Assessing Starch Retrogradation from the Perspective of Particle Order
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Retrograded IRS
2.3. SAXS
2.4. High-Performance Anion-Exchange Chromatography (HPAEC)
2.5. Differential Scanning Calorimetry (DSC)
2.6. Enzyme Hydrolysis of Retrograded Starch
2.7. Scanning Electron Microscopy (SEM)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Nanoscale Lamellar Structure Analysis
3.2. Analysis of Particle Order
3.3. Evaluation of Retrogradation Degree (RD)
3.4. Recrystallization Kinetic Parameters
3.5. SEM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, L.; Zhang, C.; Chen, J.; Liu, C.; Dai, T.; Chen, M.; Li, T. Effects of proanthocyanidins on the pasting, rheological and retrogradation properties of potato starch. J. Sci. Food Agric. 2021, 101, 4760–4767. [Google Scholar] [CrossRef]
- George, J.; Nair, S.G.; Kumar, R.; Semwal, A.D.; Sudheesh, C.; Basheer, A.; Sunooj, K.V. A new insight into the effect of starch nanocrystals in the retrogradation properties of starch. Food Hydrocoll. Health 2021, 1, 100009. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, H.; Zeng, J.; Zhang, L.; Wang, F.; Su, T.; Li, G. Determination of subfreezing temperature and gel retrogradation characteristics of potato starch gel. LWT-Food Sci. Technol. 2021, 149, 112037. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Lian, X.; Cheng, K.; Wang, D.; Zhu, W.; Wang, X. Analysis of crystals of retrograded starch with sharp X-ray diffraction peaks made by recrystallization of amylose and amylopectin. Int. J. Food Prop. 2018, 20, S3224–S3236. [Google Scholar] [CrossRef]
- Yang, S.; Dhital, S.; Shan, C.S.; Zhang, M.N.; Chen, Z.G. Ordered structural changes of retrograded starch gel over long-term storage in wet starch noodles. Carbohydr. Polym. 2021, 270, 118367. [Google Scholar] [CrossRef]
- Chen, Y.F.; Singh, J.; Midgley, J.; Archer, R. Sous vide processed potatoes: Starch retrogradation in tuber and oral-gastro-small intestinal starch digestion in vitro. Food Hydrocoll. 2022, 124, 107163. [Google Scholar] [CrossRef]
- Zhao, Q.; Tian, H.; Chen, L.; Zeng, M.; Qin, F.; Wang, Z.; He, Z.; Chen, J. Interactions between soluble soybean polysaccharide and starch during the gelatinization and retrogradation: Effects of selected starch varieties. Food Hydrocoll. 2021, 118, 106765. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Janaswamy, S.; Chen, L.; Chi, C. Further insights into the evolution of starch assembly during retrogradation using SAXS. Int. J. Biol. Macromol. 2020, 154, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Li, Q.; Wu, Y.; Ouyang, J. Insights into the crystallinity and in vitro digestibility of chestnut starch during thermal processing. Food Chem. 2018, 169, 244–251. [Google Scholar] [CrossRef]
- Tang, A.; Li, M.; Wang, R.; Dhital, S.; Lu, D. Manipulating raw noodle crystallinity to control the hardness of cooked noodle. LWT-Food Sci. Technol. 2019, 109, 305–312. [Google Scholar] [CrossRef]
- Roa, D.; Santagapita, P.; Buera, M.; Tolaba, M. Ball milling of amaranth starch-enriched fraction. changes on particle size, starch crystallinity, and functionality as a function of milling energy. Food Bioprocess. Technol. 2014, 7, 2723–2731. [Google Scholar] [CrossRef]
- Lawal, O.; Adebowale, K. An assessment of changes in thermal and physico-chemical parameters of jack bean (Canavalia ensiformis) starch following hydrothermal modifications. Eur. Food Res. Technol. 2005, 221, 631–638. [Google Scholar] [CrossRef]
- Baik, M.; Kim, K.; Cheon, K.; Ha, Y.; Kim, W. Recrystallization kinetics and glass transition of rice starch gel system. J. Agric. Food Chem. 1997, 45, 4242–4248. [Google Scholar] [CrossRef]
- Chang, Q.; Zheng, B.; Zhang, Y. A comprehensive review of the factors influencing the formation of retrograded starch. Int. J. Biol. Macromol. 2021, 186, 163–173. [Google Scholar] [CrossRef]
- Kitamura, S.; Yoneda, S.; Kuge, T. Study on the retrogradation of starch. I. particle size and its distribution of amylose retrograded from aqueous solutions. Carbohydr. Polym. 1984, 4, 127–136. [Google Scholar] [CrossRef]
- Beaucage, G.; Ulibarri, T.A.; Black, E.P.; Schaefer, D.W. Multiple size scale structures in silica—Siloxane composites studied by small-angle scattering. ACS Symp. Ser. 1995, 585, 97–111. [Google Scholar]
- Marcus, W.; Johann, M.; Andreas, E.; Joachim, K.; Jochen, F. The structure of carbon blacks measured with (Ultra)-small angle X-ray scattering. J. Porous Mat. 2001, 8, 319–325. [Google Scholar]
- Bayer, R.K.; Baltá-Calleja, F.J. Nanostructure of potato starch, part I: Early stages of retrogradation of amorphous starch in humid atmosphere as revealed by simultaneous SAXS and WAXS. Int. J. Polym. Mater. 2006, 55, 773–788. [Google Scholar] [CrossRef]
- Zhai, Y.T.; Li, X.X.; Bai, Y.X.; Jin, Z.Y.; Svensson, B. Maltogenic α-amylase hydrolysis of wheat starch granules: Mechanism and relation to starch retrogradation. Food Hydrocoll. 2022, 124, 107256. [Google Scholar] [CrossRef]
- Lu, H.; Ma, R.; Chang, R.; Tian, Y. Evaluation of starch retrogradation by infrared spectroscopy. Food Hydrocoll. 2021, 120, 106975. [Google Scholar] [CrossRef]
- Chang, R.R.; Tian, Y.Q.; Lu, H.; Sun, C.R.; Jin, Z.Y. Effects of fractionation and heat-moisture treatment on structural changes and digestibility of debranched waxy maize starch. Food Hydrocoll. 2020, 101, 105488. [Google Scholar] [CrossRef]
- Li, N.; Cai, Z.; Guo, Y.; Xu, T.; Qiao, D.; Zhang, B.; Zhao, S.; Huang, Q.; Niu, M.; Jia, C.; et al. Hierarchical structure and slowly digestible features of rice starch following microwave cooking with storage. Food Chem. 2019, 295, 475–483. [Google Scholar] [CrossRef]
- Blazek, J.; Gilbert, E.P. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 2010, 11, 3275–3289. [Google Scholar] [CrossRef]
- Ottenhof, M.A.; Farhat, I.A. Starch retrogradation. Biotechnol. Genet. Eng. Rev. 2004, 21, 215–228. [Google Scholar] [CrossRef]
- Liu, L.; Yang, M.; Wang, L.; Xu, J.; Wang, Q.; Fan, X.; Gao, W. Effect of pullulan on molecular chain conformations in the process of starch retrogradation condensed matter. Int. J. Biol. Macromol. 2019, 138, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, W.; Liu, C.; Luo, S.; Li, T.; Liu, Y.; Wu, D.; Zuo, Y. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology. Food Chem. 2014, 158, 255–261. [Google Scholar] [CrossRef]
- Zhu, Y.P. Small Angle X-ray Scattering−Theory, Measurement, Calculation, and Application; Chemical Industry Press: Beijing, China, 2008; Chapter 7; pp. 165–166. [Google Scholar]
- Yu, M.H.; Zhu, S.; Zhong, F.; Zhang, S.; Du, C.; Li, Y. Insight into the multi-scale structure changes and mechanism of corn starch modulated by different structural phenolic acids during retrogradation. Food Hydrocoll. 2022, 128, 107581. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q. Retrogradation characteristics of pulse starches. Food Res. Int. 2013, 54, 203–212. [Google Scholar] [CrossRef]
- Lin, Q.; Liang, R.; Zhong, F.; Ye, A.; Hemar, Y.; Yang, Z.; Singh, H. Singh, Self-assembled micelles based on OSA-modified starches for enhancing solubility of beta-carotene: Effect of starch macromolecular architecture. J. Agric. Food Chem. 2019, 67, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, M.; Xu, J.; Fan, X.; Gao, W.; Wang, Q.; Wang, P.; Xu, B.; Yuan, J.; Yu, Y. Exploring the mechanism of pullulan delay potato starch long-term retrogradation from the viewpoint of amylopectin chain motion. Int. J. Biol. Macromol. 2020, 145, 84–91. [Google Scholar] [CrossRef]
- Shull, C.G.; Roess, L.C. X-ray scattering at small angles by finely-divided solids. I. general approximate theory and applications. J. Appl. Phys. 1947, 18, 295. [Google Scholar] [CrossRef]
- Li, D.; Wu, G.; Lv, C.; Li, Y.; He, F.; Yang, Y. Pore size distribution of microvoids in PAN-based carbon fibers and their precursors. J. Insrumental Anal. 2010, 29, 321–326. [Google Scholar]
- Jellinek, M.; Soloman, E.; Fankuchen, I. Measurement and analysis of small-angle X-ray scattering. Ind. Eng. Chem. 1946, 18, 172–175. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Cai, Q.; Mo, G.; Jiang, L.; Zhang, K.; Chen, Z.; Pan, W. In situ SAXS study on size changes of platinum nanoparticles with temperature. Eur. Phys. J. B 2008, 65, 57–64. [Google Scholar] [CrossRef]
- Liu, K.; Jin, Z.; Zeng, L.; Sun, M.; Liu, B.; Jang, H.; Safaei-Farouji, M.; Shokouhimer, M.; Ostadhassan, M. Microstructural analysis of organic matter in shale by SAXS and WAXS methods. Petrol. Sci. 2022, 19, 979–989. [Google Scholar] [CrossRef]
- Palenčár, P.; Bleha, T. Gas-phase compaction of helical polymers. Polymer 2013, 54, 4955–4962. [Google Scholar] [CrossRef]
- Gallant, D.; Bouchet, B.; Baldwin, P. Microscopy of starch: Evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, 177–191. [Google Scholar] [CrossRef]
- Liu, X.; Chao, C.; Yu, J.; Copeland, L.; Wang, S. Mechanistic studies of starch retrogradation and its effects on starch gel properties. Food Hydrocoll. 2021, 120, 106914. [Google Scholar] [CrossRef]
- Zhu, B.; Zhan, J.; Chen, L.; Tian, Y. Amylose crystal seeds: Preparation and their effect on starch retrogradation. Food Hydrocoll. 2020, 105, 106975. [Google Scholar] [CrossRef]
- Hennemann, M.; Gastl, M.; Becker, T. Influence of particle size uniformity on the filter cake resistance of physically and chemically modified fine particles. Sep. Purif. Technol. 2021, 272, 118996. [Google Scholar] [CrossRef]
- Bello-Perez, L.A.; Ottenhof, M.A.; Agama-acevedo, E.; Farhat, I.A. Effects of storage time on the retrofradation of banana starch extrudate. J. Agric. Food Chem. 2005, 53, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Mua, J.P.; Jackson, D.S. Retrogradation and gel textural attributes of corn starch amylose and amylopectin fractions. J. Cereal Sci. 1998, 27, 157–166. [Google Scholar] [CrossRef]
- Xia, H.; Kou, T.; Liu, K.; Gao, Q.; Fang, G. Recrystallization kinetics of starch microspheres prepared by temperature cycling in aqueous two-phase system. Carbohydr. Polym. 2018, 198, 233–240. [Google Scholar] [CrossRef]
Method | k | n | R2 |
---|---|---|---|
DSC | 0.251 ± 0.012 b | 0.717 ± 0.014 b | 0.97 |
SAXS | 0.357 ± 0.015 a | 0.980 ± 0.015 a | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Zhan, J.; Shen, W.; Ma, R.; Tian, Y. Assessing Starch Retrogradation from the Perspective of Particle Order. Foods 2024, 13, 911. https://doi.org/10.3390/foods13060911
Lu H, Zhan J, Shen W, Ma R, Tian Y. Assessing Starch Retrogradation from the Perspective of Particle Order. Foods. 2024; 13(6):911. https://doi.org/10.3390/foods13060911
Chicago/Turabian StyleLu, Hao, Jinling Zhan, Wangyang Shen, Rongrong Ma, and Yaoqi Tian. 2024. "Assessing Starch Retrogradation from the Perspective of Particle Order" Foods 13, no. 6: 911. https://doi.org/10.3390/foods13060911
APA StyleLu, H., Zhan, J., Shen, W., Ma, R., & Tian, Y. (2024). Assessing Starch Retrogradation from the Perspective of Particle Order. Foods, 13(6), 911. https://doi.org/10.3390/foods13060911