 98.4 | 105.3 | 91.3 | ||
RSD (%) | 4.3 | 6.2 | 4.6 | 4.4 | 6.3 | |||
500 | Intraday | Recovery (%) | 90.6 | 95.3 | 91.3 | 94.5 | 91.8 | |
RSD (%) | 5.2 | 4.1 | 2.2 | 5.3 | 4.9 | |||
Interday | Recovery (%) | 99.3 | 90.4 | 92.7 | 102.2 | 98.6 | ||
RSD (%) | 3.8 | 5.6 | 4.3 | 4.2 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Pan, X.; Cai, Z.; Xu, M.; Jiang, D.; Xu, X. Simultaneous Analysis of Nicarbazin, Diclazuril, Toltrazuril, and Its Two Metabolites in Chicken Muscle and Eggs by In-Syringe Dispersive Solid-Phase Filter Clean-Up Followed by Liquid Chromatography–Tandem Mass Spectrometry. Foods 2024, 13, 754. https://doi.org/10.3390/foods13050754
An Y, Pan X, Cai Z, Xu M, Jiang D, Xu X. Simultaneous Analysis of Nicarbazin, Diclazuril, Toltrazuril, and Its Two Metabolites in Chicken Muscle and Eggs by In-Syringe Dispersive Solid-Phase Filter Clean-Up Followed by Liquid Chromatography–Tandem Mass Spectrometry. Foods. 2024; 13(5):754. https://doi.org/10.3390/foods13050754
Chicago/Turabian StyleAn, Yuxin, Xiaodong Pan, Zengxuan Cai, Meijia Xu, Dingguo Jiang, and Xiaomin Xu. 2024. "Simultaneous Analysis of Nicarbazin, Diclazuril, Toltrazuril, and Its Two Metabolites in Chicken Muscle and Eggs by In-Syringe Dispersive Solid-Phase Filter Clean-Up Followed by Liquid Chromatography–Tandem Mass Spectrometry" Foods 13, no. 5: 754. https://doi.org/10.3390/foods13050754
APA StyleAn, Y., Pan, X., Cai, Z., Xu, M., Jiang, D., & Xu, X. (2024). Simultaneous Analysis of Nicarbazin, Diclazuril, Toltrazuril, and Its Two Metabolites in Chicken Muscle and Eggs by In-Syringe Dispersive Solid-Phase Filter Clean-Up Followed by Liquid Chromatography–Tandem Mass Spectrometry. Foods, 13(5), 754. https://doi.org/10.3390/foods13050754