Occurrence and Risk Assessment of Pesticides, Phthalates, and Heavy Metal Residues in Vegetables from Hydroponic and Conventional Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection and Preparation
2.3. Determination of Contaminants
2.4. Data Analysis and Statistics
2.5. Risk Assessment Calculation
3. Results and Discussion
3.1. Pesticide Residue Comparison between Hydroponic and Conventional Vegetables
3.2. Comparison of the Phthalate Residues between Hydroponic and Conventional Vegetables
3.3. Comparison of the Heavy Metals between Hydroponic and Conventional Vegetables
3.4. Risk Assessment of Vegetables from Hydroponic and Conventional Cultivation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakocy, J.E. Aquaponics—Integrating Fish and Plant Culture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 344–386. ISBN 978-0-8138-0126-1. [Google Scholar] [CrossRef]
- Jan, S.; Rashid, Z.; Ahngar, T.A.; Iqbal, S.; Naikoo, M.A.; Majeed, S.; Bhat, T.A.; Gul, R.; Nazir, I. Hydroponics—A Review. Int. J. Curr. Microbiol. App. Sci 2020, 9, 1779–1787. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an Advanced Technique for Vegetable Production: An Overview. J. Soi. Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Müller, M.; Six, J. Can Soil-Less Crop Production Be a Sustainable Option for Soil Conservation and Future Agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Montiel-León, J.M.; Duy, S.V.; Munoz, G.; Verner, M.-A.; Hendawi, M.Y.; Moya, H.; Amyot, M.; Sauvé, S. Occurrence of Pesticides in Fruits and Vegetables from Organic and Conventional Agriculture by QuEChERS Extraction Liquid Chromatography Tandem Mass Spectrometry. Food Control 2019, 104, 74–82. [Google Scholar] [CrossRef]
- Wang, W.F.; Wan, Q.; Li, Y.X.; Xu, W.J.; Yu, X.Y. Uptake, translocation and subcellular distribution of pesticides in Chinese cabbage (Brassica rapa var. chinensis). Ecotox. Environ. Safe. 2019, 183, 109488. [Google Scholar] [CrossRef] [PubMed]
- Doull, J.; Cattley, R.; Elcombe, C.; Lake, B.G.; Swenberg, J.; Wilkinson, C.; Williams, G.; Van Gemert, M. A Cancer Risk Assessment of Di(2-Ethylhexyl)Phthalate: Application of the New U.S. EPA Risk Assessment Guidelines. Regul. Toxicol. Pharm. 1999, 29, 327–357. [Google Scholar] [CrossRef] [PubMed]
- Peivasteh-roudsari, L.; Barzegar-bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-oranj, B.; Mahdavi, V.; Alizadeh, A.M.; et al. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef]
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2005.
- He, Z.; Chen, S.; Wang, L.; Peng, Y.; Luo, M.; Wang, W.; Liu, X. Multiresidue Analysis of 213 Pesticides in Leek and Garlic Using QuEChERS-Based Method and Gas Chromatography-Triple Quadrupole Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 2637–2643. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Wang, L.; Xu, Y.; Peng, Y.; Liu, X. Automatic Single-Step Quick, Easy, Cheap, Effective, Rugged and Safe Sample Preparation Devices for Analysis of Pesticide Residues in Foods. J. Chromatogr. A 2017, 1521, 10–18. [Google Scholar] [CrossRef]
- Wang, H.; Dong, X.; Jia, B.; Feng, S.; Liu, J.; Zhong, H. Determination of 23 Phthalate Esters in Scallion and Other Vegetables by Solid-Phase Extraction Coupled with Gas Chromatography-Tandem Mass Spectrometry. Chin. J. Chromatogr. 2015, 33, 545–550. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Yang, X.; Zhao, H.; Zhang, Y.; Dong, A.; Jing, J.; Wang, J. Determination of free amino acids and 18 elements in freeze-dried strawberry and blueberry fruit using an amino acid analyzer and icp-ms with micro-wave digestion. Food Chem. 2014, 147, 189–194. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, Z.; Fan, C.; Xu, J.; Li, H.; Chang, Q.; Pang, G. Fipronil Residues and Risk Assessment of Chinese Marketed Fruits and Vegetables: A Long-Term Investigation over 6 Years. Food Control 2019, 106, 106734. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, Q.; Zhang, X.; Zheng, D.; Zhang, Z.; Zhang, S. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci. Total Environ. 2007, 387, 96–104. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Integrated Risk Information System-Database; United States Environmental Protection Agency: Philadelphia, PA, USA; Washington, DC, USA, 2007.
- National Food Safety Standard for Maximum Residue Limits of Pesticides in Food (GB 2763-2021). Available online: http://www.icama.org.cn/zgnyxxw/zwb/detail/17901 (accessed on 5 April 2024).
- Allen, G.; Halsall, C.J.; Ukpebor, J.; Paul, N.D.; Ridall, G.; Wargent, J.J. Increased Occurrence of Pesticide Resi dues on Crops Grown in Protected Environments Compared to Crops Grown in Open Field Conditions. Chemosphere 2015, 119, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Zhang, S.; Chen, Z.; Du, H.; Zhu, Q.; Dong, Z.; Li, H. Risk Assessment of Pesticide Residues in Dietary Intake of Celery in China. Regul. Toxicol. Pharm. 2015, 73, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Chen, Y.; He, F.; Yang, B.; Zou, K.; Shen, N.; Zuo, B.; Liu, R.; Zhang, W.; Li, Y. Risk Assessment of Fungicide Pesticide Residues in Vegetables and Fruits in the Mid-Western Region of China. J. Food Compos. Anal. 2021, 95, 103663. [Google Scholar] [CrossRef]
- He, X.; Qiao, Y.; Liu, Y.; Dendler, L.; Yin, C.; Martin, F. Environmental Impact Assessment of Organic and Con ventional Tomato Production in Urban Greenhouses of Beijing City, China. J. Clean. Prod. 2016, 134, 251–258. [Google Scholar] [CrossRef]
- Golge, O.; Hepsag, F.; Kabak, B. Health Risk Assessment of Selected Pesticide Residues in Green Pepper and Cucumber. Food Chem. Toxicol. 2018, 121, 51–64. [Google Scholar] [CrossRef]
- Paulus, D.; Paulus, E.; Nava, G.A.; Moura, C.A. Crescimento, Consumo Hídrico e Composição Mineral de Alface Cultivada Em Hidroponia Com Águas Salinas. Revista Ceres 2012, 59, 110–117. [Google Scholar] [CrossRef]
- Ikeda, H.; Koohakan, P.; Jaenaksorn, T. Problems and countermeasures in the reuse of the nutrient solution in soilless production. Acta Hortic. 2002, 578, 213–219. [Google Scholar] [CrossRef]
- Gomiero, T. Food Quality Assessment in Organic vs. Conventional Agricultural Produce: Findings and Issues. Appl. Soil Ecol. 2018, 123, 714–728. [Google Scholar] [CrossRef]
- Chen, N.; Shuai, W.; Hao, X.; Zhang, H.; Zhou, D.; Gao, J. Contamination of Phthalate Esters in Vegetable Agri culture and Human Cumulative Risk Assessment. Pedosphere 2017, 27, 439–451. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Huang, B.; Teng, Y. Soil Environmental Quality in Greenhouse Vegetable Production Systems in Eastern China: Current Status and Management Strategies. Chemosphere 2017, 170, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Xu, Y.; Xu, C.; Yun, L.; Liu, W. Status of Phthalate Esters Contamination in Agricultural Soils across China and Associated Health Risks. Environ. Pollut. 2014, 195, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Cui, K.; Xie, Z.; Wu, L.; Liu, M.; Sun, G.; Lin, Y.; Luo, D.; Zeng, Z. Phthalate Esters (PAEs): Emerging Organic Contaminants in Agricultural Soils in Peri-Urban Areas around Guangzhou, China. Environ. Pollut. 2008, 156, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, H.; Liu, Q.; Li, X.; Ge, J.; Yu, X. Accumulation and Transport Patterns of Six Phthalic Acid Esters (PAEs) in Two Leafy Vegetables under Hydroponic Conditions. Chemosphere 2020, 249, 126457. [Google Scholar] [CrossRef]
- Magwaza, S.T.; Magwaza, L.S.; Odindo, A.O.; Mditshwa, A. Hydroponic Technology as Decentralised System for Domestic Wastewater Treatment and Vegetable Production in Urban Agriculture: A Review. Sci. Total Environ. 2020, 698, 134154. [Google Scholar] [CrossRef]
Commodity | Variety | Hydroponic Farming (Sample Number, n) | Conventional Farming (Sample Number, n) |
---|---|---|---|
Lettuce | Romaine | 18 | 11 |
Iceberg | 6 | 9 | |
Boston | 8 | 6 | |
Celery | Chinese celery | 9 | 10 |
American celery | 6 | 10 | |
Tomato | Roma | 5 | 7 |
Cherry | 10 | 9 | |
Round | 5 | 6 | |
Cucumber | Holland cucumber | 10 | 9 |
Chinese cucumber | 9 | 14 |
Contaminants | Mean Value (μg/kg) | Median Value (μg/kg) | Maximum Value (μg/kg) | EDI a (μg/kg·d) | THQ b | Detection Rate (%) | Excess MRL Rate (%) |
---|---|---|---|---|---|---|---|
Acetamiprid | 3.28 × 10 | 1.10 × 10 | 1.20 × 102 | 1.33 × 10−1 | 1.89 × 10−3 | 5.81 | 0 |
Boscalid | 9.00 | 9.00 | 9.00 | 3.63 × 10−2 | 9.08 × 10−4 | 1.16 | 0 |
Carbendazim | 2.60 × 10 | 1.80 × 10 | 5.00 × 10 | 1.05 × 10−1 | 3.50 × 10−3 | 1.16 | 0 |
Chlorantraniliprole | 7.40 × 10 | 2.00 × 10 | 2.47 × 102 | 2.98 × 10−1 | 1.49 × 10−4 | 4.65 | 0 |
Chlorfenapyr | 8.08 × 10 | 8.08 × 10 | 1.38 × 102 | 3.26 × 10−1 | 1.09 × 10−2 | 2.33 | 0 |
Chlorpyrifos | 1.30 × 10 | 1.30 × 10 | 1.30 × 10 | 5.24 × 10−2 | 5.24 × 10−3 | 2.33 | 0 |
Cyhalothrin | 1.80 × 10 | 1.80 × 10 | 1.80 × 10 | 7.26 × 10−2 | 3.63 × 10−3 | 1.16 | 0 |
Cymoxanil | 1.40 × 10 | 1.40 × 10 | 1.40 × 10 | 5.65 × 10−2 | 4.34 × 10−3 | 1.16 | 0 |
Cypermethrin | 5.82 × 10 | 5.82 × 10 | 5.82 × 10 | 2.35 × 10−1 | 1.17 × 10−2 | 1.16 | 0 |
Cyromazine | 1.50 × 10 | 1.50 × 10 | 1.50 × 10 | 6.05 × 10−2 | 1.01 × 10−3 | 1.16 | 0 |
Dimethomorph | 1.45 × 102 | 1.45 × 102 | 1.45 × 102 | 5.85 × 10−1 | 2.92 × 10−3 | 2.33 | 0 |
Indoxacard | 2.02 × 102 | 2.02 × 102 | 2.02 × 102 | 8.15 × 10−1 | 8.15 × 10−2 | 1.16 | 0 |
Lufenuron | 7.48 × 10 | 7.48 × 10 | 7.48 × 10 | 3.02 × 10−1 | 2.01 × 10−2 | 1.16 | 0 |
Metalaxyl | 4.00 × 10 | 4.00 × 10 | 4.00 × 10 | 1.61 × 10−1 | 2.02 × 10−3 | 1.16 | 0 |
Nitenpyram | 9.00 | 9.00 | 9.00 | 3.63 × 10−2 | 6.85 × 10−5 | 2.33 | 0 |
Procymidone | 3.70 × 102 | 3.70 × 102 | 3.70 × 102 | 1.49 | 1.49 × 10−2 | 1.16 | 0 |
Thiamethoxam | 2.00 × 10 | 2.00 × 10 | 2.00 × 10 | 8.07 × 10−2 | 1.01 × 10−3 | 2.33 | 0 |
DEHP | 1.41 × 103 | 9.70 × 102 | 6.72 × 103 | 5.69 | 2.84 × 10−2 | 84.88 | — |
DiBP | 1.21 × 103 | 8.50 × 102 | 4.00 × 103 | 4.88 | 9.76 × 10−3 | 86.05 | — |
DnBP | 8.00 × 102 | 7.70 × 102 | 2.73 × 103 | 3.23 | 5.55 × 10−3 | 83.72 | — |
Pb | 4.77 | 3.60 | 1.34 × 10 | 1.92 × 10−2 | 4.81 × 10−3 | 68.60 | 0 |
Cd | 9.10 × 10−1 | 6.50 × 10−1 | 5.10 | 3.67 × 10−3 | 3.67 × 10−3 | 46.51 | 0 |
Contaminants | Mean Value (μg/kg) | Median Value (μg/kg) | Maximum Value (μg/kg) | EDI a (μg/kg·d) | THQ b | Detection Rate (%) | Excess MRL Rate (%) |
---|---|---|---|---|---|---|---|
Abamectin | 1.20 × 10 | 1.20 × 10 | 1.40 × 10 | 4.84 × 10−2 | 2.42 × 10−2 | 2.20 | 0 |
Acetamiprid | 2.74 × 102 | 7.25 × 102 | 1.75 × 103 | 1.11 | 1.58 × 10−2 | 31.87 | 3.30 |
Azoxystrobin | 2.10 × 10 | 2.10 × 10 | 2.10 × 10 | 8.47 × 10−2 | 4.24 × 10−4 | 3.30 | 0 |
Bifenthrin | 1.05 × 10 | 1.05 × 10 | 1.05 × 10 | 4.24 × 10−2 | 4.24 × 10−3 | 2.20 | 0 |
Boscalid | 1.12 × 102 | 2.00 × 10 | 5.80 × 102 | 4.52 × 10−1 | 1.13 × 10−2 | 7.69 | 1.10 |
Carbendazim | 6.98 × 10 | 5.20 × 10 | 1.60 × 102 | 2.82 × 10−1 | 9.38 × 10−3 | 10.99 | 0 |
Chlorantraniliprole | 1.70 × 102 | 7.45 × 10 | 5.43 × 102 | 6.86 × 10−1 | 3.43 × 10−4 | 15.38 | 0 |
Chlorfenapyr | 1.90 × 102 | 1.18 × 102 | 5.29 × 102 | 7.66 × 10−1 | 2.55 × 10−2 | 10.99 | 1.10 |
Chlorpyrifos | 1.30 × 10 | 1.30 × 10 | 1.50 × 10 | 5.24 × 10−2 | 5.24 × 10−3 | 2.20 | 0 |
Cyhalothrin | 1.10 × 102 | 1.10 × 102 | 1.10 × 102 | 4.44 × 10−1 | 2.22 × 10−2 | 1.10 | 0 |
Cymoxanil | 1.85 × 10 | 1.23 × 10 | 3.30 × 10 | 7.46 × 10−2 | 5.74 × 10−3 | 5.49 | 0 |
Cypermethrin | 5.78 × 10 | 5.78 × 10 | 5.82 × 10 | 2.33 × 10−1 | 1.17 × 10−2 | 2.20 | 0 |
Cyromazine | 4.80 × 102 | 4.00 × 10 | 3.35 × 103 | 1.94 | 3.23 × 10−2 | 9.89 | 1.10 |
Difenoconazole | 1.23 × 102 | 6.70 × 10 | 3.72 × 102 | 4.96 × 10−1 | 4.96 × 10−2 | 16.48 | 0 |
Dimethomorph | 1.67 × 102 | 1.42 × 102 | 4.10 × 102 | 6.74 × 10−1 | 3.37 × 10−3 | 15.38 | 0 |
Flusilazole | 1.54 × 102 | 1.54 × 102 | 1.57 × 102 | 6.21 × 10−1 | 8.87 × 10−2 | 2.20 | 0 |
Imidacloprid | 1.32 × 102 | 2.90 × 10 | 6.43 × 102 | 5.32 × 10−1 | 8.87 × 10−3 | 12.09 | 0 |
Indoxacard | 2.58 × 102 | 2.58 × 102 | 3.01 × 102 | 1.04 | 1.04 × 10−1 | 2.20 | 0 |
Lufenuron | 1.18 × 102 | 7.03 × 10 | 3.30 × 102 | 4.76 × 10−1 | 3.17 × 10−2 | 5.49 | 0 |
Metalaxyl | 6.94 × 10 | 6.82 × 10 | 7.20 × 10 | 2.80 × 10−1 | 3.45 × 10−3 | 3.30 | 0 |
Myclobutanil | 2.53 × 10 | 2.53 × 10 | 2.56 × 10 | 1.02 × 10−1 | 3.40 × 10−3 | 2.20 | 0 |
Paclobutrazol | 1.15 × 10 | 1.15 × 10 | 1.20 × 10 | 4.64 × 10−2 | 4.64 × 10−4 | 2.20 | 0 |
Pendimethalin | 1.08 × 10 | 1.08 × 10 | 1.10 × 10 | 4.36 × 10−2 | 1.45 × 10−3 | 2.20 | 0 |
Procymidone | 1.09 × 10 | 1.09 × 10 | 1.09 × 10 | 4.40 × 10−2 | 4.40 × 10−4 | 1.10 | 0 |
Propamocarb | 2.14 × 102 | 2.14 × 102 | 2.20 × 102 | 8.63 × 10−1 | 2.16 × 10−3 | 2.20 | 0 |
Propiconazole | 3.67 × 10 | 8.70 | 9.31 × 10 | 1.48 × 10−1 | 2.12 × 10−3 | 3.30 | 0 |
Pyraclostrobin | 5.58 × 10 | 2.01 × 10 | 1.27 × 102 | 2.25 × 10−1 | 7.50 × 10−3 | 3.30 | 0 |
Pyridaben | 4.53 × 10 | 2.60 × 10 | 1.18 × 102 | 1.83 × 10−1 | 1.82 × 10−2 | 7.69 | 0 |
Thiamethoxam | 4.10 × 10 | 3.40 × 10 | 5.90 × 10 | 1.65 × 10−1 | 2.07 × 10−3 | 5.49 | 0 |
DEHP | 1.29 × 103 | 9.75 × 102 | 5.33 × 103 | 5.20 | 2.60 × 10−2 | 74.73 | — |
DEP | 7.45 × 10 | 5.00 × 10 | 2.84 × 102 | 3.00 × 10−1 | 6.01 × 10−4 | 69.23 | — |
DiBP | 1.38 × 103 | 7.15 × 102 | 5.71 × 103 | 5.57 | 1.11 × 10−2 | 74.73 | — |
DMEP | 4.70 × 102 | 3.90 × 102 | 1.67 × 103 | 1.90 | 3.79 × 10−3 | 28.57 | — |
DMP | 8.78 | 7.26 | 4.47 × 10 | 3.54 × 10−2 | 7.08 × 10−5 | 39.56 | — |
DnBP | 9.36 × 102 | 9.30 × 102 | 2.80 × 103 | 3.78 | 7.55 × 10−3 | 74.73 | — |
DPP | 4.54 | 1.00 | 2.00 × 10 | 1.83 × 10−2 | 3.66 × 10−5 | 13.19 | — |
Pb | 4.91 × 10 | 3.64 × 10 | 2.77 × 102 | 1.98 × 10−1 | 4.95 × 10−2 | 79.12 | 1.10 |
Cd | 1.15 × 10 | 8.48 | 3.30 × 10 | 4.64 × 10−2 | 4.64 × 10−2 | 81.32 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Yao, C.; Zhou, J.; Ma, H.; Jin, J.; Song, W.; Kai, Z. Occurrence and Risk Assessment of Pesticides, Phthalates, and Heavy Metal Residues in Vegetables from Hydroponic and Conventional Cultivation. Foods 2024, 13, 1151. https://doi.org/10.3390/foods13081151
Chen S, Yao C, Zhou J, Ma H, Jin J, Song W, Kai Z. Occurrence and Risk Assessment of Pesticides, Phthalates, and Heavy Metal Residues in Vegetables from Hydroponic and Conventional Cultivation. Foods. 2024; 13(8):1151. https://doi.org/10.3390/foods13081151
Chicago/Turabian StyleChen, Shanshan, Chunxia Yao, Jiaxin Zhou, Haiyao Ma, Jing Jin, Weiguo Song, and Zhenpeng Kai. 2024. "Occurrence and Risk Assessment of Pesticides, Phthalates, and Heavy Metal Residues in Vegetables from Hydroponic and Conventional Cultivation" Foods 13, no. 8: 1151. https://doi.org/10.3390/foods13081151
APA StyleChen, S., Yao, C., Zhou, J., Ma, H., Jin, J., Song, W., & Kai, Z. (2024). Occurrence and Risk Assessment of Pesticides, Phthalates, and Heavy Metal Residues in Vegetables from Hydroponic and Conventional Cultivation. Foods, 13(8), 1151. https://doi.org/10.3390/foods13081151