Impacts of COVID-19 on Food Choices and Eating Behavior among New Zealand University Students
Abstract
:1. Introduction
1.1. Sensory Impact of COVID-19
1.2. Changes in Food Choice and Diet due to COVID-19
1.3. New Zealand Exposure to COVID-19
1.4. Objective
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
- were aged 18 or older;
- were a university student;
- were generally healthy (i.e., not on regular medication);
- had been infected with COVID-19;
- had COVID-19 infection was confirmed at the time by PCR test or rapid-antigen test (RAT);
- could give e-consent.
2.4. Sample Size
2.5. Data Collection
Datasets
2.6. Data Analysis
2.6.1. Data Extraction
2.6.2. Statistical Analysis
3. Results
3.1. Post-COVID Cohort
3.1.1. Experience of Sensory Changes
3.1.2. Impact of Sensory Changes on Food Intake
3.2. Self-Reported Changes in Food Choices Post-COVID
3.3. Changes in Dietary Intake Post-COVID-19
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borsetto, D.; Hopkins, C.; Philips, V.; Obholzer, R.; Tirelli, G.; Polesel, J.; Boscolo-Rizzo, P. Self-reported alteration of sense of smell or taste in patients with COVID-19: A systematic review and meta-analysis on 3563 patients. Rhinology 2020, 58, 430–436. [Google Scholar] [CrossRef]
- Burges Watson, D.L.; Campbell, M.; Hopkins, C.; Smith, B.; Kelly, C.; Deary, V. Altered smell and taste: Anosmia, parosmia and the impact of long COVID-19. PLoS ONE 2021, 16, e0256998. [Google Scholar] [CrossRef]
- Cattaneo, C.; Pagliarini, E.; Mambrini, S.P.; Tortorici, E.; Mené, R.; Torlasco, C.; Perger, E.; Parati, G.; Bertoli, S. Changes in smell and taste perception related to COVID-19 infection: A case–control study. Sci. Rep. 2022, 12, 8192. [Google Scholar] [CrossRef]
- Hannum, M.E.; Koch, R.J.; Ramirez, V.A.; Marks, S.S.; Toskala, A.K.; Herriman, R.D.; Lin, C.; Joseph, P.V.; Reed, D.R. Taste loss as a distinct symptom of COVID-19: A systematic review and meta-analysis. Chem. Senses 2022, 47, bjac001. [Google Scholar] [CrossRef] [PubMed]
- Hannum, M.E.; Reed, D.R. COVID-19-Associated Loss of Taste and Smell and the Implications for Sensory Nutrition. In Sensory Science and Chronic Diseases: Clinical Implications and Disease Management, Joseph, P.V., Duffy, V.B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 245–257. [Google Scholar]
- Gerkin, R.C.; Ohla, K.; Veldhuizen, M.G.; Joseph, P.V.; Kelly, C.E.; Bakke, A.J.; Steele, K.E.; Farruggia, M.C.; Pellegrino, R.; Pepino, M.Y. Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms. Chem. Senses 2021, 46, bjaa081. [Google Scholar] [CrossRef]
- Boesveldt, S.; de Graaf, K. The Differential Role of Smell and Taste For Eating Behavior. Perception 2017, 46, 307–319. [Google Scholar] [CrossRef]
- Roxbury, C.R.; Bernstein, I.A.; Lin, S.Y.; Rowan, N.R. Association Between Chemosensory Dysfunction and Diet Quality in United States Adults. Am. J. Rhinol. Allergy 2022, 36, 47–56. [Google Scholar] [CrossRef]
- Abeywickrema, S.; Ginieis, R.; Oey, I.; Perry, T.; Keast, R.S.; Peng, M. Taste but not smell sensitivities are linked to dietary macronutrient composition. Appetite 2023, 181, 106385. [Google Scholar] [CrossRef]
- Ginieis, R.; Abeywickrema, S.; Oey, I.; Keast, R.S.; Peng, M. Searching for individual multi-sensory fingerprints and their links with adiposity–New insights from meta-analyses and empirical data. Food Qual. Prefer. 2022, 99, 104574. [Google Scholar] [CrossRef]
- Romero-Gameros, C.A.; Waizel-Haiat, S.; Mendoza-Zubieta, V.; Anaya-Dyck, A.; López-Moreno, M.A.; Colin-Martinez, T.; Martínez-Ordaz, J.L.; Ferat-Osorio, E.; Vivar-Acevedo, E.; Vargas-Ortega, G.; et al. Evaluation of predictive value of olfactory dysfunction, as a screening tool for COVID-19. Laryngoscope Investig. Otolaryngol. 2020, 5, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Mitchell, D.C.; Miller, C.; Smiciklas-Wright, H. Assessing the Effect of Underreporting Energy Intake on Dietary Patterns and Weight Status. J. Am. Diet. Assoc. 2007, 107, 64–71. [Google Scholar] [CrossRef]
- Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence of Olfactory Dysfunction in Coronavirus Disease 2019 (COVID-19): A Meta-analysis of 27,492 Patients. Laryngoscope 2021, 131, 865–878. [Google Scholar] [CrossRef]
- Butowt, R.; Bilińska, K.; von Bartheld, C. Why does the Omicron Variant Largely Spare Olfactory Function? Implications for the Pathogenesis of Anosmia in COVID-19. J. Infect. Dis. 2022, 226, jiac113. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Tirelli, G.; Meloni, P.; Hopkins, C.; Madeddu, G.; De Vito, A.; Gardenal, N.; Valentinotti, R.; Tofanelli, M.; Borsetto, D.; et al. Coronavirus disease 2019 (COVID-19)–related smell and taste impairment with widespread diffusion of severe acute respiratory syndrome–coronavirus-2 (SARS-CoV-2) Omicron variant. Int. Forum Allergy Rhinol. 2022, 12, 1273–1281. [Google Scholar] [CrossRef]
- McWilliams, M.P.; Coelho, D.H.; Reiter, E.R.; Costanzo, R.M. Recovery from COVID-19 smell loss: Two-years of follow up. Am. J. Otolaryngol. 2022, 43, 103607. [Google Scholar] [CrossRef]
- Parker, J.K.; Methven, L.; Pellegrino, R.; Smith, B.C.; Gane, S.; Kelly, C.E. Emerging Pattern of Post-COVID-19 Parosmia and Its Effect on Food Perception. Foods 2022, 11, 967. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.J.; Han, R.; Zhao, J.J.; Tan, N.K.W.; Quah, E.S.H.; Tan, C.J.; Chan, Y.H.; Teo, N.W.Y.; Charn, T.C.; See, A.; et al. Prognosis and persistence of smell and taste dysfunction in patients with COVID-19: Meta-analysis with parametric cure modelling of recovery curves. Bmj 2022, 378, e069503. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.H.; Reiter, E.R.; Budd, S.G.; Shin, Y.; Kons, Z.A.; Costanzo, R.M. Quality of life and safety impact of COVID-19 associated smell and taste disturbances. Am. J. Otolaryngol. 2021, 42, 103001. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.; Young, E.; Butler, I.; Coe, S. The Impact of Lockdown During the COVID-19 Outbreak on Dietary Habits in Various Population Groups: A Scoping Review. Front. Nutr. 2021, 8, 626432. [Google Scholar] [CrossRef] [PubMed]
- Molina-Montes, E.; Uzhova, I.; Verardo, V.; Artacho, R.; García-Villanova, B.; Jesús Guerra-Hernández, E.; Kapsokefalou, M.; Malisova, O.; Vlassopoulos, A.; Katidi, A.; et al. Impact of COVID-19 confinement on eating behaviours across 16 European countries: The COVIDiet cross-national study. Food Qual. Prefer. 2021, 93, 104231. [Google Scholar] [CrossRef]
- Buckland, N.J.; Kemps, E. Low craving control predicts increased high energy density food intake during the COVID-19 lockdown: Result replicated in an Australian sample. Appetite 2021, 166, 105317. [Google Scholar] [CrossRef]
- Buckland, N.J.; Swinnerton, L.F.; Ng, K.; Price, M.; Wilkinson, L.L.; Myers, A.; Dalton, M. Susceptibility to increased high energy dense sweet and savoury food intake in response to the COVID-19 lockdown: The role of craving control and acceptance coping strategies. Appetite 2021, 158, 105017. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.A.; Gallo, T.F.; Young, S.L.; Moritz, K.M.; Akison, L.K. The Impact of Isolation Measures Due to COVID-19 on Energy Intake and Physical Activity Levels in Australian University Students. Nutrients 2020, 12, 1865. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Oldham, M.; Garnett, C.; Brown, J.; Kale, D.; Shahab, L.; Herbec, A. Characterising the patterns of and factors associated with increased alcohol consumption since COVID-19 in a UK sample. Drug Alcohol Rev. 2021, 40, 890–899. [Google Scholar] [CrossRef]
- Neuman, N.; Sandvik, P.; Lindholm, N.B.; Bömer-Schulte, K.; Lövestam, E. Food-related experiences and behavioral responses among people affected by chemosensory dysfunctions following COVID-19: A scoping review. Res. Nurs. Health 2023, 46, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Chaaban, N.; Høier, A.T.Z.B.; Andersen, B.V. A Detailed Characterisation of Appetite, Sensory Perceptional, and Eating-Behavioural Effects of COVID-19: Self-Reports from the Acute and Post-Acute Phase of Disease. Foods 2021, 10, 892. [Google Scholar] [CrossRef] [PubMed]
- Kaufman-Shriqui, V.; Navarro, D.A.; Raz, O.; Boaz, M. Dietary changes and anxiety during the coronavirus pandemic: A multinational survey. Eur. J. Clin. Nutr. 2022, 76, 84–92. [Google Scholar] [CrossRef]
- Mekanna, A.N.; Panchal, S.K.; Li, L. Beyond lockdowns: A systematic review of the impacts of COVID-19 lockdowns on dietary pattern, physical activity, body weight, and food security. Nutr. Rev. 2022, 81, 790–803. [Google Scholar] [CrossRef]
- Bertrand, L.; Shaw, K.A.; Ko, J.; Deprez, D.; Chilibeck, P.D.; Zello, G.A. The impact of the coronavirus disease 2019 (COVID-19) pandemic on university students’ dietary intake, physical activity, and sedentary behaviour. Appl. Physiol. Nutr. Metab. 2021, 46, 265–272. [Google Scholar] [CrossRef]
- Li, Y. Dietary Intake of Young Adult College Students Before and During the COVID-19 Pandemic. Master’s Thesis, Rutgers The State University of New Jersey, New Brunswick, NJ, USA, 2022. [Google Scholar]
- Baker, M.G.; Kvalsvig, A.; Verrall, A.J. New Zealand’s COVID-19 elimination strategy. Med. J. Aust. 2020, 213, 198–200.e191. [Google Scholar] [CrossRef]
- Jefferies, S.; French, N.; Gilkison, C.; Graham, G.; Hope, V.; Marshall, J.; McElnay, C.; McNeill, A.; Muellner, P.; Paine, S.; et al. COVID-19 in New Zealand and the impact of the national response: A descriptive epidemiological study. Lancet Public Health 2020, 5, e612–e623. [Google Scholar] [CrossRef]
- Ministry of Health. COVID-19: Minimisation and Protection Strategy for Aotearoa New Zealand. Available online: https://www.health.govt.nz/covid-19-novel-coronavirus/covid-19-response-planning/covid-19-minimisation-and-protection-strategy-aotearoa-new-zealand (accessed on 14 September 2023).
- Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; et al. Coronavirus Pandemic (COVID-19). 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 14 September 2023).
- New Zealand Government. Unite against COVID-19: Testing and Isolation. Available online: https://covid19.govt.nz/testing-and-isolation/if-you-have-covid-19/ (accessed on 21 February 2024).
- Gerritsen, S.; Egli, V.; Roy, R.; Haszard, J.; Backer, C.D.; Teunissen, L.; Cuykx, I.; Decorte, P.; Pabian, S.P.; Van Royen, K.; et al. Seven weeks of home-cooked meals: Changes to New Zealanders’ grocery shopping, cooking and eating during the COVID-19 lockdown. J. R. Soc. N. Z. 2021, 51, S4–S22. [Google Scholar] [CrossRef]
- Amataiti, T.A.; Hood, F.; Krebs, J.D.; Weatherall, M.; Hall, R.M. The Impact of COVID-19 on diet and lifestyle behaviours for pregnant women with diabetes. Clin. Nutr. ESPEN 2021, 45, 404–411. [Google Scholar] [CrossRef]
- Stats NZ. COVID-19 Data Portal. Available online: https://www.stats.govt.nz/experimental/covid-19-data-portal (accessed on 14 September 2023).
- Te Whatu Ora Health New Zealand. COVID-19: Current Cases. Available online: https://www.tewhatuora.govt.nz/our-health-system/data-and-statistics/covid-19-data/covid-19-current-cases/#covid-19-by-location (accessed on 22 February 2024).
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Aschenbrenner, K.; Hummel, C.; Teszmer, K.; Krone, F.; Ishimaru, T.; Seo, H.-S.; Hummel, T. The Influence of Olfactory Loss on Dietary Behaviors. Laryngoscope 2008, 118, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Croy, I.; Nordin, S.; Hummel, T. Olfactory Disorders and Quality of Life—An Updated Review. Chem. Senses 2014, 39, 185–194. [Google Scholar] [CrossRef] [PubMed]
- van Strien, T.; Frijters, J.E.R.; Bergers, G.P.A.; Defares, P.B. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int. J. Eat. Disord. 1986, 5, 295–315. [Google Scholar] [CrossRef]
- Biró, G.; Hulshof, K.; Ovesen, L.; Amorim Cruz, J.A.; for the, E.G. Selection of methodology to assess food intake. Eur. J. Clin. Nutr. 2002, 56, S25–S32. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, H.; Halawani, R.; Jehi, T.; Khan, R. Effect of COVID-19 outbreak on the diet, body weight and food security status of students of higher education: A systematic review. Br. J. Nutr. 2023, 129, 1916–1928. [Google Scholar] [CrossRef]
- Brouillard, A.M.; Kraja, A.T.; Rich, M.W. Trends in Dietary Sodium Intake in the United States and the Impact of USDA Guidelines: NHANES 1999-2016. Am. J. Med. 2019, 132, 1199–1206.e1195. [Google Scholar] [CrossRef]
- Bolton, K.A.; Webster, J.; Dunford, E.K.; Jan, S.; Woodward, M.; Bolam, B.; Neal, B.; Trieu, K.; Reimers, J.; Nowson, C.; et al. Sources of dietary sodium and implications for a statewide salt reduction initiative in Victoria, Australia. Br. J. Nutr. 2020, 123, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Tomasa-Irriguible, T.-M.; Bielsa-Berrocal, L.; Bordejé-Laguna, L.; Tural-Llàcher, C.; Barallat, J.; Manresa-Domínguez, J.-M.; Torán-Monserrat, P. Low Levels of Few Micronutrients May Impact COVID-19 Disease Progression: An Observational Study on the First Wave. Metabolites 2021, 11, 565. [Google Scholar] [CrossRef] [PubMed]
- Voelkle, M.; Gregoriano, C.; Neyer, P.; Koch, D.; Kutz, A.; Bernasconi, L.; Conen, A.; Mueller, B.; Schuetz, P. Prevalence of Micronutrient Deficiencies in Patients Hospitalized with COVID-19: An Observational Cohort Study. Nutrients 2022, 14, 1862. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, S.; Ray, S.; Fallon, E.; Bradfield, J.; Eden, T.; Kohlmeier, M. Dietary micronutrients in the wake of COVID-19: An appraisal of evidence with a focus on high-risk groups and preventative healthcare. BMJ Nutr. Prev. Health 2020, 3, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Bügel, S. Micronutrient deficiency in the aetiology of obesity. Int. J. Obes. 2010, 34, 947–948. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Valdes, A.M.; Polidori, L.; Antonelli, M.; Penamakuri, S.; Nogal, A.; Louca, P.; May, A.; Figueiredo, J.C.; Hu, C.; et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: A prospective observational study from the ZOE COVID Study. Lancet 2022, 399, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Huang, J.; Niu, C.; Zhang, P.; Yuan, K.; Zhu, X.; Jin, Q.; Ran, S.; Huang, Z. Prevalence of taste and smell dysfunction in mild and asymptomatic COVID-19 patients during Omicron prevalent period in Shanghai, China: A cross-sectional survey study. BMJ Open 2023, 13, e067065. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.H.; Reiter, E.R.; French, E.; Costanzo, R.M. Decreasing Incidence of Chemosensory Changes by COVID-19 Variant. Otolaryngol. Head Neck Surg. 2023, 168, 704–706. [Google Scholar] [CrossRef]
- Abeywickrema, S.; Ginieis, R.; Oey, I.; Peng, M. Olfactory and Gustatory Supra-Threshold Sensitivities Are Linked to Ad Libitum Snack Choice. Foods 2022, 11, 799. [Google Scholar] [CrossRef]
- González-Monroy, C.; Gómez-Gómez, I.; Olarte-Sánchez, C.M.; Motrico, E. Eating Behaviour Changes during the COVID-19 Pandemic: A Systematic Review of Longitudinal Studies. Int. J. Environ. Res. Public Health 2021, 18, 11130. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Jeyakumar, D.T.; Jayawardena, R.; Chourdakis, M. The impact of COVID-19 lockdown on snacking habits, fast-food and alcohol consumption: A systematic review of the evidence. Clin. Nutr. 2022, 41, 3038–3045. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, C.; Acharya, B.; Wang, S. Food spending in the United States during the first year of the COVID-19 pandemic. Front. Public Health 2022, 10, 912922. [Google Scholar] [CrossRef] [PubMed]
- Huber, B.C.; Steffen, J.; Schlichtiger, J.; Brunner, S. Altered nutrition behavior during COVID-19 pandemic lockdown in young adults. Eur. J. Nutr. 2021, 60, 2593–2602. [Google Scholar] [CrossRef] [PubMed]
- Sidebottom, C.; Ullevig, S.; Cheever, K.; Zhang, T. Effects of COVID-19 pandemic and quarantine period on physical activity and dietary habits of college-aged students. Sports Med. Health Sci. 2021, 3, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Maganja, D.; Buckett, K.; Stevens, C.; Flynn, E. Consumer choice and the role of front-of-pack labelling: The Health Star Rating system. Public Health Res. Pract. 2019, 29, e2911909. [Google Scholar] [CrossRef] [PubMed]
- Abe-Inge, V.; Aidoo, R.; Moncada de la Fuente, M.; Kwofie, E.M. Plant-based dietary shift: Current trends, barriers, and carriers. Trends Food Sci. Technol. 2024, 143, 104292. [Google Scholar] [CrossRef]
- Garden, L.; Clark, H.; Whybrow, S.; Stubbs, R.J. Is misreporting of dietary intake by weighed food records or 24-hour recalls food specific? Euro J. Clin. Nutr. 2018, 72, 1026–1034. [Google Scholar] [CrossRef]
- Karvetti, R.-L.; Knuts, L.-R. Validity of the estimated food diary: Comparison of 2-day recorded and observed food and nutrient intakes. J. Am. Diet. Assoc. 1992, 92, 580–584. [Google Scholar] [CrossRef]
Overall | No Sensory Change | Sensory Change | ||
---|---|---|---|---|
N = 340 | N = 255 | N = 85 | ||
Age: Mean (SD) | 22.02 (3.83) | 21.85 (3.49) | 22.53 (4.70) | |
Gender | ||||
Female | 237 (69.7) | 171 (67.1) | 66 (77.6) | |
Male | 93 (27.4) | 77 (30.2) | 16 (18.8) | |
Other | 6 (1.8) | 4 (1.6) | 2 (2.4) | |
Ethnicity | ||||
New Zealand European (NZE) | 241 (70.9) | 185 (72.5) | 56 (65.9) | |
Asian | 50 (14.7) | 35 (13.7) | 15 (17.6) | |
Māori | 29 (8.5) | 23 (9.0) | 6 (7.1) | |
Pacific | 15 (4.4) | 10 (3.9) | 5 (5.9) | |
Other | 5 (1.5) | 2 (0.8) | 3 (3.5) | |
Year of study | ||||
First year | 54 (15.3) | 38 (14.9) | 16 (18.8) | |
Second year | 63 (19.0) | 49 (19.2) | 14 (16.5) | |
Third/final Year | 160 (48.2) | 122 (47.8) | 38 (44.7) | |
Post-grad | 55 (16.6) | 39 (15.3) | 16 (18.8) | |
Current Household | ||||
Living alone | 5 (1.5) | 3 (1.2) | 2 (2.4) | |
Living with other adults | 262 (77.1) | 199 (78.0) | 63 (74.1) | |
Married/de facto couple | 13 (3.8) | 12 (4.7) | 1 (1.2) | |
Family with children | 11 (3.2) | 6 (2.4) | 5 (5.9) | |
Family with adults only | 5 (1.5) | 4 (1.6) | 1 (1.2) | |
Living in a residential college | 43 (12.6) | 31 (12.2) | 12 (14.1) | |
Other | 1 (0.3) | 0 | 1 (1.2) | |
2019 Household | ||||
Living alone | 3 (0.9) | 3 (1.2) | 0 | |
Living with other adults | 93 (27.4) | 73 (28.6) | 20 (23.5) | |
Married/de facto couple | 5 (1.5) | 4 (1.6) | 1 (1.2) | |
Family with children | 124 (36.5) | 95 (37.3) | 29 (34.1) | |
Family with adults only | 56 (16.5) | 38 (14.9) | 18 (21.2) | |
Living in a residential college | 30 (8.8) | 24 (9.4) | 6 (7.1) | |
Other | 19 (5.6) | 11 (4.3) | 8 (9.4) | |
Antidepressant use | 23 (6.8) | 17 (6.7) | 6 (7.1) | |
Tobacco use | ||||
Smoker | 16 (4.7) | 13 (5.1) | 3 (3.6) | |
Vaper | 110 (32.6) | 71 (27.8) | 29 (34.1) | |
Non-smoker/non-vaper | 226 (66.5) | 172 (67.5) | 54 (63.5) | |
Diet | ||||
No specific diet | 288 (84.7) | |||
Plant-based diet | 27 (7.9) | |||
Mediterranean diet | 2 (0.6) | |||
Low-carb diet | 3 (0.9) | |||
Other | 9 (2.7) | |||
DEBQ | ||||
Restrained | 2.53 (0.82) | 2.54 (0.83) | 2.50 (0.80) | |
External | 3.24 (0.55) | 3.22 (0.55) | 3.29 (0.56) | |
Emotional | 2.57 (0.78) | 2.62 (0.77) | 2.45 (0.78) |
Pre-COVID | Post-COVID | p-Value | ||
---|---|---|---|---|
n = 165 | n = 98 | |||
Age: Mean (SD) | 29.37 (6.14) | 22.88 (4.54) | <0.001 | |
Gender | 0.115 | |||
Female | 52 (31.5) | 72 (73.5) | ||
Male | 113 (68.5) | 23 (23.5) | ||
Other | 0 | 3 (3.1) | ||
Ethnicity | 0.963 | |||
NZE | 115 (69.7) | 70 (71.4) | ||
Asian | 28 (17.0) | 21 (21.4) | ||
Māori | 6 (3.6) | 2 (2.0) | ||
Pacific | 2 (1.2) | 1 (1.0) | ||
Other | 14 (8.5) | 4 (4.1) | ||
BMI: Mean (SD) | 25.18 (5.08) | |||
Weight group | 0.067 | |||
Underweight | 3 (1.3) | 4 (4.1) | ||
Normal weight | 97 (58.8) | 56 (57.1) | ||
Overweight/obese | 64 (38.8) | 24 (24.5) | ||
DEBQ: Mean (SD) | ||||
Restrained | 2.12 (0.72) | 2.43 (0.90) | 0.010 | |
Emotional | 2.25 (0.81) | 3.31 (0.58) | <0.001 | |
External | 3.12 (0.49) | 2.52 (0.84) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCormack, J.C.; Peng, M. Impacts of COVID-19 on Food Choices and Eating Behavior among New Zealand University Students. Foods 2024, 13, 889. https://doi.org/10.3390/foods13060889
McCormack JC, Peng M. Impacts of COVID-19 on Food Choices and Eating Behavior among New Zealand University Students. Foods. 2024; 13(6):889. https://doi.org/10.3390/foods13060889
Chicago/Turabian StyleMcCormack, Jessica C., and Mei Peng. 2024. "Impacts of COVID-19 on Food Choices and Eating Behavior among New Zealand University Students" Foods 13, no. 6: 889. https://doi.org/10.3390/foods13060889
APA StyleMcCormack, J. C., & Peng, M. (2024). Impacts of COVID-19 on Food Choices and Eating Behavior among New Zealand University Students. Foods, 13(6), 889. https://doi.org/10.3390/foods13060889