Hermetic Bags: A Short-Term Solution to Preserve High-Moisture Maize during Grain Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maize Preparation
2.2. Experimental Setup
2.3. Monitoring of Gas Composition
2.4. Moisture Content, Temperature, and Relative Humidity
2.5. Germination and Shoot and Root Length
2.6. Mold Assessment
2.7. Data Analysis
3. Results
3.1. Gas Composition
3.2. Moisture Content, Temperature, and Relative Humidity (RH)
3.3. Seed Germination Assessment
3.4. Seedling Growth (Root and Shoot Length)
3.5. Visual Assessment of Mold Growth
4. Discussion
4.1. Impact of Short-Term Hermetic Storage of Moist Maize on Germination and Seedling Growth
4.2. Impact of Short-Term Hermetic Storage of Moist Maize on Fungal Growth
4.3. Implication of Short-Term Storage of Wet Maize in Hermetic (PICS) Bags
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- De Groote, H.; Githinji, P.G.; Munya, B.G.; Ricker-Gilbert, J.E. Economics of open-air sun drying in the maize value chain of Kenya. J. Agric. Food Res. 2021, 5, 100185. [Google Scholar] [CrossRef]
- Chen, M. Development of the PICO Solar Crop Dryer (POD) for Farm Level Grain Drying by Smallholder Farmers in Africa. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2019. [Google Scholar]
- Darfour, B.; Rosentrater, K.A. Pre-harvest and post-harvest farmer experiences and practices in five maize growing regions in Ghana. Front. Nutr. 2022, 9, 725815. [Google Scholar] [CrossRef]
- Díaz-Valderrama, J.R.; Njoroge, A.; Macedo-Valdivia, D.; Orihuela-Ordóñez, N.; Smith, B.W.; Casa-Coila, V.; Ramírez-Calderón, N.; Zanabria-Gálvez, J.; Woloshuk, C.; Baributsa, D. Postharvest practices, challenges and opportunities for grain producers in Arequipa, Peru. PLoS ONE 2020, 15, e0240857. [Google Scholar] [CrossRef]
- Bradford, K.J.; Dahal, P.; Van Asbrouck, J.; Kunusoth, K.; Bello, P.; Thompson, J.; Wu, F. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 2018, 71, 84–93. [Google Scholar] [CrossRef]
- Angelovič, M.; Krištof, K.; Jobbágy, J.; Findura, P.; Križan, M. The effect of conditions and storage time on course of moisture and temperature of maize grains. BIO Web Conf. 2018, 10, 02001. [Google Scholar] [CrossRef]
- Sinha, D.J.P.; Jha, D.S.; Atwal, D.S.S.; Sinh, D.S.N. Postharvest management of paddy rice. Res. Trends Bioresour. Manag. Technol. 2010, TB-ICN:77/2010, 1–56. [Google Scholar]
- Bett, C.; Nguyo, R. Post-harvest storage practices and techniques used by farmers in semi-arid eastern and central Kenya. In Proceedings of the 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October 2007; Volume 8, pp. 1023–1227. [Google Scholar]
- Ganesh, K.C. Post-harvest losses in maize: Review of the findings of the rural Save Grain Project. In Developing and Disseminating Technology to Reduce Post-Harvest Losses in Maize, Proceedings of the Working Group Meeting of the Hill Maize Research Project, Lalitpur, Nepal, 25–27 September 2000; Manandhar, D.N., Ransom, J.K., Rajbhandari, N.P., Eds.; Nepal Agricultural Research Council: Lalitpur, Nepal, 2001; pp. 47–49. [Google Scholar]
- Agada, M.O.; Otene, V.A.; Adikwu, S.O. Assessment of maize farmers’ awareness and effectiveness of indigenous production and preservation practices in Ugbokolo, Benue State, Nigeria. World J. Adv. Res. Rev. 2020, 8, 307–313. [Google Scholar] [CrossRef]
- Tefera, T. Post-harvest losses in African maize in the face of increasing food shortage. Food Secur. 2012, 4, 267–277. [Google Scholar] [CrossRef]
- Baributsa, D.; Díaz-Valderrama, J.R.; Mughanda, D.; Lubanzadio, A.; Nshombo, J.P.C.; Sperling, L.; Baoua, I.B. Grain handling and storage in Lubero and Rutshuru territories in the North Kivu province, the Democratic Republic of Congo. Sustainability 2021, 13, 9580. [Google Scholar] [CrossRef]
- Tibaingana, A.; Makombe, G.; Kele, T. An analysis of the characteristics of maize storage types used by smallholder producers in developing countries: A case of Uganda. Am. J. Ind. Bus. Manag. 2019, 09, 1524–1555. [Google Scholar] [CrossRef]
- Tibaingana, A.; Makombe, G.; Kele, T. Smallholder maize farmers need better storage for food security: An exploratory study over the storage types used in Uganda. In New Advances in Postharvest Technology; IntechOpen: London, UK, 2023. [Google Scholar]
- Prakash, O.; Kumar, A. Historical review and recent trends in solar drying systems. Int. J. Green Energy 2013, 10, 690–738. [Google Scholar] [CrossRef]
- Sumner, P.; Lee, D. Reducing Aflatoxin in Corn during Harvest and Storage; Cooperative Extension Bulletin 1231; University of Georgia: Athens, GA, USA, 2017; p. 6. [Google Scholar]
- De Vitis, M.; Hay, F.R.; Dickie, J.B.; Trivedi, C.; Choi, J.; Fiegener, R. Seed storage: Maintaining seed viability and vigor for restoration use. Restor. Ecol. 2020, 28, S249–S255. [Google Scholar] [CrossRef]
- Nkang, A.; Umoh, E. Six month storability of five soybean cultivars as influenced by stage of harvest, storage temperature and relative humidity. Seed Sci. Technol. 1997, 25, 93–99. [Google Scholar]
- Villers, P.; Navarro, S.; DeBruin, T. Development of hermetic storage technology in sealed flexible storage structures. In Proceedings of the 8th International Conference on Controlled Atmosphere and Fumigation in Stored Products, Chengdu, China, 21–26 September 2008; Daolin, G., Navarro, S., Jian, Y., Cheng, T., Zuxun, J., Yue, L., Haipeng, W., Eds.; Sichuan Publishing Group: Sichuan, China, 2008; pp. 21–26. [Google Scholar]
- Weinberg, Z.G.; Yan, Y.; Chen, Y.; Finkelman, S.; Ashbell, G.; Navarro, S. The effect of moisture level on high-moisture maize (Zea mays L.) under hermetic storage conditions—In vitro studies. J. Stored Prod. Res. 2008, 44, 136–144. [Google Scholar] [CrossRef]
- Williams, S.B.; Baributsa, D.; Woloshuk, C. Assessing Purdue Improved Crop Storage (PICS) bags to mitigate fungal growth and aflatoxin contamination. J. Stored Prod. Res. 2014, 59, 190–196. [Google Scholar] [CrossRef]
- Likhayo, P.; Bruce, A.Y.; Tefera, T.; Mueke, J. Maize grain stored in hermetic bags: Effect of moisture and pest infestation on grain quality. J. Food Qual. 2018, 2018, 2515698. [Google Scholar] [CrossRef]
- Marcos Valle, F.J.; Castellari, C.; Yommi, A.; Pereyra, M.A.; Bartosik, R. Evolution of grain microbiota during hermetic storage of corn (Zea mays L.). J. Stored Prod. Res. 2021, 92, 101788. [Google Scholar] [CrossRef]
- Odjo, S.; Palacios-Rojas, N.; Burgueño, J.; Corrado, M.; Ortner, T.; Verhulst, N. Hermetic storage technologies preserve maize seed quality and minimize grain quality loss in smallholder farming systems in Mexico. J. Stored Prod. Res. 2022, 96, 101954. [Google Scholar] [CrossRef]
- Carvalho, M.O.; Fradinho, P.; Martins, M.J.; Magro, A.; Raymundo, A.; de Sousa, I. Paddy rice stored under hermetic conditions: The effect of relative humidity, temperature and storage time in suppressing Sitophilus zeamais and impact on rice quality. J. Stored Prod. Res. 2019, 80, 21–27. [Google Scholar] [CrossRef]
- Baributsa, D.; Cristine, M.; Ignacio, C. Developments in the Use of Hermetic Bags for Grain Storage; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 171–198. [Google Scholar]
- Dyck, J. Storing Wet Corn Safely. Available online: https://fieldcropnews.com/2019/11/storing-wet-corn-safely/ (accessed on 16 November 2023).
- Hellevang, K. Temporary Grain Storage; Extension Services AE-84; North Dakota State University: Fargo, ND, USA, 1996; p. 11. [Google Scholar]
- Yewle, N.R.; Stroshine, R.L.; Ambrose, R.K.; Baributsa, D. Short-term hermetic storage of wet maize and its effect on quality. Foods 2023, 12, 891. [Google Scholar] [CrossRef]
- Baributsa, D.; Baoua, I.; Abdoulaye, T.; Murdock, L.L.; Lowernberg-DeBoer, J. Stored Grain. In Purdue Improved Crop Storage (PICS) Bag: Size Matters! Purdue University: West Lafayette, IN, USA, 2013. [Google Scholar]
- ASAE S352.2 APR1988 (R2022); ASABE ASABE Standards: Moisture Measurement—Unground Grain and Seeds. Available online: https://engineering.purdue.edu/~abe305/moisture/html/page12.htm (accessed on 4 July 2022).
- ISTA. International Rules for Seed Testing; Interantional Seed Testing Association: Bassersdof, Switzerland, 2015; Volume 215, pp. 1–6. [Google Scholar]
- Afzal, I.; Bakhtavar, M.A.M.A.; Ishfaq, M.; Sagheer, M.; Baributsa, D. Maintaining dryness during storage contributes to higher maize seed quality. J. Stored Prod. Res. 2017, 72, 49–53. [Google Scholar] [CrossRef]
- Kolb, R.M.; Joly, C.A. Germination and anaerobic metabolism of seeds of Tabebuia cassinoides (Lam.) DC subjected to flooding and anoxia. Flora-Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 112–117. [Google Scholar] [CrossRef]
- Lacey, J.; Hill, S.T.; Edwards, M.A. Micro-Organisms in Stored Grains: Their Enumeration and Significance. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201301320285 (accessed on 20 April 2022).
- Ragai, H.; Loomis, W.E. Respiration of maize grain. Plant Physiol. 1954, 29, 49–55. [Google Scholar] [CrossRef]
- Fleurat-Lessard, F. Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins—An update. J. Stored Prod. Res. 2017, 71, 22–40. [Google Scholar] [CrossRef]
- Sauer, D.B. Effects of fungal deterioration on grain: Nutritional value, toxicity, germination. Int. J. Food Microbiol. 1988, 7, 267–275. [Google Scholar] [CrossRef]
- Dhakal, K.; Springer, T.L. Recurrent selection for improved seed germination results in greater seedling growth potential. Crop. Sci. 2020, 60, 2180–2185. [Google Scholar] [CrossRef]
- Raikar, S.D.; Vyakarnahal, B.S.; Biradar, D.P.; Deshpande, V.K.; Janagoudar, B.S. Effect of seed source, containers and seed treatment with chemical and biopesticide on storability of scented rice Cv. Mugad sugandha. Karnataka J. Agric. Sci. 2011, 24, 448–454. [Google Scholar]
- Wagacha, J.M.; Muthomi, J.W. Mycotoxin problem in Africa: Current status, implications to food safety and health and possible management strategies. Int. J. Food Microbiol. 2008, 124, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Magro, A.; Raymundo, A.; Fradinho, P.; Sousa, I.; Carvalho, M.O. Hermetic storage of paddy rice: The impact of relative humidity on fungi infection and on the rheology of the pastes. In Proceedings of the IOBC/WPRS Working Group “Integrated Protection of Stored Products”, Ljubljana, Slovenia, 3–5 July 2017; Trematerra, P., Trdan, S., Eds.; Biotechnical Faculty of the University of Ljubljana & IOBC: Zürich, Switzerland, 2017; pp. 267–274. [Google Scholar]
- Wardynski, F.A.; Rust, S.R.; Yokoyama, M.T. Effect of microbial inoculation of high-moisture corn on fermentation characteristics, aerobic stability, and cattle performance. J. Anim. Sci. 1993, 71, 2246–2252. [Google Scholar] [CrossRef]
- Coradi, P.C.; Maldaner, V.; Lutz, É.; da Silva Daí, P.V.; Teodoro, P.E.; Vinícius Da, P.; Daí, S.; Teodoro, P.E. Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-E.; Kim, Y.-S.; Park, K.-J.; Kim, B.-K. Changes in physicochemical characteristics of rice during storage at different temperatures. J. Stored Prod. Res. 2012, 48, 25–29. [Google Scholar] [CrossRef]
- Srikaeo, K.; Boonrod, C.; Rahman, M.S. Effect of storage temperatures on the head rice yield in relation to glass transition temperatures and un-freezable water. J. Cereal Sci. 2016, 70, 164–169. [Google Scholar] [CrossRef]
- Mbofung, G.C.Y.; Goggi, A.S.; Leandro, L.F.S.; Mullen, R.E. Effects of storage temperature and relative humidity on viability and vigor of treated soybean seeds. Crop. Sci. 2013, 53, 1086–1095. [Google Scholar] [CrossRef]
Parameter * | Estimate | SEM a | t | p-Value | LCI b | UCI c |
---|---|---|---|---|---|---|
Intercept | 23.18 | 0.47 | 49.17 | <0.001 | 22.25 | 24.10 |
O2 at PICS-m.c.18% | 0 | 0 | ||||
O2 at PICS-m.c.21% | −5.50 | 0.21 | −25.75 | <0.001 | −5.92 | −5.08 |
O2 at PICS-m.c.24% | −9.91 | 0.24 | −40.43 | <0.001 | −10.39 | −9.42 |
Intercept | −13.59 | 1.80 | −7.51 | <0.001 | −17.95 | −9.24 |
CO2 at PICS-m.c.18% | 0 | 0 | ||||
CO2 at PICS-m.c.21% | 14.57 | 0.64 | 22.55 | <0.001 | 13.31 | 15.84 |
CO2 at PICS-m.c.24% | 31.86 | 0.64 | 49.31 | <0.001 | 30.60 | 33.13 |
Treatment | Equation * | R2 Value |
---|---|---|
O2 at PICS-m.c.18% | y = −0.0366x + 18.4 | 0.995 |
O2 at PICS-m.c.21% | y = −0.0001x2 − 0.0994x + 17.484 | 0.988 |
O2 at PICS-m.c.24% | y = 0.0005x2 − 0.1451x + 12.597 | 0.935 |
CO2 at PICS-m.c.18% | y = 0.0429x + 0.7439 | 0.989 |
CO2 at PICS-m.c.21% | y = −0.0001x2 + 0.1312x + 2.0265 | 0.983 |
CO2 at PICS-m.c.24% | y = −0.0002x2 + 0.2208x + 5.3854 | 0.988 |
Treatments | Germination % | Shoot Length (mm) | Root Length (mm) | Moisture Content (%) | ||||
---|---|---|---|---|---|---|---|---|
0 Day | 21 Days | 0 Day | 21 Days | 0 Day | 21 Days | 0 Day | 21 Days | |
PICS-m.c.18% | 99.5 aA * | 99.0 aA | 9.44 bA | 13.92 bA | 55.57 aA | 64.97 aA | 17.59 cA | 17.67 cA |
PICS-m.c.21% | 97.24 aA | 91.0 abA | 15.31 abA | 21.85 aA | 46.51 aB | 70.73 aA | 21.03 bA | 20.87 bA |
PICS-m.c.24% | 95.5 aA | 0.0 dB | 14.61 abA | 11.75 bA & | 46.18 aA | 61.09 abA & | 24.08 aA | 24.07 aA |
PP-m.c.18% | 99.5 aA | 82.0 bB | 10.33 abA | 14.97 bA | 55.68 aA | 63.36 aA | 17.59 cA | 16.98 cdA |
PP-m.c.21% | 97.24 aA | 82.0 bA | 16.48 aA | 18.04 abA | 47.51 aA | 46.87 bA | 21.03 bA | 16.67 dB |
PP-m.c.24% | 95.50 aA | 56.0 cB | 15.11 abA | 15.16 abA | 57.93 aA | 45.58 bA | 24.08 aA | 17.42 cdB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yewle, N.R.; Stroshine, R.L.; Ambrose, R.P.K.; Baributsa, D. Hermetic Bags: A Short-Term Solution to Preserve High-Moisture Maize during Grain Drying. Foods 2024, 13, 760. https://doi.org/10.3390/foods13050760
Yewle NR, Stroshine RL, Ambrose RPK, Baributsa D. Hermetic Bags: A Short-Term Solution to Preserve High-Moisture Maize during Grain Drying. Foods. 2024; 13(5):760. https://doi.org/10.3390/foods13050760
Chicago/Turabian StyleYewle, Nileshwari Raju, Richard L. Stroshine, R. P. Kingsly Ambrose, and Dieudonne Baributsa. 2024. "Hermetic Bags: A Short-Term Solution to Preserve High-Moisture Maize during Grain Drying" Foods 13, no. 5: 760. https://doi.org/10.3390/foods13050760
APA StyleYewle, N. R., Stroshine, R. L., Ambrose, R. P. K., & Baributsa, D. (2024). Hermetic Bags: A Short-Term Solution to Preserve High-Moisture Maize during Grain Drying. Foods, 13(5), 760. https://doi.org/10.3390/foods13050760