Nutritional Quality and Safety Assessment of Pork Meat Cuts from Romania: Fatty Acids and Elemental Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. Fatty Acid Profile Analysis
2.3. Calculation of Nutritional Quality Indices (NQIs)
2.4. Elemental Profile Analysis
2.5. Risk Assessment of Toxic and Potentially Toxic Element Contamination in Pork Meat
2.6. Chemometric Analysis
2.7. Ethical Statement
3. Results and Discussion
3.1. Fatty Acid Composition and Nutritional Indices
3.2. Elemental Profile and Risk Assessment of Selected Pork Meat Cuts Based on Heavy Metal Content
3.3. Chemometric Processing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buła, M.; Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K. Formation of Heterocyclic Aromatic Amines in Relation to Pork Quality and Heat Treatment Parameters. Food Chem. 2019, 276, 511–519. [Google Scholar] [CrossRef]
- Ngapo, T.M.; Gariépy, C. Factors Affecting the Eating Quality of Pork. Crit. Rev. Food Sci. Nutr. 2008, 48, 599–633. [Google Scholar] [CrossRef]
- Ahmad, R.S.; Imran, A.; Hussain, M.B. Nutritional Composition of Meat. Meat Sci. Nutr. 2018, 4, 61–77. [Google Scholar] [CrossRef]
- Hassan Emami, M.; Saberi, F.; Mohammadzadeh, S.; Fahim, A.; Abdolvand, M.; Ali Ehsan Dehkordi, S.; Mohammadzadeh, S.; Maghool, F. A Review of Heavy Metals Accumulation in Red Meat and Meat Products in the Middle East. J. Food Prot. 2023, 86, 100048. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Review Article—Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.D.S.; De Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B.D.M. Nutritional and Lipid Profiles in Marine Fish Species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and Sensory Properties of Dairy Products from Cows with Various Milk Fatty Acid Compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Russell, F.D.; Bürgin-Maunder, C.S. Distinguishing Health Benefits of Eicosapentaenoic and Docosahexaenoic Acids. Mar. Drugs 2012, 10, 2535–2559. [Google Scholar] [CrossRef]
- Logue, J.A.; De Vries, A.L.; Fodor, E.; Cossins, A.R. Lipid Compositional Correlates of Temperature-Adaptive Interspecific Differences in Membrane Physical Structure. J. Exp. Biol. 2000, 203, 2105–2115. [Google Scholar] [CrossRef]
- Arakawaa, K.; Sagaib, M. Species Differences in Lipid Peroxide Levels in Lung Tissue and Investigation of Their Determining Factors. Lipids 1986, 21, 769–775. [Google Scholar] [CrossRef]
- Estévez, M.; Morcuende, D.; Ramírez, R.; Ventanas, J.; Cava, R. Extensively Reared Iberian Pigs versus Intensively Reared White Pigs for the Manufacture of Liver Pâté. Meat Sci. 2004, 67, 453–461. [Google Scholar] [CrossRef]
- Medeiros, E.; Queiroga, R.; Oliveira, M.; Medeiros, A.; Sabedot, M.; Bomfim, M.; Madruga, M. Fatty Acid Profile of Cheese from Dairy Goats Fed a Diet Enriched with Castor, Sesame and Faveleira Vegetable Oils. Molecules 2014, 19, 992–1003. [Google Scholar] [CrossRef]
- Paszczyk, B.; Tońska, E. Fatty Acid Content, Lipid Quality Indices, and Mineral Composition of Cow Milk and Yogurts Produced with Different Starter Cultures Enriched with Bifidobacterium Bifidum. Appl. Sci. 2022, 12, 6558. [Google Scholar] [CrossRef]
- USEPA (U.S. Environmental Protection Agency). Risk Assessment: Guidance for Superfund. Human Health Evaluation. Manual (Part A); Interim Final; USEPA: Washington, DC, USA, 1989; Volume I.
- Griboff, J.; Wunderlin, D.A.; Monferran, M.V. Metals, As and Se Determination by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in Edible Fish Collected from Three Eutrophic Reservoirs. Their Consumption Represents a Risk for Human Health? Microchem. J. 2017, 130, 236–244. [Google Scholar] [CrossRef]
- U.S. EPA (U.S. Environmental Protection Agency). Concepts, Methods and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document; U.S. EPA: Cincinnati, OH, USA, 2007.
- Han, J.L.; Pan, X.D.; Chen, Q. Distribution and Safety Assessment of Heavy Metals in Fresh Meat from Zhejiang, China. Sci. Rep. 2022, 12, 3241. [Google Scholar] [CrossRef]
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Makedonski, L.; Merdzhanova, A.; Parrino, V.; Nava, V.; Cicero, N.; Fazio, F. Risk Assessment of Essential and Toxic Elements in Freshwater Fish Species from Lakes near Black Sea, Bulgaria. Toxics 2022, 10, 675. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Heavy Metals in Eggs and Chicken and the Associated Human Health Risk Assessment in the Mining Areas of Singhbhum Copper Belt, India. Arch. Environ. Occup. Health 2019, 74, 161–170. [Google Scholar] [CrossRef]
- Sobhanardakani, S. Tuna Fish and Common Kilka: Health Risk Assessment of Metal Pollution through Consumption of Canned Fish in Iran. J. Fur Verbraucherschutz Und Leb. 2017, 12, 157–163. [Google Scholar] [CrossRef]
- USEPA (U.S. Environmental Protection Agency). Regional Screening Levels (RSLs)—Generic Tables; Tables as of: November 2023; USEPA: Washington, DC, USA, 2023.
- Pleadin, J.; Lešić, T.; Vujačić, V.; Milićević, D.; Buneta, A.; Šušnić, S.; Lukanić, I.; Krešić, G. Comparison of Chemical Composition and Fatty Acid Profile of Traditional Meat Products from Croatia and Montenegro. J. Food Qual. 2021, 2021, 5586436. [Google Scholar] [CrossRef]
- Dinh, T.T.N.; To, K.V.; Schilling, M.W. Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat Muscle Biol. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, Y.; Liu, J.; Chen, D.; Zhang, H.; Yang, Z.; Zhou, X. Effects of Dietary Pork Fat Cooked Using Different Methods on Glucose and Lipid Metabolism, Liver Inflammation and Gut Microbiota in Rats. Foods 2021, 10, 3030. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization of the United Nations (FAO). Food-Based Dietary Guidelines—Unites States of America, 7th ed.; Dietary Guidelines Advisory Committee, Ed.; FAO: Rome, Italy, 2010. [Google Scholar]
- Chen, Y.; Cao, J.; Dai, B.; Jiang, W.; Yang, Y.; Dong, W. Changes of Fatty Acids Composition in Beef under Different Thermal Treatment. J. Food Nutr. Res. 2015, 3, 303–310. [Google Scholar] [CrossRef]
- Ba, H.V.; Seo, H.W.; Seong, P.N.; Cho, S.H.; Kang, S.M.; Kim, Y.S.; Moon, S.S.; Choi, Y.M.; Kim, J.H. Live Weights at Slaughter Significantly Affect the Meat Quality and Flavor Components of Pork Meat. Anim. Sci. J. 2019, 90, 667–679. [Google Scholar] [CrossRef]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M.; Childs, L. Cardiovascular Disease Risk of Dietary Stearic Acid Compared with Trans, Other Saturated, and Unsaturated Fatty Acids: A Systematic Review. Am. J. Clin. Nutr. 2010, 91, 46–63. [Google Scholar] [CrossRef]
- Lebret, B.; Guillard, A.S. Outdoor Rearing of Cull Sows: Effects on Carcass, Tissue Composition and Meat Quality. Meat Sci. 2005, 70, 247–257. [Google Scholar] [CrossRef]
- Enser, M.; Hallett, K.; Hewitt, B.; Fursey, G.A.J.; Wood, J.D. Fatty Acid Content and Composition of English Beef, Lamb and Pork at Retail. Meat Sci. 1996, 42, 443–456. [Google Scholar] [CrossRef]
- Pieszka, M.; Szczurek, P.; Bederska-Łojewska, D.; Migdał, W.; Pieszka, M.; Gogol, P.; Jagusiak, W. The Effect of Dietary Supplementation with Dried Fruit and Vegetable Pomaces on Production Parameters and Meat Quality in Fattening Pigs. Meat Sci. 2017, 126, 1–10. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional Enhancement of Sheep Meat Fatty Acid Profile for Human Health and Wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Holub, B.J. Clinical Nutrition: 4. Omega-3 Fatty Acids in Cardiovascular Care. CMAJ. Can. Med. Assoc. J. 2002, 166, 608–615. [Google Scholar]
- Alonso, V.; Najes, L.M.; Provincial, L.; Guillén, E.; Gil, M.; Roncalés, P.; Beltrán, J.A. Influence of Dietary Fat on Pork Eating Quality. Meat Sci. 2012, 92, 366–373. [Google Scholar] [CrossRef]
- Moussavi Javardi, M.S.; Madani, Z.; Movahedi, A.; Karandish, M.; Abbasi, B. The Correlation between Dietary Fat Quality Indices and Lipid Profile with Atherogenic Index of Plasma in Obese and Non-Obese Volunteers: A Cross-Sectional Descriptive-Analytic Case-Control Study. Lipids Health Dis. 2020, 19, 213. [Google Scholar] [CrossRef]
- Razmaite, V.; Švirmickas, G.J.; Šiukščius, A.U. Effect of Weight, Sex and Hunting Period on Fatty Acid Composition of Intramuscular and Subcutaneous Fat from Wild Boar. Ital. J. Anim. Sci. 2012, 11, 174–179. [Google Scholar] [CrossRef]
- Hoa, V.B.; Seol, K.H.; Seo, H.W.; Seong, P.N.; Kang, S.M.; Kim, Y.S.; Moon, S.S.; Kim, J.H.; Cho, S.H. Meat Quality Characteristics of Pork Bellies in Relation to Fat Level. Anim. Biosci. 2021, 34, 1663–1673. [Google Scholar] [CrossRef]
- Alvarenga, A.L.N.; Sousa, R.V.; Parreira, G.G.; Chiarini-Garcia, H.; Almeida, F.R.C.L. Fatty Acid Proifile, Oxidative Stability of Pork Lipids and Meat Quality Indicators Are Not Affected by Birth Weight. Animal 2014, 8, 660–666. [Google Scholar] [CrossRef]
- Tomović, V.M.; Petrović, L.S.; Tomović, M.S.; Kevrešan, Ž.S.; Džinić, N.R. Determination of Mineral Contents of Semimembranosus Muscle and Liver from Pure and Crossbred Pigs in Vojvodina (Northern Serbia). Food Chem. 2011, 124, 342–348. [Google Scholar] [CrossRef]
- Dehelean, A.; Cristea, G.; Puscas, R.; Hategan, A.R.; Magdas, D.A. Assigning the Geographical Origin of Meat and Animal Rearing System Using Isotopic and Elemental Fingerprints. Appl. Sci. 2022, 12, 12391. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Yang, S. Effect of Organic and Conventional Rearing System on the Mineral Content of Pork. Meat Sci. 2016, 118, 103–107. [Google Scholar] [CrossRef]
- Song, O.Y.; Islam, M.A.; Son, J.H.; Jeong, J.Y.; Kim, H.E.; Yeon, L.S.; Khan, N.; Jamila, N.; Kim, K.S. Elemental Composition of Pork Meat from Conventional and Animal Welfare Farms by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and ICP-Mass Spectrometry (ICP-MS) and Their Authentication via Multivariate Chemometric Analysis. Meat Sci. 2021, 172, 108344. [Google Scholar] [CrossRef]
- The Nutrition Source of Calcium. Available online: https://www.hsph.harvard.edu/nutritionsource/calcium/ (accessed on 8 December 2023).
- Fluid and Electrolyte Balance. Available online: https://medlineplus.gov/fluidandelectrolytebalance.html (accessed on 8 December 2023).
- Frassetto, L.; Banerjee, T.; Powe, N.; Sebastian, A. Acid Balance, Dietary Acid Load, and Bone Effects-a Controversial Subject. Nutrients 2018, 10, 517. [Google Scholar] [CrossRef]
- CH103—Chapter 8: The Major Macromolecules. Available online: https://wou.edu/chemistry/chapter-11-introduction-major-macromolecules/ (accessed on 8 December 2023).
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 4th ed.; Macmillan: New York, NY, USA, 2004; ISBN 978-0716743392. [Google Scholar]
- Yamanaka, N.; Itabashi, M.; Fujiwara, Y.; Nofuji, Y.; Abe, T.; Kitamura, A.; Shinkai, S.; Takebayashi, T.; Takei, T. Relationship between the Urinary Na/K Ratio, Diet and Hypertension among Community-Dwelling Older Adults. Hypertens. Res. 2023, 46, 556–564. [Google Scholar] [CrossRef]
- Park, J.; Kwock, C.K.; Yang, Y.J. The Effect of the Sodium to Potassium Ratio on Hypertension Prevalence: A Propensity Score Matching Approach. Nutrients 2016, 8, 482. [Google Scholar] [CrossRef]
- Perez, V.; Chang, E.T. Sodium-to-Potassium Ratio and Blood Pressure, Hypertension, and Related Factors. Adv. Nutr. 2014, 5, 712–741. [Google Scholar] [CrossRef]
- Mosallanezhad, Z.; Jalali, M.; Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary Sodium to Potassium Ratio Is an Independent Predictor of Cardiovascular Events: A Longitudinal Follow-up Study. BMC Public. Health 2023, 23, 705. [Google Scholar] [CrossRef]
- Jayedi, A.; Ghomashi, F.; Zargar, M.S.; Shab-Bidar, S. Dietary Sodium, Sodium-to-Potassium Ratio, and Risk of Stroke: A Systematic Review and Nonlinear Dose-Response Meta-Analysis. Clin. Nutr. 2019, 38, 1092–1100. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; De Córdova, F.M.L.; Ruiz-Medina, A.; Ortega-Barrales, P. Analysis of 20 Trace and Minor Elements in Soy and Dairy Yogurts by ICP-MS. Microchem. J. 2012, 102, 23–27. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Čalopek, B.; Đokić, M.; Varenina, I.; Kolanović, B.S.; Luburić, Đ.B.; Varga, I.; Hruškar, M. Dietary Exposure of the Adult Croatian Population to Meat, Liver and Meat Products from the Croatian Market: Health Risk Assessment. J. Food Compos. Anal. 2021, 95, 103672. [Google Scholar] [CrossRef]
- Nikolic, D.; Djinovic-Stojanovic, J.; Jankovic, S.; Stefanovic, S.; Radicevic, T.; Petrovic, Z.; Lausevic, M. Comparison of Essential Metals in Different Pork Meat Cuts from the Serbian Market. Procedia Food Sci. 2015, 5, 211–214. [Google Scholar] [CrossRef]
- Van Heerden, S.M.; Smith, M.F. The Nutrient Composition of Three Cuts Obtained from P-Class South African Pork Carcasses. Food Chem. 2013, 140, 458–465. [Google Scholar] [CrossRef]
- Tomovic, V.; Jokanovic, M.; Sojic, B.; Skaljac, S.; Tasic, T.; Ikonic, P. Minerals in Pork Meat and Edible Offal. Procedia Food Sci. 2015, 5, 293–295. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Halagarda, M.; Rohn, S.; Kęska, P.; Latoch, A.; Stadnik, J. Selected Nutrients Determining the Quality of Different Cuts of Organic and Conventional Pork. Eur. Food Res. Technol. 2021, 247, 1389–1400. [Google Scholar] [CrossRef]
- Evans, S.; Campbell, C.; Naidenko, O.V. Cumulative Risk Analysis of Carcinogenic Contaminants in United States Drinking Water. Heliyon 2019, 5, e02314. [Google Scholar] [CrossRef]
Fatty Acid | Leg | Loin | Tenderloin | p-Values |
---|---|---|---|---|
Concentration (%, Mean ± SD) | ||||
C4:0 | 0.02 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.614 |
C8:0 | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.557 |
C10:0 | 0.04 ± 0.03 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.881 |
C12:0 | 0.04 ± 0.03 | 0.04 ± 0.01 | 0.16 ± 0.03 | 0.173 |
C14:0 | 0.72 ± 0.13 | 0.71 ± 0.01 | 1.06 ± 0.01 | 0.300 |
C15:0 | 0.00 ± 0.00 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.518 |
C16:0 | 22.29 ± 1.76 | 23.52 ± 1.81 | 23.92 ± 0.73 | 0.247 |
C17:0 | 0.11 ± 0.05 | 0.11 ± 0.01 | 0.14 ± 0.01 | 0.581 |
C18:0 | 20.49 ± 1.57 | 20.72 ± 0.01 | 24.66 ± 0.01 | 0.241 |
C20:0 | 0.44 ± 0.08 | 0.41 ± 0.01 | 0.44 ± 0.01 | 0.905 |
C21:0 | 0.21 ± 0.07 | 0.14 ± 0.01 | 0.16 ± 0.01 | 0.761 |
C22:0 | 0.07 ± 0.04 | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.394 |
C23:0 | 0.10 ± 0.05 | 0.00 ± 0.00 | 0.05 ± 0.01 | 0.543 |
C14:1 | 0.02 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.624 |
C16:1 | 1.40 ± 0.04 | 1.15 ± 0.08 | 1.11 ± 0.07 | 0.267 |
C17:1 | 0.11 ± 0.07 | 0.10 ± 0.05 | 0.09 ± 0.03 | 0.714 |
C18:1n9 | 39.00 ± 0.71 | 37.93 ± 0.65 | 29.89 ± 0.52 | 0.057 |
C18:2n6 | 13.90 ± 0.63 | 13.97 ± 0.58 | 16.97 ± 0.81 | 0.417 |
C18:3n6 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.752 |
C18:3n3 | 0.52 ± 0.06 | 0.63 ± 0.08 | 0.73 ± 0.09 | 0.519 |
C20:2 | 0.34 ± 0.05 | 0.34 ± 0.01 | 0.33 ± 0.01 | 0.997 |
C20:3n6 | 0.10 ± 0.02 | 0.06 ± 0.03 | 0.09 ± 0.05 | 0.609 |
C20:3n3 | 0.04 ± 0.01 | 0.04 ± 0.02 | 0.06 ± 0.03 | 0.185 |
C20:4n6 | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.497 |
ƩSFAs | 44.57 ± 8.19 | 45.76 ± 7.97 | 50.70 ± 8.62 | 0.127 |
ƩMUFAs | 40.51 ± 9.37 | 39.18 ± 11.70 | 31.09 ± 10.45 | 0.048 |
ƩPUFAs | 14.92 ± 7.73 | 15.06 ± 6.52 | 18.20 ± 7.68 | 0.434 |
ƩUFAs | 55.43 ± 8.19 | 54.24 ± 7.97 | 49.30 ± 8.62 | 0.127 |
MUFAs/SFAs | 0.960 ± 0.347 | 0.919 ± 0.413 | 0.652 ± 0.302 | 0.067 |
PUFAs/SFAs | 0.355 ± 0.226 | 0.330 ± 0.131 | 0.374 ± 0.188 | 0.828 |
Nutritional Index | Leg | Loin | Tenderloin | p-Values |
---|---|---|---|---|
AI | 0.654 ± 0.236 | 0.723 ± 0.259 | 1.067 ± 0.834 | 0.036 |
TI | 1.575 ± 0.671 | 1.584 ± 0.677 | 1.918 ± 0.729 | 0.351 |
h/H | 2.401 ± 0.699 | 2.170 ± 0.423 | 1.948 ± 0.569 | 0.107 |
HPI | 2.312 ± 0.679 | 2.089 ± 0.417 | 1.863 ± 0.585 | 0.105 |
HI | 2.427 ± 0.701 | 2.199 ± 0.420 | 1.981 ± 0.578 | 0.115 |
UI | 71.022 ± 13.106 | 70.051 ± 9.065 | 68.408 ± 12.864 | 0.832 |
SI | 0.827 ± 0.297 | 0.869 ± 0.291 | 1.069 ± 0.395 | 0.115 |
PI | 16.541 ± 7.939 | 16.728 ± 6.975 | 19.778 ± 7.937 | 0.477 |
NVI | 0.457 ± 0.153 | 0.480 ± 0.103 | 0.571 ± 0.230 | 0.146 |
DFA | 75.924 ± 4.031 | 74.959 ± 2.597 | 73.961 ± 4.624 | 0.345 |
OFA | 24.076 ± 4.031 | 25.041 ± 2.597 | 26.039 ± 4.624 | 0.345 |
DFA/OFA | 14.418 ± 7.623 | 14.600 ± 6.291 | 17.706 ± 7.509 | 0.423 |
Elements | Leg | Loin | Tenderloin | p-Values |
---|---|---|---|---|
Concentration (mg/kg, Mean ± SD) | ||||
Mg | 231.80 ± 43.37 | 276.06 ± 112.29 | 254.67 ± 21.55 | 0.156 |
Ca | 63.15 ± 57.23 | 84.25 ± 146.30 | 26.27 ± 9.28 | 0.280 |
Na | 579.69 ± 398.33 | 500.12 ± 166.32 | 481.57 ± 102.67 | 0.554 |
K | 3986.14 ± 319.07 | 4586.63 ± 1167.50 | 4333.87 ± 567.67 | 0.044 |
Cu | 1.13 ± 0.70 | 1.01 ± 0.36 | 1.58 ± 0.81 | 0.059 |
Fe | 14.28 ± 9.52 | 6.18 ± 3.11 | 13.97 ± 6.43 | 0.002 |
Mn | 0.16 ± 0.11 | 0.09 ± 0.03 | 0.16 ± 0.04 | 0.015 |
Zn | 11.26 ± 6.32 | 7.23 ± 1.75 | 11.35 ± 5.54 | 0.029 |
Cr | 0.55 ± 0.35 | 0.48 ± 0.24 | 0.53 ± 0.26 | 0.746 |
Co | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.292 |
Mo | 0.03 ± 0.01 | 0.02 ± 0.02 | 0.02 ± 0.01 | 0.114 |
Li | 0.04 ± 0.03 | 0.03 ± 0.02 | 0.04 ± 0.02 | 0.280 |
V | 0.05 ± 0.03 | 0.05 ± 0.02 | 0.04 ± 0.02 | 0.933 |
As | 0.02 ± 0.02 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.119 |
Cd | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.01 | 0.253 |
Sb | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.01 | 0.275 |
Ni | 0.18 ± 0.10 | 0.13 ± 0.16 | 0.17 ± 0.13 | 0.561 |
Tl | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.246 |
Sn | 0.09 ± 0.05 | 0.08 ± 0.04 | 0.08 ± 0.04 | 0.646 |
In | 0.01 ± 0.01 | 0.00 ± 0.01 | 0.01 ± 0.01 | 0.269 |
Pb | 0.06 ± 0.05 | 0.03 ± 0.02 | 0.04 ± 0.04 | 0.066 |
Metal | Exposure Dose (µg/kg bw/Day) | THQ | TR | ||||||
---|---|---|---|---|---|---|---|---|---|
Leg | Loin | Tenderloin | Leg | Loin | Tenderloin | Leg | Loin | Tenderloin | |
As | 0.041 | 0.024 | 0.024 | 0.137 | 0.081 | 0.079 | 5.2 × 10−8 | 3.1 × 10−8 | 3.0 × 10−8 |
Cd | 0.011 | 0.003 | 0.006 | 0.011 | 0.003 | 0.006 | 3.7 × 10−9 | 1.1 × 10−9 | 2.0 × 10−9 |
Pb | 0.097 | 0.048 | 0.072 | 0.024 | 0.012 | 0.018 | 7.1 × 10−10 | 3.5 × 10−10 | 5.2 × 10−10 |
Cu | 1.878 | 1.691 | 2.640 | 0.376 | 0.338 | 0.528 | 2.4 × 10−6 | 2.1 × 10−6 | 3.3 × 10−6 |
Cr | 0.914 | 0.792 | 0.880 | 0.305 | 0.264 | 0.293 | 3.9 × 10−7 | 3.3 × 10−7 | 3.7 × 10−7 |
HI | 0.853 | 0.699 | 0.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Covaciu, F.-D.; Feher, I.; Cristea, G.; Dehelean, A. Nutritional Quality and Safety Assessment of Pork Meat Cuts from Romania: Fatty Acids and Elemental Profile. Foods 2024, 13, 804. https://doi.org/10.3390/foods13050804
Covaciu F-D, Feher I, Cristea G, Dehelean A. Nutritional Quality and Safety Assessment of Pork Meat Cuts from Romania: Fatty Acids and Elemental Profile. Foods. 2024; 13(5):804. https://doi.org/10.3390/foods13050804
Chicago/Turabian StyleCovaciu, Florina-Dorina, Ioana Feher, Gabriela Cristea, and Adriana Dehelean. 2024. "Nutritional Quality and Safety Assessment of Pork Meat Cuts from Romania: Fatty Acids and Elemental Profile" Foods 13, no. 5: 804. https://doi.org/10.3390/foods13050804
APA StyleCovaciu, F.-D., Feher, I., Cristea, G., & Dehelean, A. (2024). Nutritional Quality and Safety Assessment of Pork Meat Cuts from Romania: Fatty Acids and Elemental Profile. Foods, 13(5), 804. https://doi.org/10.3390/foods13050804