Nutritional Traits, Pasting Properties and Antioxidant Profile of Selected Genotypes of Sorghum, Oat and Maize Eligible for Gluten-Free Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemical and Physical Characterization
2.3. Total Flavonoid, Phenolic, Proanthocyanidin Contents and Antioxidant Capacities
2.4. Micro-Visco Amylograph Analysis
2.5. Statistical Analyses
3. Results and Discussion
3.1. Physical and Nutritional Traits
3.1.1. Thousand Kernel Weight
3.1.2. Proteins
3.1.3. Total Dietary Fiber and β-Glucans
3.1.4. Starch Characterization
3.1.5. Pasting Properties
3.1.6. Antioxidant Profile
3.1.7. Correlations among the Different Investigated Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- See, J.A.; Kaukinen, K.; Makharia, G.K.; Gibson, P.R.; Murray, J.A. Practical insights into gluten-free diets. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 580–591. [Google Scholar] [CrossRef]
- Tortora, R.; Capone, P.; De Stefano, G.; Imperatore, N.; Gerbino, N.; Donetto, S.; Monaco, V.; Caporaso, N.; Rispo, A. Metabolic syndrome in patients with coeliac disease on a gluten-free diet. Aliment. Pharmacol. Ther. 2015, 41, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Picascia, A.; Camarca, M.; Malamisura, R.; Mandile, M.; Galatola, D. In celiac disease patients the in vivo challenge with the diploid Triticum monococcum elicits a reduced immune response compared to hexaploid wheat. Mol. Nutr. Food Res. 2020, 64, 1901032. [Google Scholar] [CrossRef] [PubMed]
- Bongianino, N.F.; Steffolani, M.E.; Morales, C.D.; Biasutti, C.A.; León, A.E. Technological and Sensory Quality of Gluten-Free Pasta Made from Flint Maize Cultivars. Foods 2023, 12, 2780. [Google Scholar] [CrossRef]
- Kulamarva, A.G.; Venkatesh, R.S.; Raghavan, V.G.S. Nutritional and Rheological Properties of Sorghum. Int. J. Food Prop. 2009, 12, 55–69. [Google Scholar] [CrossRef]
- Del Giudice, F.; Massardo, D.R.; Pontieri, P.; Maddaluno, L.; De Vita, P.; Fares, C.; Ciacci, C.; Del Giudice, L. Development of a sorghum chain in the Italian Campania Region: From the field to the celiac patient’s table. J. Plant Interact. 2008, 3, 49–55. [Google Scholar] [CrossRef]
- Aguiar, E.V.; Santos, F.G.; Queiroz, V.A.V.; Capriles, V.D. A Decade of Evidence of Sorghum Potential in the Development of Novel Food Products: Insights from a Bibliometric Analysis. Foods 2023, 12, 3790. [Google Scholar] [CrossRef]
- Xu, F.; Dube, N.M.; Han; Zhao, R.; Wang, Y.; Chen, J. The Effect of Zimbabwean Tannin-Free Sorghum Flour Substitution on Fine Dried Noodles Quality Characteristics. J. Cereal Sci. 2021, 102, 103320. [Google Scholar] [CrossRef]
- Galassi, E.; Gazza, L.; Nocente, F.; Kouagang Tchakoutio, P.; Natale, C.; Taddei, F. Valorization of two African typical crops, Sorghum and Cassava, by the production of different dry pasta formulations. Plants 2023, 12, 2867. [Google Scholar] [CrossRef] [PubMed]
- Bvenura, C.; Kambizi, L. Chapter 5—Future Grain Crops. In Future Foods; Rajeev, B., Ed.; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Peterson, D.M. Oat Antioxidants. J. Cereal Sci. 2001, 33, 115–129. [Google Scholar] [CrossRef]
- Associazione Italiana Celiachia (AIC). Available online: https://www.celiachia.it/dieta-senza-glutine/gestire-gluten-free-diet/cereals-allowed/ (accessed on 13 February 2024).
- Elfström, P.; Sundström, J.; Ludvigsson, J.F. Systematic review with meta-analysis: Associations between coeliac disease and type 1 diabetes. Aliment. Pharmacol. Ther. 2014, 40, 1123–1132. [Google Scholar] [CrossRef]
- Smyth, D.J.; Plagnol, V.; Walker, N.M.; Cooper, J.D.; Downes, K.; Yang, J.H.; Howson, J.M.; Stevens, H.; McManus, R.; Wijmenga, C.; et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. Med. 2008, 359, 2767–2777. [Google Scholar] [CrossRef]
- Rooney, L.W.; Serna Saldívar, S.O. Food use of whole corn and dry-milled fractions. In Corn: Chemistry and Technology, 2nd ed.; White, P.J., Johnson, L.A., Eds.; AACC: St. Paul, MN, USA, 2003; pp. 495–535. [Google Scholar]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Food Sci. Food Saf. 2010, 4, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.P.; Xu, J.G. Profiles of carotenoids, anthocyanins, phenolics and antioxidant activity of selected color waxy corn grains during maturation. J. Agr. Food Chem. 2011, 59, 2026–2033. [Google Scholar] [CrossRef]
- Zillić, S.; Serpen, A.; Akillioĝlu, G.; Vanĉetović, V. Phenolic compounds, carotenoids, anthocyanins and antioxidant capacity of colored maize (Zea mays L.) kernel. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef]
- Li, Q.; Somavat, P.; Singh, V.; Chatham, L.; Mejia, E.G. A comparative study of anthocyanins distribution in purple and red corn coproducts from three conventional fractionation process. Food Chem. 2017, 231, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Menga, V.; Amato, M.; Phillips, T.D.; Angelino, D.; Morreale, F.; Fares, C. Gluten-free pasta incorporating chia (Salvia hispanica L.) as thickening agent: An approach to naturally improve the nutritional profile and the in vitro carbohydrate digestibility. Food Chem. 2017, 221, 1954–1961. [Google Scholar] [CrossRef]
- International Association for Cereal Science and Technology. ICC Standard Methods (Methods No. 105/2); ICC: Vienna, Austria, 2003. [Google Scholar]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis 996.11, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis 2002.02, Resistant Starch in Starch and Plant Materials; AOAC: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis 991, 16th ed.; Cunniff, P., Ed.; AOAC: Gaithersburg, MD, USA, 1995; p. 42. [Google Scholar]
- Method 520: 2010; Cereals and Pulses-Determination of the Mass of 1000 Grains. ISO: Geneva, Switzerland, 2010; p. 10.
- Method 7971-1: 2009; Determination of Bulk Density, Called Mass per Hectolitre-Part 1: Reference Method. ISO: Geneva, Switzerland, 2009; p. 8.
- McCleary, B.V.; Mugford, D.C.; Camire, M.C.; Gibson, T.S.; Harrigan, K.; Janning, M.; Meuser, F.; Williams, P. Determination of ß-glucan in barley and oats by streamlined enzymatic method: Summary of collaborative study. J. AOAC Int. 1997, 80, 580–583. [Google Scholar] [CrossRef]
- Beta, T.; Nam, S.; Dexter, J.E.; Sapirstein, H.D. Phenolic content and antioxidant activity of pearled wheat and roller-milled fractions. Cereal Chem. 2005, 82, 390–393. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Sun, B.; da-Silva, J.M.R.; Spranger, I. Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature 2000, 405, 903–904. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Marengo, M.; Barbiroli, A.; Bonomi, F.; Casiraghi, M.C.; Marti, A.; Pagani, M.A.; Manful, J.; Graham-Acquaah, S.; Ragg, E.; Fessas, D.; et al. Macromolecular Traits in the African Rice Oryza glaberrima and in Glaberrima/Sativa Crosses, and Their Relevance to Processing. J. Food Sci. 2017, 82, 2298–2305. [Google Scholar] [CrossRef]
- Wang, K.; Fu, B.X. Inter-Relationships between Test Weight, Thousand Kernel Weight, Kernel Size Distribution and Their Effects on Durum Wheat Milling, Semolina Composition and Pasta Processing Quality. Foods 2020, 9, 1308. [Google Scholar] [CrossRef]
- Galassi, E.; Taddei, F.; Ciccoritti, R.; Nocente, F.; Gazza, L. Biochemical and technological characterization of two C4 gluten-free cereals: Sorghum bicolor and Eragrostis tef. Cereal Chem. 2020, 97, 65–73. [Google Scholar] [CrossRef]
- Aruna, O.A.; Oluwaseyi, I.O.; Babatunde, S.E.; Adeniyi, O. Effects of Different Rates of Poultry Manure and Split Applications of Urea Fertilizer on Soil Chemical Properties, Growth, and Yield of Maize. Sci. World J. 2020, 2020, 4610515. [Google Scholar]
- Buerstmayr, H.; Krenn, N.; Stephan, U.; Grausgruber, H.; Zechner, E. Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions. Field Crops Res. 2007, 101, 343–351. [Google Scholar] [CrossRef]
- Korus, J.; Chmielewska, A.; Witczak, M.; Ziobro, R.; Juszczak, L. Rapeseed protein as a novel ingredient of gluten-free bread. Eur. Food Res. Technol. 2021, 247, 2015–2025. [Google Scholar] [CrossRef]
- Ziobro, R.; Juszczak, L.; Witczak, M.; Korus, J. Non-gluten proteins as structure forming agents in gluten free bread. J. Food Sci. Technol. 2016, 53, 571–580. [Google Scholar] [CrossRef]
- Lee, A.R.; Ng, D.L.; Dave, E.; Ciaccio, E.J.; Green, P.H. The effect of substituting alternative grains in the diet on the nutritional profile of the gluten-free diet. J. Hum. Nutr. Diet. 2009, 22, 359–363. [Google Scholar] [CrossRef]
- Blandino, M.; Alfieri, M.; Giordano, D.; Vanara, F.; Redaelli, R. Distribution of bioactive compounds in maize fractions obtained in two different types of large-scale milling processes. J. Cereal Sci. 2017, 77, 251–258. [Google Scholar] [CrossRef]
- Wang, Q.; Ellis, P.R. Oat β-glucan: Physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. Br. J. Nutr. 2014, 112 (Suppl. S2), S4–S13. [Google Scholar] [CrossRef]
- Bojarczuk, A.; Skąpska, S.; Khaneghah, A.M.; Marszałek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- Biselli, C.; Volante, A.; Desiderio, F.; Tondelli, A.; Gianinetti, A.; Finocchiaro, F.; Taddei, F.; Gazza, L.; Sgrulletta, D.; Cattivelli, L.; et al. GWAS for Starch-Related Parameters in Japonica Rice (Oryza sativa L.). Plants 2019, 8, 292. [Google Scholar] [CrossRef]
- Annison, G.; Topping, D.L. Nutritional role of resistant starch: Chemical structure vs physiological function. Ann. Rev. Nutr. 1994, 14, 297–320. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D. The use of the rapid visco analyser (RVA) in breeding and selection of cereals. J. Cereal Sci. 2016, 70, 282–290. [Google Scholar] [CrossRef]
- Batey, I.L. Interpretation of RVA curves. In The RVA Handbook; Crosbie, G.B., Ross, A.S., Eds.; AACC International: St Paul, MN, USA, 2007; pp. 19–31. [Google Scholar]
- Alfieri, M.; Bresciani, A.; Zanoletti, M.; Pagani, M.A.; Marti, A.; Redaelli, R. Physical, chemical and pasting features of maize Italian inbred lines. Eur. Food Res. Tech 2020, 246, 2205–2214. [Google Scholar] [CrossRef]
- Wang, L.S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2008, 269, 281–290. [Google Scholar] [CrossRef]
- Meenu, M.; Cozzolino, D.; Xu, B. Non-destructive prediction of total phenolics and antioxidants in hulled and naked oat genotypes with near-infrared spectroscopy. J. Food Meas. Charact. 2023, 17, 4893–4904. [Google Scholar] [CrossRef]
- Menga, V.; Fares, C.; Troccoli, A.; Cattivelli, L.; Baiano, A. Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. Int. J. Food Sci. Tech 2009, 45, 7–16. [Google Scholar] [CrossRef]
- Varga, M.; Jójárt, R.; Fónad, P.; Mihály, R.; Palágyi, A. Phenolic composition and antioxidant activity of colored oat. Food Chem. 2018, 268, 153–161. [Google Scholar] [CrossRef]
- Žilić, S.; Serpen, A.; Akıllıoğlu, G.; Janković, M.; Gökmen, V. Distributions of phenolic compounds, yellow pigments and oxidative enzymes in wheat grains and their relation to antioxidant capacity of bran and debranned flour. J. Cereal Sci. 2012, 56, 652–658. [Google Scholar] [CrossRef]
- Zielińska, D.; Turemko, M.; Kwiatkowski, J.; Zieliński, H. Evaluation of Flavonoid Contents and Antioxidant Capacity of the Aerial Parts of Common and Tartary Buckwheat Plants. Molecules 2012, 17, 9668–9682. [Google Scholar] [CrossRef] [PubMed]
- Suriano, S.; Balconi, C.; Valoti, P.; Redaelli, R. Comparison of total polyphenol, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. Food Sci. Tech 2021, 144, 111257. [Google Scholar] [CrossRef]
- Rodriguez-Salinas, P.A.; Zavala-Garcia, F.; Urias-Orona, V.; Muy-Rangel, D.; Heredia, J.B.; Nino-Medina, G. Chromatic, Nutritional and Nutraceutical Properties of Pigmented Native Maize (Zea mays L.) Genotypes from the Northeast of Mexico. Arab. J. Sci. Eng. 2019, 45, 95–112. [Google Scholar] [CrossRef]
- Sang, Y.; Scott, B.; Seib, P.A.; Pedersen, J.; Shi, Y.C. Structure and functional properties of Sorghum starch differing in amylose content. J. Agric. Food Chem. 2008, 56, 6680–6685. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Singh Malhi, N. Some properties of corn grains and their flours I: Physicochemical, functional and chapatti-making properties of flours. Food Chem. 2007, 01, 938–946. [Google Scholar] [CrossRef]
- Karp, S.; Wyrwisz, J.; Kurek, M.A. The impact of different levels of oat β-glucan and water on gluten-free cake rheology and physicochemical characterisation. J. Food Sci. Technol. 2020, 57, 3628–3638. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M. Functionality of starches and hydrocolloids in gluten-free foods. In Gluten-Free Food Science Technology; Gallagher, E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 200–224. [Google Scholar]
- Acquistucci, R.; Francisci, R.; Bucci, R.; Ritota, M.; Mazzini, F. Nutritional and physicochemical characterization of Italian rice flours starches. Food Sci. Tech Res. 2009, 15, 507–518. [Google Scholar] [CrossRef]
- Shrestha, A.K.; Halley, P.J. Starch modification to develop novel starch-biopolymer blends: State of art and perspectives. In Starch Polymers: From Genetic Engineering to Green Applications, 1st ed.; Halley, P.J., Avérous, L.R., Eds.; Elsevier: New York, NY, USA, 2014. [Google Scholar]
- Gray, J.; Bemiller, J. Bread staling: Molecular basis and control. Compr. Rev. Food Sci. Food Saf. 2003, 2, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Laguna, L.; Sanz, T.; Sahi, S.; Fiszman, S.M. Role of fibre morphology in some quality features of fibre-enriched biscuits. Int. J. Food Prop. 2014, 17, 163–178. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M.; Paul, G.L. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J. Agric. Food Chem. 1999, 47, 4894–4898. [Google Scholar] [CrossRef]
SAMPLES | TKW | Protein | TDF | β-Glucan | RS | TS | Amylose | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g) | (%) | (%) | (%) | (%) | (%) | (%) | |||||||||
Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | ||
SORGHUM | Aralba | 24.33 ab | 1.82 | 10.62 c | 0.19 | 9.40 c | 0.55 | n.d. | 0.48 e | 0.05 | 69.49 c | 0.35 | 23.90 b | 0.87 | |
Diamond | 23.76 ac | 0.20 | 12.68 a | 0.04 | 10.89 c | 0.21 | n.d. | 0.40 e | 0.01 | 57.77 f | 0.98 | 26.51 b | 3.28 | ||
DMS | 25.62 a | 0.20 | 11.56 b | 0.03 | 11.41 b | 0.22 | n.d. | 0.44 e | 0.00 | 73.04 ab | 0.97 | 26.56 b | 3.18 | ||
PSEAG4E44 | 22.00 bc | 0.50 | 9.44 ef | 0.18 | 12.21 a | 0.18 | n.d. | 0.51 e | 0.02 | 65.57 e | 1.49 | 54.40 a | 2.84 | ||
PSE7431 | 21.30 c | 2.30 | 9.80 de | 0.11 | 11.75 ab | 0.06 | n.d. | 0.66 d | 0.05 | 67.02 de | 1.11 | 16.83 c | 1.21 | ||
SW6129 | 22.93 bc | 0.70 | 9.20 f | 0.36 | 8.52 f | 0.33 | n.d. | 2.32 a | 0.10 | 69.19 cd | 1.18 | 27.37 b | 0.92 | ||
SW6143W | 22.7 0 bc | 1.50 | 10.91 c | 0.46 | 10.22 d | 0.40 | n.d. | 1.48 c | 0.09 | 72.22 b | 1.38 | 15.64 c | 1.74 | ||
SW6237W | 23.47 abc | 1.72 | 9.90 d | 0.39 | 8.23 f | 0.66 | n.d. | 2.02 b | 0.12 | 74.88 a | 0.12 | 25.75 b | 4.79 | ||
Means ± SE | 23.26 ± 1.72 | 10.51 ± 1.15 | 10.33 ± 1.44 | 1.04 ± 0.75 | 68.65 ± 5.18 | 27.12 ± 11.68 | |||||||||
OAT | Abel | 15.60 f | 0.42 | 13.42 e | 0.06 | 9.84 ce | 0.33 | 3.97 b | 0.10 | 0.51 bc | 0.00 | 51.65 d | 0.25 | 17.11 c | 0.44 |
Corneil | 19.75 c | 0.07 | 17.00 a | 0.00 | 10.11 cd | 1.21 | 4.63 a | 0.16 | 0.52 b | 0.00 | 53.58 cd | 1.24 | 16.64 c | 0.23 | |
Genziana | 23.70 a | 0.14 | 13.18 f | 0.03 | 10.03 ce | 0.03 | 3.07 cd | 0.59 | 0.51 bc | 0.00 | 60.67 a | 0.83 | 15.37 c | 1.70 | |
Konradin | 20.10 c | 0.28 | 13.65 d | 0.02 | 9.75 ce | 0.39 | 3.07 cd | 0.25 | 0.48 de | 0.00 | 61.38 a | 1.76 | 16.45 c | 1.72 | |
Kripton | 12.55 g | 0.07 | 13.55 de | 0.02 | 11.38 b | 0.01 | 3.01 cd | 0.21 | 0.53 b | 0.01 | 59.96 ab | 1.02 | 28.98 b | 1.01 | |
Kynom | 18.55 d | 0.07 | 13.71 d | 0.03 | 8.89 e | 0.34 | 2.52 d | 0.11 | 0.47 e | 0.00 | 56.57 bc | 3.66 | 8.88 d | 0.59 | |
Lexic | 16.45 e | 0.07 | 13.40 e | 0.06 | 8.91 de | 0.96 | 3.18 c | 0.04 | 0.55 a | 0.01 | 56.94 bc | 0.97 | 7.08 d | 1.13 | |
Nigra | 21.90 b | 0.14 | 14.17 c | 0.13 | 10.79 bc | 0.44 | 2.76 cd | 0.13 | 0.50 cd | 0.01 | 58.91 ab | 1.34 | 32.78 a | 5.01 | |
Terra | 15.70 f | 0.14 | 14.52 b | 0.17 | 14.25 a | 0.20 | 4.80 a | 0.23 | 0.48 de | 0.00 | 55.16 c | 1.08 | 7.12 d | 1.43 | |
Means ± SE | 18.26 ± 3.40 | 14.07 ± 1.14 | 10.44 ± 1.64 | 3.45 ±0.82 | 0.50 ± 0.03 | 57.20 ± 3.44 | 16.71 ± 8.91 | ||||||||
MAIZE | Hualtaco | 741.50 a | 2.1 | 6.93 i | 0.13 | 8.19 b | 0.88 | n.d. | 0.08 b | 0.01 | 70.91a | 0.01 | 11.27 b | 2.58 | |
Kully | 322.00 d | 1.4 | 7.98 h | 0.14 | 9.77 a | 0.34 | n.d. | 0.21 a | 0.07 | 70.67 a | 1.12 | 10.72 b | 2.95 | ||
VA 116 W | 246.00 h | 1.4 | 10.99 e | 0.06 | 10.90 a | 0.39 | n.d. | 0.15 ab | 0.01 | 64.34 c | 0.69 | 21.64 a | 0.89 | ||
VA 116 W Purple | 305.50 e | 2.1 | 13.35 a | 0.06 | 10.16 a | 0.33 | n.d. | 0.24 a | 0.07 | 66.65 bc | 2.22 | 8.26 b | 0.32 | ||
VA 1268 Red | 421.50 b | 2.1 | 11.87 d | 0.12 | 10.60 a | 0.66 | n.d. | 0.18 a | 0.01 | 67.00 bc | 0.83 | 6.33 b | 0.68 | ||
VA 522 W | 355.50 c | 2.1 | 13.01 b | 0.10 | 9.43 ab | 0.42 | n.d. | 0.17 ab | 0.06 | 66.74 bc | 0.04 | 10.35 b | 3.46 | ||
VA 522 W Blue | 422.50 b | 2.1 | 10.01 f | 0.08 | 8.12 b | 1.19 | n.d. | 0.23 a | 0.02 | 71.09 a | 2.17 | 10.30 b | 1.66 | ||
VA 572 | 286.50 f | 2.1 | 12.34 c | 0.05 | 10.70 a | 0.64 | n.d. | 0.17 ab | 0.01 | 69.18 ab | 2.31 | 8.61 b | 1.08 | ||
VA 572 Black | 280.00 g | 1.4 | 9.38 g | 0.10 | 10.32 a | 0.09 | n.d. | 0.24 a | 0.02 | 71.64 a | 2.62 | 7.80 b | 1.81 | ||
Means ± SE | 375.70 ± 145.6 | 10.70 ± 2.19 | 9.80 ± 1.11 | 0.18 ± 0.06 | 68.69 ± 2.77 | 10.59 ± 4.55 |
SAMPLES | Pasting Temperature | Peak Viscosity | Breakdown | Setback | |||||
---|---|---|---|---|---|---|---|---|---|
(°C) | (BU) | (BU) | (BU) | ||||||
Mean | sd | Mean | sd | Mean | sd | Mean | sd | ||
SORGHUM | Aralba | 76.50 a | 0.57 | 754.50 ab | 130.8 | 421.50 b | 115.3 | 671.50 cd | 67.2 |
Diamond | 76.45 a | 0.49 | 822.50 a | 40.3 | 435.50 b | 70.0 | 687.50 bc | 34.6 | |
DMS | 76.90 a | 0.00 | 766.00 ab | 69.3 | 431.50 b | 71.4 | 646.50 d | 61.5 | |
PSEAG4E44 | 65.20 d | 0.14 | 697.50 b | 136.5 | 505.00 a | 121.6 | 611.50 e | 43.1 | |
PSE7431 | 73.50 c | 0.28 | 512.50 c | 98.3 | 350.50 c | 72.8 | 699.50 abc | 64.3 | |
SW6129 | 74.85 b | 0.07 | 808.00 a | 90.5 | 406.00 b | 99.0 | 706.50 abc | 27.6 | |
SW6143W | 74.75 b | 0.35 | 768.00 ab | 91.9 | 407.00 b | 84.9 | 725.00 a | 31.1 | |
SW6237W | 74.85 b | 0.92 | 813.00 a | 80.6 | 402.50 b | 84.1 | 708.50 ab | 44.5 | |
Means ± SE | 74.13 ± 3.67 | 742.80 ± 120.8 | 419.90 ± 79.0 | 682.10 ± 50.9 | |||||
OAT | Abel | 61.56 ab | 0.76 | 595.00 cd | 7.1 | 404.00 bc | 5.7 | 710.00 ab | 7.1 |
Corneil | 58.65 bc | 1.20 | 617.00 cd | 8.5 | 423.00 b | 24.0 | 705.50 ab | 43.1 | |
Genziana | 50.65 d | 3.75 | 932.50 a | 46.0 | 548.00 a | 32.5 | 671.50 ab | 60.1 | |
Konradin | 62.25 ab | 0.21 | 591.50 cd | 87.0 | 353.00 bc | 60.8 | 637.00 b | 53.7 | |
Kripton | 66.15 a | 0.35 | 752.00 b | 53.7 | 429.00 b | 17.0 | 588.50 b | 48.8 | |
Kynom | 65.45 a | 1.91 | 683.00 bc | 33.9 | 372.00 bc | 41.0 | 646.50 ab | 40.3 | |
Lexic | 58.55 bc | 1.20 | 532.50 d | 37.5 | 333.50 c | 48.8 | 802.00 a | 137.2 | |
Nigra | 54.45 cd | 1.77 | 782.50 b | 0.7 | 431.00 b | 8.5 | 656.50 ab | 46.0 | |
Terra | 62.90 ab | 5.66 | 687.50 bc | 60.1 | 375.50 bc | 20.5 | 798.50 a | 34.6 | |
Means ± SE | 60.07 ± 5.24 | 685.90 ± 123.4 | 407.70 ± 65.8 | 690.70 ± 83.1 | |||||
MAIZE | Hualtaco | 67.15 d | 1.20 | 1204.5 a | 101.1 | 708.00 a | 75.0 | 439.50 b | 245.4 |
Kully | 67.25 d | 1.48 | 736.5 bd | 115.3 | 498.00 b | 70.7 | 588.50 ab | 4.9 | |
VA 116 W | 72.45 b | 0.49 | 784.5 bc | 34.6 | 411.00 bc | 32.5 | 683.50 ab | 36.1 | |
VA 116 W Purple | 74.55 a | 0.21 | 666.5 ce | 30.4 | 342.00 ce | 21.2 | 684.00 ab | 125.9 | |
VA 1268 Red | 73.50 ab | 0.42 | 735.5 bd | 57.3 | 369.00 cd | 52.3 | 646.00 ab | 38.2 | |
VA 522 W | 73.45 ab | 0.35 | 633.5 de | 72.8 | 268.50 df | 61.5 | 670.50 ab | 88.4 | |
VA 522 W Blue | 70.65 c | 0.49 | 837.0 b | 59.4 | 420.00 bc | 8.5 | 647.00 ab | 38.2 | |
VA 572 | 74.50 a | 0.28 | 553.5 e | 57.3 | 203.00 f | 25.5 | 715.00 a | 29.7 | |
VA 572 Black | 69.75 c | 1.06 | 412.5 f | 12.0 | 237.00 ef | 15.6 | 472.00 ab | 11.3 | |
Means ± SE | 71.47 ± 2.88 | 729.3 ± 218.4 | 384.10 ± 153.2 | 616.20 ± 119.3 |
SAMPLES | TFC | TPC | TPAC | TAC (ABTS) | |||||
---|---|---|---|---|---|---|---|---|---|
(mgCE/g) | (mgFA/g) | (mgCE/g) | (mmol TE/Kg) | ||||||
Mean | sd | Mean | sd | Mean | sd | Mean | sd | ||
SORGHUM | Aralba | 0.35 cd | 0.01 | 1.87 cd | 0.07 | 1.81 c | 0.01 | 31.66 cd | 0.90 |
Diamond | 0.33 cd | 0.00 | 1.77 de | 0.04 | 0.11 f | 0.03 | 30.57 d | 0.01 | |
DMS | 0.34 cd | 0.03 | 1.67 e | 0.02 | 0.01 f | 0.01 | 34.68 c | 1.16 | |
PSEAG4E44 | 0.45 bc | 0.01 | 2.26 b | 0.04 | 0.67 d | 0.11 | 44.38 a | 2.71 | |
PSE7431 | 0.85 a | 0.02 | 2.59 a | 0.17 | 17.07 a | 0.02 | 26.89 e | 2.07 | |
SW6129 | 0.31 d | 0.04 | 1.70 de | 0.04 | 0.08 f | 0.03 | 43.77 a | 0.13 | |
SW6143W | 0.54 b | 0.17 | 2.41 b | 0.08 | 3.19 b | 0.02 | 31.53 cd | 0.39 | |
SW6237W | 0.38 cd | 0.04 | 1.96 c | 0.01 | 0.53 e | 0.02 | 38.15 b | 1.03 | |
Means ± SE | 0.44 ± 0.18 | 2.03 ± 0.33 | 2.93 ± 5.56 | 35.20 ± 6.13 | |||||
OAT | Abel | 1.50 a | 0.00 | 1.77 a | 0.06 | 0.99 bc | 0.04 | 11.94 b | 0.32 |
Corneil | 0.97 fg | 0.12 | 1.62 b | 0.04 | 1.28 a | 0.07 | 13.01 a | 0.09 | |
Genziana | 1.22 cd | 0.08 | 1.39 cd | 0.02 | 0.86 c | 0.11 | 12.19 b | 0.04 | |
Konradin | 1.30 bc | 0.04 | 1.46 c | 0.05 | 1.17 ab | 0.08 | 11.65 b | 0.37 | |
Kripton | 1.11 de | 0.00 | 1.42 c | 0.05 | 1.01 bc | 0.01 | 11.69 b | 0.43 | |
Kynom | 0.94 g | 0.08 | 1.31 d | 0.03 | 1.04 bc | 0.18 | 10.48 c | 0.21 | |
Lexic | 1.42 ab | 0.04 | 1.57 b | 0.00 | 1.03 bc | 0.11 | 11.65 b | 0.13 | |
Nigra | 1.08 ef | 0.04 | 1.31 d | 0.03 | 1.04 bc | 0.05 | 11.65 b | 0.23 | |
Terra | 1.36 b | 0.04 | 1.56 b | 0.05 | 1.11 ab | 0.00 | 11.78 b | 0.12 | |
Means ± SE | 1.21 ± 0.20 | 1.49 ± 0.15 | 1.06 ± 0.13 | 11.78 ± 0.66 | |||||
MAIZE | Hualtaco | 1.05 g | 0.16 | 1.29 f | 0.01 | 0.18 d | 0.01 | 13.32 de | 0.68 |
Kully | 29.43 a | 0.28 | 9.63 a | 0.18 | 2.40 a | 0.19 | 89.16 a | 7.90 | |
VA 116 W | 1.19 g | 0.12 | 1.54 f | 0.03 | 0.06 d | 0.00 | 12.72 e | 0.51 | |
VA 116 W Purple | 13.28 b | 0.20 | 3.83 b | 0.22 | 0.61 c | 0.04 | 40.83 b | 0.06 | |
VA 1268 Red | 3.79 d | 0.04 | 2.22 d | 0.03 | 0.77 b | 0.06 | 19.80 c | 0.22 | |
VA 522 W | 1.70 f | 0.04 | 1.37 f | 0.11 | 0.14 d | 0.02 | 10.80 e | 0.20 | |
VA 522 W Blue | 2.35 e | 0.16 | 1.85 e | 0.04 | 0.12 d | 0.02 | 19.14 cd | 2.13 | |
VA 572 | 1.28 g | 0.00 | 1.45 f | 0.04 | 0.08 d | 0.00 | 10.38 e | 0.16 | |
VA 572 Black | 9.55 c | 0.12 | 3.27 c | 0.12 | 0.59 c | 0.05 | 41.79 b | 1.92 | |
Means ± SE | 7.07 ± 9.14 | 2.94 ± 2.59 | 0.55 ± 0.72 | 28.66 ± 25.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazza, L.; Menga, V.; Taddei, F.; Nocente, F.; Galassi, E.; Natale, C.; Lanzanova, C.; Paone, S.; Fares, C. Nutritional Traits, Pasting Properties and Antioxidant Profile of Selected Genotypes of Sorghum, Oat and Maize Eligible for Gluten-Free Products. Foods 2024, 13, 990. https://doi.org/10.3390/foods13070990
Gazza L, Menga V, Taddei F, Nocente F, Galassi E, Natale C, Lanzanova C, Paone S, Fares C. Nutritional Traits, Pasting Properties and Antioxidant Profile of Selected Genotypes of Sorghum, Oat and Maize Eligible for Gluten-Free Products. Foods. 2024; 13(7):990. https://doi.org/10.3390/foods13070990
Chicago/Turabian StyleGazza, Laura, Valeria Menga, Federica Taddei, Francesca Nocente, Elena Galassi, Chiara Natale, Chiara Lanzanova, Silvana Paone, and Clara Fares. 2024. "Nutritional Traits, Pasting Properties and Antioxidant Profile of Selected Genotypes of Sorghum, Oat and Maize Eligible for Gluten-Free Products" Foods 13, no. 7: 990. https://doi.org/10.3390/foods13070990
APA StyleGazza, L., Menga, V., Taddei, F., Nocente, F., Galassi, E., Natale, C., Lanzanova, C., Paone, S., & Fares, C. (2024). Nutritional Traits, Pasting Properties and Antioxidant Profile of Selected Genotypes of Sorghum, Oat and Maize Eligible for Gluten-Free Products. Foods, 13(7), 990. https://doi.org/10.3390/foods13070990