Color and Nutritional Analysis of Ten Different Purple Sweet Potato Varieties Cultivated in China via Principal Component Analysis and Cluster Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reagents
2.3. Physical Parameters of the Fresh Samples
2.3.1. Color Analysis
2.3.2. Moisture Content
2.4. Chemical Composition of the Dried Samples
2.4.1. Determination of the Starch Content
2.4.2. Determination of the Contents of Reducing Sugar
2.4.3. Determination of the Content of Total Dietary Fiber
2.4.4. Determination of the Content of Protein
2.4.5. Determination of the Content of Crude Fat
2.5. Anthocyanin Content and Composition of the Dried Samples
2.5.1. Determination of the Content of Anthocyanins
2.5.2. HPLC-DAD/ESI-MS2 Characterization of Anthocyanins
2.6. Analysis of the Content of Selenium Using HG-AFS
2.7. Statistical Analysis
3. Results and Discussion
3.1. Morphology and Color of the Different PSP Varieties
3.2. Proximate Composition of the Different Varieties of PSPs
3.3. Analysis of the Contents of Anthocyanins and Selenium in Different Varieties of PSPs
3.4. Identification of the Anthocyanin Compounds of Different Varieties of PSPs
3.5. Correlation Analysis of Four Nutritional Components and Color in PSPs
3.6. Principal Component Analysis
3.7. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Li, M.; Tang, C.; Jiang, B.; Yao, Z.; Mo, X.; Wang, Z. Combining Metabolomics and Transcriptomics to Reveal the Mechanism of Coloration in Purple and Cream Mutant of Sweet Potato (Ipomoea batatas L.). Front. Plant Sci. 2022, 13, 877695. [Google Scholar] [CrossRef]
- Wijaya, H.; Dirpan, A. Organoleptic Product Study of Gyoza Products with Natural Dyes Extracted from Purple Sweet Potatoes. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Makassar, Indonesia, 24–25 August 2021; Volume 870, p. 12023. [Google Scholar]
- Hu, H.; Zhou, X.-Y.; Wang, Y.-S.; Zhang, Y.-X.; Zhou, W.-H.; Zhang, L. Effects of Particle Size on the Structure, Cooking Quality and Anthocyanin Diffusion of Purple Sweet Potato Noodles. Food Chem. X 2023, 18, 100672. [Google Scholar] [CrossRef]
- Julianti, E.; Lubis, Z.; Limanto, S. Utilization of Purple Sweet Potato Flour, Starch, and Fibre in Biscuits Making. IOP Conf. Ser. Earth Environ. Sci. 2020, 443, 012047. [Google Scholar] [CrossRef]
- Sigalingging, D.; Sinaga, H.; Yusraini, E. Utilization of Purple Sweet Potato as a Partial Substitute Glutinous Rice Flour in the Ombus-Ombus Cake from North Tapanuli Traditional Food. IOP Conf. Ser. Earth Environ. Sci. 2021, 782, 032105. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Q.; Li, B.; Lin, L.; Tundis, R.; Loizzo, M.R.; Zheng, B.; Xiao, J. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato. Molecules 2016, 21, 932. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Deng, L.; Chen, J.; Zhou, S.; Liu, S.; Fu, Y.; Yang, C.; Liao, Z.; Chen, M. An Analytical Pipeline to Compare and Characterise the Anthocyanin Antioxidant Activities of Purple Sweet Potato Cultivars. Food Chem. 2016, 194, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Mu, T.H.; Zhang, M. Effects of High Hydrostatic Pressure and Soaking Solution on Proximate Composition, Polyphenols, Anthocyanins, β-Carotene, and Antioxidant Activity of White, Orange, and Purple Fleshed Sweet Potato Flour. Food Sci. Technol. Int. 2020, 26, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Kong, F.; Yan, C. Optimization of Polysaccharide Ultrasonic Extraction Conditions Using Purple Sweet Potato Tubers Based on Free Radical Scavenging and Glycosylation Inhibitory Bioactivities. Pharmacogn. Mag. 2017, 13, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Feng, Y.; Li, J.; Lian, R.; Qin, L.; Wang, C. Extraction, Purification, Structural Characterization, and Hepatoprotective Effect of the Polysaccharide from Purple Sweet Potato. J. Sci. Food Agric. 2023, 103, 2196–2206. [Google Scholar] [CrossRef]
- Afiati, F.; Priadi, G.; Setiyoningrum, F. The Improvement of Functional Food in Yogurt Enriched with Purple Sweet Potato (Ipomea batatas Var. Ayamurasaki). J. Indones. Trop. Anim. Agric. 2018, 43, 159–168. [Google Scholar] [CrossRef]
- Zhu, F.; Sun, J. Physicochemical and Sensory Properties of Steamed Bread Fortified with Purple Sweet Potato Flour. Food Biosci. 2019, 30, 100411. [Google Scholar] [CrossRef]
- Guclu, G.; Dagli, M.M.; Aksay, O.; Keskin, M.; Kelebek, H.; Selli, S. Comparative Elucidation on the Phenolic Fingerprint, Sugars and Antioxidant Activity of White, Orange and Purple-Fleshed Sweet Potatoes (Ipomoea batatas L.) as Affected by Different Cooking Methods. Heliyon 2023, 9, e18684. [Google Scholar] [CrossRef]
- GB 5009.3-2010; Determination of Moisture in Foods. Standards Press of China: Beijing, China, 2010.
- GB 5009.9-2016; Determination of Starch in Foods. Standards Press of China: Beijing, China, 2016.
- GB 5009.7-2016; Determination of Reducing Sugars in Foods. Standards Press of China: Beijing, China, 2016.
- GB 5009.88-2014; Determination of Dietary Fiber in Foods. Standards Press of China: Beijing, China, 2014.
- GB 5009.6-2016; Determination of Fat in Foods. Standards Press of China: Beijing, China, 2016.
- Dumitracscu, L.; Enachi, E.; Stuanciuc, N.; Aprodu, I. Optimization of Ultrasound Assisted Extraction of Phenolic Compounds from Cornelian Cherry Fruits Using Response Surface Methodology. CyTA-J. Food 2019, 17, 814–823. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Rafie, R. Anthocyanin Extraction Method and Sample Preparation Affect Anthocyanin Yield of Strawberries. Nat. Prod. Commun. 2022, 17, 1934578X221099970. [Google Scholar] [CrossRef]
- GB 5009.93-2017; Determination of Selenium in Foods. Standards Press of China: Beijing, China, 2017.
- Kutlu, N.; Pandiselvam, R.; Kamiloglu, A.; Saka, I.; Sruthi, N.U.; Kothakota, A.; Socol, C.T.; Maerescu, C.M. Impact of Ultrasonication Applications on Color Profile of Foods. Ultrason. Sonochemistry 2022, 89, 106109. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.; Wang, X.; Sun, J.; Fang, Y.; Liu, J.; Jin, C. Comparison of the Structural Characterization and Physicochemical Properties of Starches from Seven Purple Sweet Potato Varieties Cultivated in China. Int. J. Biol. Macromol. 2018, 120, 1632–1638. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Bian, X.; Guo, K.; Zhou, L.; Wei, C. Characterization and Comparative Study of Starches from Seven Purple Sweet Potatoes. Food Hydrocoll. 2018, 80, 168–176. [Google Scholar] [CrossRef]
- Aina, A.J.; Falade, K.O.; Akingbala, J.O.; Titus, P. Physicochemical Properties of Twenty-One Caribbean Sweet Potato Cultivars. Int. J. Food Sci. Technol. 2009, 44, 1696–1704. [Google Scholar] [CrossRef]
- Heo, S.; Choi, J.Y.; Kim, J.; Moon, K.D. Prediction of Moisture Content in Steamed and Dried Purple Sweet Potato Using Hyperspectral Imaging Analysis. Food Sci. Biotechnol. 2021, 30, 783–791. [Google Scholar] [CrossRef]
- Maurel, C.; Nacry, P. Root Architecture and Hydraulics Converge for Acclimation to Changing Water Availability. Nat. Plants 2020, 6, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Pkeksa, A.; Kita, A.; Kułakowska, K.; Aniołowska, M.; Hamouz, K.; Nemś, A. The Quality of Protein of Coloured Fleshed Potatoes. Food Chem. 2013, 141, 2960–2966. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, K.; Li, S.; Peng, D.; Tang, D.; Lu, H.; Zhao, Y.; Lv, C.; Wang, J. Genetic Variation and Sequence Diversity of Starch Biosynthesis and Sucrose Metabolism Genes in Sweet Potato. Agronomy 2020, 10, 627. [Google Scholar] [CrossRef]
- Guo, K.; Liu, T.; Xu, A.; Zhang, L.; Bian, X.; Wei, C. Structural and Functional Properties of Starches from Root Tubers of White, Yellow, and Purple Sweet Potatoes. Food Hydrocoll. 2019, 89, 829–836. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, H.; Li, H.; Li, Y. Analysis on the Nutrition Composition and Antioxidant Activity of Different Types of Sweet Potato Cultivars. Food Nutr. Sci. 2015, 6, 161. [Google Scholar] [CrossRef]
- Fan, H.; Liang, D.; Fu, F.; Xu, M.; Li, Z.; Suo, B.; Ai, Z. Processing Suitability of Different Varieties of Sweet Potatoes Cooked with Different Methods. J. Food Process. Preserv. 2022, 46, e16944. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Zhou, D.; Cai, W.; Rehman, M.; Feng, Y.; Kong, Y.; Liu, X.; Fahad, S.; Deng, G. Impact of Dormancy Periods on Some Physiological and Biochemical Indices of Potato Tubers. PeerJ 2023, 11, e15923. [Google Scholar] [CrossRef]
- Tangjaidee, P.; Swedlund, P.; Xiang, J.; Yin, H.; Quek, S.Y. Selenium-Enriched Plant Foods: Selenium Accumulation, Speciation, and Health Functionality. Front. Nutr. 2023, 9, 962312. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, L.; Feduraev, P.; Golovin, A.; Maslennikov, P.; Styran, T.; Antipina, M.; Riabova, A.; Katserov, D. The Integral Boosting Effect of Selenium on the Secondary Metabolism of Higher Plants. Plants 2022, 11, 3432. [Google Scholar] [CrossRef]
- Pu, Z.; Wei, G.; Liu, Z.; Chen, L.; Guo, H.; Li, Y.; Li, Y.; Dai, S.; Wang, J.; Li, W.; et al. Selenium and Anthocyanins Share the Same Transcription Factors R2R3MYB and BHLH in Wheat. Food Chem. 2021, 356, 129699. [Google Scholar] [CrossRef]
- Xia, Q.; Shui, Y.; Zhi, H.; Ali, A.; Yang, Z.; Gao, Z. Exogeneous Selenium Enhances Anthocyanin Synthesis during Grain Development of Colored-Grain Wheat. Plant Physiol. Biochem. 2023, 200, 107742. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, J.S.; Choi, D.S.; Jung, M.Y. Characterization and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in Korea by HPLC-DAD and HPLC-ESI-QTOF-MS/MS. J. Agric. Food Chem. 2013, 61, 3148–3158. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zeng, M.; Chen, J.; Jiao, Y.; Niu, F.; Tao, G.; Zhang, S.; Qin, F.; He, Z. Identification and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in China by UPLC-PDA and UPLC-QTOF-MS/MS. J. Agric. Food Chem. 2016, 64, 171–177. [Google Scholar] [CrossRef]
- Wang, G.; Lu, M.; Zhang, S.; Ji, J.; Li, B.; Li, J.; Zhang, L.; Yang, D.; Wang, W.; Guan, C. Anthocyanin Release and Absorption Properties of Boiling Pigmented Rice Using an in Vitro Digestion Model. J. Food Meas. Charact. 2022, 16, 2649–2663. [Google Scholar] [CrossRef]
- Rose, I.M.; Vasanthakaalam, H. Comparison of the Nutrient Composition of Four Sweet Potato Varieties Cultivated in Rwanda. Am. J. food Nutr. 2011, 1, 34–38. [Google Scholar] [CrossRef]
- Wang, S.; Pan, D.; Lv, X.; Song, X.; Qiu, Z.; Huang, C.; Huang, R.; Chen, W. Proteomic Approach Reveals That Starch Degradation Contributes to Anthocyanin Accumulation in Tuberous Root of Purple Sweet Potato. J. Proteom. 2016, 143, 298–305. [Google Scholar] [CrossRef]
No. | Sample ID | L* | a* | b* |
---|---|---|---|---|
1 | ES12 | 26.6 ± 0.13 c | 20.8 ± 0.09 e | −6.40 ± 0.03 h |
2 | ES13 | 21.0 ± 0.06 i | 17.2 ± 0.05 h | −5.20 ± 0.11 g |
3 | ZL | 23.9 ± 0.17 f | 18.0 ± 0.14 g | −3.30 ± 0.21 b |
4 | XS | 24.4 ± 0.07 e | 9.30 ± 0.03 i | −8.60 ± 0.07 i |
5 | FX | 22.0 ± 0.02 h | 26.8 ± 0.16 c | −5.30 ± 0.03 g |
6 | GS | 25.9 ± 0.16 d | 27.8 ± 0.24 b | −4.90 ± 0.18 f |
7 | JS18 | 28.8 ± 0.13 b | 22.4 ± 0.05 d | −3.60 ± 0.06 c |
8 | JS1 | 30.9 ± 0.07 a | 28.6 ± 0.03 a | −2.10 ± 0.04 a |
9 | JS2 | 24.3 ± 0.11 e | 18.8 ± 0.14 f | −4.60 ± 0.17 e |
10 | EN | 22.8 ± 0.15 g | 17.3 ± 0.12 h | −3.90 ± 0.05 d |
No. | Sample ID | Moisture (g/100 g) | Protein (g/100 g) | Crude Fat (g/100 g) | Starch (g/100 g) | Reducing Sugar (g/100 g) | Total Dietary Fiber (g/100 g) |
---|---|---|---|---|---|---|---|
1 | ES12 | 67.6 ± 0.11 e | 5.78 ± 0.16 c | 0.76 ± 0.03 c | 62.2 ± 0.48 e | 2.57 ± 0.01 d | 12.1 ± 1.06 ab |
2 | ES13 | 64.1 ± 0.38 c | 3.94 ± 0.09 b | 0.61 ± 0.07 ab | 67.2 ± 0.81 f | 3.77 ± 0.05 h | 9.40 ± 1.42 a |
3 | ZL | 66.3 ± 0.14 d | 8.72 ± 0.04 e | 0.87 ± 0.01 c | 55.6 ± 0.25 bc | 2.14 ± 0.02 c | 14.5 ± 0.72 bcd |
4 | XS | 70.1 ± 0.19 g | 8.63 ± 0.01 e | 0.51 ± 0.01 a | 55.2 ± 0.49 b | 2.02 ± 0.02 b | 15.7 ± 1.50 cd |
5 | FX | 66.3 ± 0.50 d | 3.19 ± 0.01 a | 0.83 ± 0.09 c | 60.3 ± 0.65 d | 3.62 ± 0.03 g | 9.70 ± 1.82 a |
6 | GS | 60.9 ± 0.32 a | 6.16 ± 0.13 c | 1.01 ± 0.05 d | 60.1 ± 0.01 d | 3.10 ± 0.05 e | 10.3 ± 0.83 a |
7 | JS18 | 62.0 ± 0.18 b | 7.81 ± 0.09 d | 0.54 ± 0.01 a | 55.7 ± 0.17 bc | 1.44 ± 0.02 a | 13.5 ± 1.30 bc |
8 | JS1 | 67.0 ± 0.16 de | 8.75 ± 0.18 e | 0.66 ± 0.05 b | 43.9 ± 0.62 a | 4.01 ± 0.02 i | 16.5 ± 1.19 d |
9 | JS2 | 63.7 ± 0.47 c | 6.41 ± 0.04 c | 0.51 ± 0.04 a | 56.7 ± 0.35 c | 3.09 ± 0.01 e | 12.6 ± 1.30 ab |
10 | EN | 68.8 ± 0.12 f | 3.87 ± 0.08 b | 0.52 ± 0.01 a | 62.8 ± 0.37 e | 3.41 ± 0.03 f | 10.2 ± 0.12 a |
NO. | Sample ID | Anthocyanin (mg/100 g) | Selenium (mg/kg) |
---|---|---|---|
1 | ES12 | 33.8 ± 1.06 f | 3.90 ± 0.03 g |
2 | ES13 | 22.9 ± 0.64 b | 2.57 ± 0.08 f |
3 | ZL | 27.2 ± 0.85 d | 7.63 ± 0.09 i |
4 | XS | 13.2 ± 0.73 a | 5.99 ± 0.03 h |
5 | FX | 44.9 ± 0.79 g | 0.53 ± 0.05 b |
6 | GS | 59.7 ± 0.56 i | 0.11 ± 0.04 a |
7 | JS18 | 54.8 ± 1.16 h | 2.03 ± 0.03 d |
8 | JS1 | 105 ± 1.24 j | 0.73 ± 0.07 c |
9 | JS2 | 25.3 ± 0.57 c | 2.26 ± 0.06 e |
10 | EN | 30.8 ± 0.34 e | 15.7 ± 0.04 j |
Peak No. | tR (min) | [M]+ (m/z) | Fragment (m/z) | Compounds |
---|---|---|---|---|
1 | 7.56 | 773 | 611, 449, 287 | Cyanidin-3-sophoroside-5-glucoside |
2 | 12.27 | 787 | 625, 463, 301 | Peonidin-3-sophoroside-5-glucoside |
3 | 13.25 | 893 | 731, 449, 287 | Cyanidin-3-p-hydroxybenzoylsophoroside-5-glucoside |
4 | 18.66 | 907 | 745, 463, 301 | Peonidin-3-p-hydroxybenzoylsophoroside-5-glucoside |
5 | 21.38 | 949 | 787, 449, 287 | Cyanidin-3-(6″-feruloylsophoroside)-5-glucoside |
6 | 26.85 | 963 | 949, 463, 301 | Peonidin-3-feruloylsophoroside-5-glucoside |
7 | 31.56 | 1055 | 893, 449, 287 | Cyanidin-3-(6″-caffeoyl-6‴-p-hydroxybenzoylsophoroside)-5-glucoside |
8 | 33.43 | 935 | 773, 449, 287 | Cyanidin-3-caffeoylsophoroside-5-glucoside |
9 | 34.98 | 1111 | 949, 463, 301 | Cyanidin-3-(6″-caffeoyl-6‴-caffeoylsophoroside)-5-glucoside |
10 | 35.92 | 1101 | 939, 463, 301 | Peonidin-3-dicaffeoylsophoroside-5-glucoside |
11 | 37.54 | 1069 | 907, 463, 301 | Peonidin-3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside |
12 | 39.16 | 949 | 787, 463, 301 | Peonidin-3-caffeoylsophoroside-5-glucoside |
13 | 40.60 | 1125 | 963, 463, 301 | Peonidin-3-(6″-caffeoyl-6‴-feruloylsophoroside)-5-glucoside |
L* | a* | b* | Protein | Starch | Total Dietary Fiber | Anthocyanin | |
---|---|---|---|---|---|---|---|
L* | |||||||
a* | 0.415 | ||||||
b* | 0.453 | 0.646 | |||||
Protein | 0.640 | −0.237 | 0.219 | ||||
Starch | −0.749 | −0.236 | −0.479 | −0.757 * | |||
Total dietary fiber | 0.635 | −0.247 | 0.166 | 0.923 ** | −0.852 ** | ||
Anthocyanin | 0.760 * | 0.818 ** | 0.686 * | 0.227 | −0.658 | 0.270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Li, J.; Yin, J.; Wu, M.; Zhou, W.; Yang, X.; Zhang, R.; He, J. Color and Nutritional Analysis of Ten Different Purple Sweet Potato Varieties Cultivated in China via Principal Component Analysis and Cluster Analysis. Foods 2024, 13, 904. https://doi.org/10.3390/foods13060904
Xu M, Li J, Yin J, Wu M, Zhou W, Yang X, Zhang R, He J. Color and Nutritional Analysis of Ten Different Purple Sweet Potato Varieties Cultivated in China via Principal Component Analysis and Cluster Analysis. Foods. 2024; 13(6):904. https://doi.org/10.3390/foods13060904
Chicago/Turabian StyleXu, Meng, Jia Li, Jinjing Yin, Muci Wu, Wangting Zhou, Xinsun Yang, Rui Zhang, and Jingren He. 2024. "Color and Nutritional Analysis of Ten Different Purple Sweet Potato Varieties Cultivated in China via Principal Component Analysis and Cluster Analysis" Foods 13, no. 6: 904. https://doi.org/10.3390/foods13060904
APA StyleXu, M., Li, J., Yin, J., Wu, M., Zhou, W., Yang, X., Zhang, R., & He, J. (2024). Color and Nutritional Analysis of Ten Different Purple Sweet Potato Varieties Cultivated in China via Principal Component Analysis and Cluster Analysis. Foods, 13(6), 904. https://doi.org/10.3390/foods13060904