Influence of Lactobacillus rhamnosus Supplementation on the Glycaemic Index, Lipid Profile, and Microbiome of Healthy Elderly Subjects: A Preliminary Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Probiotics Supplementation
2.3. Demographic Assessments
2.4. Next-Generation Sequencing (NGS)
2.5. Statistical Analyses
3. Results
3.1. Changes in Biochemical Parameters
3.2. Microbiome Analysis
3.2.1. Alpha Diversity
3.2.2. Beta Diversity
3.2.3. Taxonomical Allocations and Determinations
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landete, J.M.; Gaya, P.; Rodríguez, E.; Langa, S.; Peirotén, Á.; Medina, M.; Arqués, J.L. Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens. Biomed. Res. Int. 2017, 2017, 5939818. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Lakshminarayanan, B.; Stanton, C.; O’Toole, P.W.; Ross, R.P. Compositional dynamics of the human intestinal microbiota with aging: Implications for health. J. Nutr. Health. Aging 2014, 18, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Boyajian, J.L.; Ghebretatios, M.; Schaly, S.; Islam, P.; Prakash, S. Microbiome and Human Aging: Probiotic and Prebiotic Potentials in Longevity, Skin Health and Cellular Senescence. Nutrients 2021, 13, 4550. [Google Scholar] [CrossRef] [PubMed]
- Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet 2003, 361, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Hickson, M. Malnutrition and ageing. Postgrad. Med. J. 2006, 82, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Tiihonen, K.; Ouwehand, A.C.; Rautonen, N. Human intestinal microbiota and healthy ageing. Ageing. Res. Rev. 2010, 9, 107–116. [Google Scholar] [CrossRef]
- Claesson, M.J.; Cusack, S.; O’Sullivan, O.; Greene-Diniz, R.; de Weerd, H.; Flannery, E.; Marchesi, J.R.; Falush, D.; Dinan, T.; Fitzgerald, G.; et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 2011, 108, 4586–4591. [Google Scholar] [CrossRef]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Giacosa, A.; Faliva, M.A.; Perna, S.; Allieri, F.; Castellazzi, A.M. Review on microbiota and effectiveness of probiotics use in older. World J. Clin. Cases 2015, 3, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Woodmansey, E.J. Intestinal bacteria and ageing. J. Appl. Microbiol. 2007, 102, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.J.; Macfarlane, G.T. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J. Med. Microbiol. 2002, 51, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Mäkivuokko, H.; Tiihonen, K.; Tynkkynen, S.; Paulin, L.; Rautonen, N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br. J. Nutr. 2010, 103, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; et al. Gut Microbiota and Extreme Longevity. Curr. Biol. 2016, 26, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Hua, Y.; Zeng, B.; Ning, R.; Li, Y.; Zhao, J. Gut microbiota signatures of longevity. Curr. Biol. 2016, 26, R832–R833. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Gao, Y.; Zeng, B.; Fan, X.; Yang, D.; Yang, M. Effects of anti-aging interventions on intestinal microbiota. Gut Microbes 2021, 13, 1994835. [Google Scholar] [CrossRef]
- Bischoff, S.C. Microbiota and aging. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 26–30. [Google Scholar] [CrossRef]
- Chung, K.W. Advances in Understanding of the Role of Lipid Metabolism in Aging. Cells 2021, 10, 880. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.A.; Stolzing, A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019, 18, e13048. [Google Scholar] [CrossRef] [PubMed]
- Chiang, B.L.; Sheih, Y.H.; Wang, L.H.; Liao, C.K.; Gill, H.S. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): Optimization and definition of cellular immune responses. Eur. J. Clin. Nutr. 2000, 54, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A review on anti-aging properties of probiotics. Int. J. Appl. Pharm. 2018, 10, 23–27. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Sirilun, S.; Juntarachot, N.; Tongpong, P.; Ouparee, W.; Sivamaruthi, B.S.; Peerajan, S.; Waditee-Sirisattha, R.; Prombutara, P.; Klankeo, P.; et al. Effect of Dextranase and Dextranase-and-Nisin-Containing Mouthwashes on Oral Microbial Community of Healthy Adults-A Pilot Study. Appl. Sci. 2022, 12, 1650. [Google Scholar] [CrossRef]
- Mueller, S.; Saunier, K.; Hanisch, C.; Norin, E.; Alm, L.; Midtvedt, T. Differences in fecal microbiota in diferent European study populations in relation to age, gender, and country: A cross-sectional study. Appl. Environ. Microbiol. 2006, 72, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Nylund, L.; Candela, M.; Ostan, R.; Bucci, L.; Pini, E.; Nikkïla, J.; Monti, D.; Satokari, R.; Franceschi, C.; et al. Through ageing, and beyond: Gut microbiota and infammatory status in seniors and centenarians. PLoS ONE 2010, 5, e10667. [Google Scholar] [CrossRef]
- Zhao, L.; Qiao, X.; Zhu, J.; Zhang, X.; Jiang, J.; Hao, Y.; Ren, F. Correlations of fecal bacterial communities with age and living region for the elderly living in Bama, Guangxi. China. J. Microbiol. 2011, 49, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef]
- Hayashi, H.; Sakamoto, M.; Kitahara, M.; Benno, Y. Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol. Immunol. 2003, 47, 557–570. [Google Scholar] [CrossRef]
- Hutchinson, A.N.; Bergh, C.; Kruger, K.; Sűsserová, M.; Allen, J.; Améen, S.; Tingö, L. The Effect of Probiotics on Health Outcomes in the Elderly: A Systematic Review of Randomized, Placebo-Controlled Studies. Microorganisms 2021, 9, 1344. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Kang, L. Progress in researches on gut microbiota and metabolism. Chin. J. Microecol. 2013, 3, 362–364+367. [Google Scholar]
- Sommer, M.O.; Dantas, G. Antibiotics and the resistant microbiome. Curr. Opin. Microbiol. 2011, 14, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Gajer, P.; Brotman, R.M.; Bai, G.; Sakamoto, J.; Schütte, U.M.; Zhong, X.; Koenig, S.S.; Fu, L.; Ma, Z.S.; Zhou, X.; et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 2012, 4, 132ra52. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Tan, H.T.T.; Groeger, D.; Andrews, M.; Buckley, M.; Murphy, E.F.; Groeger, J.A. Bifidobacterium longum 1714 improves sleep quality and aspects of well-being in healthy adults: A randomized, double-blind, placebo-controlled clinical trial. Sci. Rep. 2024, 14, 3725. [Google Scholar] [CrossRef]
- Vicariotto, F.; Malfa, P.; Viciani, E.; Dell’Atti, F.; Squarzanti, D.F.; Marcante, A.; Castagnetti, A.; Ponchia, R.; Governini, L.; De Leo, V. Efficacy of Lactiplantibacillus plantarum PBS067, Bifidobacterium animalis subsp. lactis BL050, and Lacticaseibacillus rhamnosus LRH020 in the Amelioration of Vaginal Microbiota in Post-Menopausal Women: A Prospective Observational Clinical Trial. Nutrients 2024, 16, 402. [Google Scholar] [CrossRef] [PubMed]
- Costabile, A.; Bergillos-Meca, T.; Rasinkangas, P.; Korpela, K.; de Vos, W.M.; Gibson, G.R. Effects of Soluble Corn Fiber Alone or in Synbiotic Combination with Lactobacillus rhamnosus GG and the Pilus-Deficient Derivative GG-PB12 on Fecal Microbiota, Metabolism, and Markers of Immune Function: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Elderly (Saimes Study). Front. Immunol. 2017, 8, 1443. [Google Scholar] [PubMed]
- Sabatine, M.S.; Wiviott, S.D.; Im, K.; Murphy, S.A.; Giugliano, R.P. Efficacy and Safety of Further Lowering of Low-Density Lipoprotein Cholesterol in Patients Starting With Very Low Levels: A Meta-analysis. JAMA Cardiol. 2018, 3, 823–828. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Jiao, R.; Ma, K.Y. Cholesterol-lowering nutraceuticals and functional foods. J. Agric. Food Chem. 2008, 56, 8761–8773. [Google Scholar] [CrossRef]
- Shimizu, M.; Hashiquchi, M.; Shiga, T.; Tamura, H.O.; Mochizuki, M. Meta analysis: Effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS ONE 2015, 10, e0139795. [Google Scholar] [CrossRef] [PubMed]
- Gould, A.L.; Davies, G.M.; Alemao, E.; Yin, D.D.; Cook, J.R. Cholesterol reduction yields clinical benefits: Meta-analysis including recent trials. Clin. Ther. 2007, 29, 778–794. [Google Scholar] [CrossRef] [PubMed]
- Law, M.R.; Wald, N.J.; Rudnicka, A.R. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: Systematic review and meta-analysis. BMJ 2003, 326, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R.; Scarano, M.; Marfisi, R.; Lucisano, G.; Palma, F.; Tatasciore, A.; Marchioli, R. Cholesterol-lowering interventions and stroke: Insights from a meta-analysis of randomized controlled trials. J. Am. Coll. Cardiol. 2010, 55, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.A.; Xu, Z.; Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014, 588, 4223–4233. [Google Scholar] [CrossRef] [PubMed]
- Rizzatti, G.; Lopetuso, L.; Gibiino, G.; Binda, C.; Gasbarrini, A. Proteobacteria: A common factor in human diseases. BioMed Res. Int. 2017, 2017, 9351507. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Choi, C.W.; Shin, H.; Jin, S.P.; Bae, J.S.; Han, M.; Seo, E.Y.; Chun, J.; Chung, J.H. Comparison of the gut microbiota of centenarians in longevity villages of South Korea with those of other age groups. J. Microbiol. Biotechnol. 2019, 29, 429–440. [Google Scholar] [CrossRef]
- Wu, L.; Zeng, T.; Zinellu, A.; Rubino, S.; Kelvin, D.J.; Carru, C. A Cross-Sectional Study of Compositional and Functional Profiles of Gut Microbiota in Sardinian Centenarians. mSystems 2019, 4, e00325-19. [Google Scholar] [CrossRef]
- Yu, X.; Wu, X.; Qiu, L.; Wang, D.; Gan, M.; Chen, X.; Wei, H.; Xu, F. Analysis of the intestinal microbial community structure of healthy and long-living elderly residents in Gaotian Village of Liuyang City. Appl. Microbiol. Biotechnol. 2015, 99, 9085–9095. [Google Scholar] [CrossRef] [PubMed]
- Laongkham, O.; Nakphaichit, M.; Nakayama, J.; Keawsompong, S.; Nitisinprasert, S. Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans. 3 Biotech 2020, 10, 276. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Martinez, G.; Chin, B.; Camarillo, C.; Herrera, G.V.; Yang, B.; Sarosiek, I.; Perez, R.G. A Pilot Microbiota Study in Parkinson’s Disease Patients versus Control Subjects, and Effects of FTY720 and FTY720-Mitoxy Therapies in Parkinsonian and Multiple System Atrophy Mouse Models. J. Parkinsons Dis. 2020, 10, 185–192. [Google Scholar] [CrossRef] [PubMed]
- López-García, E.; Benítez-Cabello, A.; Arenas-de Larriva, A.P.; Gutierrez-Mariscal, F.M.; Pérez-Martínez, P.; Yubero-Serrano, E.M.; Garrido-Fernández, A.; Arroyo-López, F.N. Oral intake of Lactiplantibacillus pentosus LPG1 Produces a Beneficial Regulation of Gut Microbiota in Healthy Persons: A Randomized, Placebo-Controlled, Single-Blind Trial. Nutrients 2023, 15, 1931. [Google Scholar] [CrossRef] [PubMed]
- Ozkul, C.; Yalinay, M.; Karakan, T. Islamic fasting leads to an increased abundance of Akkermansia muciniphila and Bacteroides fragilis group: A preliminary study on intermittent fasting. Turk. J. Gastroenterol. 2019, 30, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Nicolucci, A.C.; Hume, M.P.; Martínez, I.; Mayengbam, S.; Walter, J.; Reimer, R.A. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 2017, 153, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, E.M.; Cani, P.D.; Claus, S.P.; Fuentes, S.; Puylaert, P.G.; Neyrinck, A.M.; Bindels, L.B.; de Vos, W.M.; Gibson, G.R.; Thissen, J.P.; et al. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013, 62, 1112–1121. [Google Scholar] [CrossRef]
- Ciobârcă, D.; Cătoi, A.F.; Copăescu, C.; Miere, D.; Crișan, G. Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients 2020, 12, 235. [Google Scholar] [CrossRef]
- Alhusain, F. Microbiome: Role and Functionality in Human Nutrition Cycle. Saudi Med. J. 2021, 42, 146–150. [Google Scholar] [CrossRef]
No. | Variables | Group | p-Value | |
---|---|---|---|---|
Placebo (n = 25) | Probiotic (n = 25) | |||
1 | Age | 64.96 ± 0.86 | 63.00 ± 1.09 | 0.165 a |
2 | Male, n (%) | 3 (12.00) | 9 (36.00) | 0.095 b |
Female, n (%) | 22 (88.00) | 16 (64.00) | ||
3 | Smoking | 0.490 b | ||
No, n (%) | 25 (100.00) | 23 (92.00) | ||
Yes, n (%) | 0 (0.00) | 2 (8.00) | ||
4 | Alcohol drinking | 0.235 b | ||
No, n (%) | 25 (100.00) | 22 (88.00) | ||
Yes, n (%) | 0 (0.00) | 3 (12.00) | ||
5 | Body weight (kg) | 63.80 ± 2.29 | 59.40 ± 2.17 | 0.170 a |
6 | Body fat (%) | 32.77 ± 1.41 | 27.76 ± 1.45 | 0.036 *a |
7 | Visceral fat (%) | 15.18 ± 0.57 | 13.55 ± 1.49 | 0.060 c |
8 | FBS (mg/dL) | 106.12 ± 8.77 | 104.00 ± 5.97 | 0.843 a |
9 | TC (mg/dL) | 211.68 ± 9.41 | 209.12 ± 8.55 | 0.841 a |
10 | TG (mg/dL) | 134.48 ± 11.20 | 157.36 ± 12.49 | 0.179 a |
11 | HDL (mg/dL) | 53.04 ± 1.95 | 52.72 ± 3.09 | 0.931 a |
12 | LDL (mg/dL) | 131.08 ± 8.35 | 120.01 ± 6.22 | 0.293 a |
Parameters | Placebo (n = 25) | p-Value | Probiotic (n = 25) | p-Value | ||
---|---|---|---|---|---|---|
Baseline (P-Week 0) | Treatment (P-Week 8) | Baseline (T-Week 0) | Treatment (T-Week 8) | |||
Body weight (kg) | 63.80 ± 2.29 | 63.74 ± 2.30 | 0.884 a | 59.40 ± 2.17 | 58.73 ± 2.11 | 0.058 a |
Body fat (%) | 32.77 ± 1.41 | 34.95 ± 1.53 | 0.127 a | 27.76 ± 1.45 | 27.28 ± 1.67 | 0.657 a |
Visceral fat (%) | 15.18 ± 0.57 | 15.27 ± 0.66 | 0.402 b | 13.55 ± 1.49 | 12.09 ± 1.13 | 0.098 b |
FBS (mg/dL) | 106.12 ± 8.77 | 109.92 ± 6.95 | 0.504 a | 104.00 ± 5.97 | 106.96 ± 5.84 | 0.375 a |
TC (mg/dL) | 211.68 ± 9.41 | 201.96 ± 11.98 | 0.178 a | 209.12 ± 8.55 | 194.76 ± 7.63 | 0.055 a |
TG (mg/dL) | 134.48 ± 11.20 | 149.80 ± 13.62 | 0.184 a | 157.36 ± 12.49 | 149.48 ± 12.62 | 0.463 a |
HDL (mg/dL) | 53.04 ± 1.95 | 53.52 ± 3.55 | 0.858 a | 52.72 ± 3.09 | 56.28 ± 3.46 | 0.137 a |
LDL (mg/dL) | 131.08 ± 8.35 | 128.42 ± 8.46 | 0.728 a | 120.01 ± 6.22 | 114.57 ± 8.00 | 0.439 a |
Variables | Difference | p-Value * | |
---|---|---|---|
Placebo (n = 25) | Probiotic (n = 25) | ||
Body weight (kg) | −0.06 | −0.68 | 0.252 |
Body fat (%) | 2.17 | −0.48 | 0.163 |
Visceral fat (%) | 0.09 | −1.45 | 0.104 |
FBS (mg/dL) | 3.80 | −2.96 | 0.734 |
TC (mg/dL) | −9.72 | −14.36 | 0.869 |
TG (mg/dL) | 15.32 | −7.88 | 0.479 |
HDL (mg/dL) | 0.48 | 3.56 | 0.214 |
LDL (mg/dL) | −2.66 | −5.44 | 0.823 |
Parameters | Coefficient | 95% Confidence Interval | p-Value |
---|---|---|---|
Body weight (kg) | −0.65 | −2.24 to 0.94 | 0.409 |
Body fat (%) | −2.48 | −6.48 to 1.52 | 0.214 |
Visceral fat (%) | −0.39 | −2.14 to 1.36 | 0.650 |
FBS (mg/dL) | −5.19 | −22.15 to 11.78 | 0.536 |
Total cholesterol (mg/dL) | −4.99 | −28.91 to 18.93 | 0.675 |
Triglyceride (mg/dL) | −25.07 | −74.60 to 24.47 | 0.308 |
HDL (mg/dL) | 9.76 | −2.43 to 21.94 | 0.112 |
LDL (mg/dL) | −35.32 | −69.85 to −0.79 | 0.045 * |
Sample-ID | Input | Filtered | Denoised | Merged | Non-Chimeric |
---|---|---|---|---|---|
Placebo group | |||||
PW0-1-02 | 228,670 | 156,586 | 155,663 | 152,508 | 84,553 |
PW0-1-13 | 76,716 | 50,519 | 49,906 | 48,821 | 41,576 |
PW0-1-15 | 121,423 | 88,254 | 87,612 | 85,709 | 52,312 |
PW0-1-24 | 65,607 | 49,262 | 48,994 | 48,202 | 28,559 |
PW0-1-35 | 72,981 | 50,936 | 50,576 | 49,171 | 36,557 |
PW0-1-36 | 121,096 | 82,249 | 81,562 | 79,976 | 68,897 |
PW0-1-39 | 48,332 | 34,305 | 34,012 | 33,225 | 25,337 |
PW0-1-42 | 83,999 | 62,262 | 61,820 | 60,451 | 40,175 |
PW0-1-43 | 62,702 | 43,389 | 42,818 | 41,423 | 30,313 |
PW0-1-63 | 64,517 | 54,975 | 54,789 | 53,894 | 35,429 |
PW0-1-69 | 69,463 | 57,120 | 56,965 | 56,297 | 42,940 |
PW0-1-78 | 82,033 | 67,793 | 67,539 | 66,816 | 48,736 |
PW8-2-63 | 34,397 | 14,825 | 14,708 | 14,531 | 11,610 |
PW8-2-69 | 41,790 | 19,358 | 19,147 | 18,877 | 13,859 |
PW8-2-78 | 54,624 | 25,338 | 25,053 | 24,421 | 18,908 |
PW8-3-02 | 99,997 | 68,321 | 67,637 | 66,196 | 46,325 |
PW8-3-13 | 65,990 | 46,652 | 46,327 | 45,632 | 36,879 |
PW8-3-15 | 50,672 | 32,262 | 31,961 | 31,489 | 24,307 |
PW8-3-24 | 128,327 | 93,300 | 92,849 | 90,848 | 70,533 |
PW8-3-35 | 50,172 | 36,302 | 35,955 | 34,840 | 25,906 |
PW8-3-36 | 88,839 | 64,988 | 64,507 | 63,085 | 51,453 |
PW8-3-39 | 84,642 | 60,545 | 60,065 | 59,023 | 44,259 |
PW8-3-42 | 264,836 | 208,317 | 207,379 | 203,133 | 145,732 |
PW8-3-43 | 100,425 | 74,396 | 73,846 | 72,279 | 52,322 |
Probiotic group | |||||
TW0-1-22 | 138,660 | 101,667 | 101,218 | 99,829 | 74,148 |
TW0-1-23 | 108,785 | 78,702 | 77,922 | 76,382 | 51,645 |
TW0-1-26 | 148,589 | 111,060 | 110,479 | 108,555 | 71,637 |
TW0-1-30 | 145,969 | 108,395 | 107,827 | 106,324 | 79,072 |
TW0-1-33 | 124,551 | 100,196 | 99,962 | 99,237 | 62,441 |
TW0-1-4 | 67,800 | 48,002 | 47,444 | 46,493 | 36,199 |
TW0-1-101 | 92,779 | 77,626 | 77,267 | 76,435 | 65,627 |
TW0-1-28 | 123,207 | 98,275 | 97,849 | 95,999 | 57,353 |
TW0-1-44 | 93,555 | 76,108 | 75,727 | 74,927 | 57,845 |
TW0-1-64 | 79,342 | 63,330 | 63,010 | 62,273 | 45,977 |
TW0-1-87 | 80,502 | 65,053 | 64,689 | 63,708 | 46,194 |
TW0-1-93 | 85,017 | 67,246 | 67,043 | 66,112 | 54,043 |
TW8-2-101 | 29,904 | 15,109 | 14,925 | 14,678 | 13,074 |
TW8-2-28 | 37,619 | 18,604 | 18,249 | 17,977 | 14,104 |
TW8-2-44 | 39,047 | 19,011 | 18,854 | 18,650 | 15,916 |
TW8-2-64 | 35,484 | 17,170 | 17,017 | 16,849 | 13,546 |
TW8-2-87 | 29,232 | 13,553 | 13,405 | 13,298 | 9193 |
TW8-2-93 | 51,548 | 25,060 | 24,826 | 24,404 | 19,697 |
TW8-3-22 | 80,475 | 57,923 | 57,475 | 56,476 | 49,362 |
TW8-3-23 | 88,815 | 66,880 | 66,592 | 65,661 | 50,791 |
TW8-3-26 | 240,804 | 181,521 | 180,569 | 177,129 | 145,464 |
TW8-3-30 | 87,286 | 64,381 | 64,027 | 63,254 | 50,862 |
TW8-3-33 | 137,037 | 94,961 | 94,181 | 92,399 | 81,152 |
TW8-3-4 | 128,895 | 93,093 | 92,460 | 90,949 | 76,221 |
Taxonomy | Baseline (TW0) | After Treatment (TW8) | p-Value |
---|---|---|---|
Phyla | |||
Proteobacteria | 14.79 ± 5.58 | 23.46 ± 8.02 | 0.100 |
Verrucomicrobiota | 5.54 ± 3.71 | 2.39 ± 1.84 | 0.475 |
Bacteroidota | 27.77 ± 7.90 | 24.61 ± 6.31 | 0.938 |
Actinobacteriota | 9.27 ± 4.00 | 6.66 ± 1.84 | 0.875 |
Firmicutes | 41.09 ± 6.81 | 41.48 ± 6.57 | 0.754 |
Fusobacteriota | 1.32 ± 0.80 | 1.27 ± 0.80 | 0.969 |
Desulfobacterota | 0.19 ± 0.07 | 0.11 ± 0.05 | 0.388 |
Patescibacteria | 0.04 ± 0.02 | 0.01 ± 0.004 | 0.254 |
Genera | |||
Escherichia-Shigella | 13.71 ± 5.90 | 21.90 ± 8.63 | 0.117 |
Akkermansia | 5.63 ± 3.77 | 2.49 ± 1.90 | 0.751 |
Bacteroides | 16.81 ± 6.76 | 18.21 ± 4.90 | 0.272 |
Bifidobacterium | 5.80 ± 3.86 | 4.30 ± 1.52 | 0.610 |
Phascolarctobacterium | 4.66 ± 1.87 | 2.66 ± 1.15 | 0.724 |
Prevotella | 9.58 ± 3.40 | 4.96 ± 2.78 | 0.609 |
Faecalibacterium | 2.85 ± 0.74 | 5.75 ± 1.96 | 0.182 |
Blautia | 5.52 ± 2.78 | 3.77 ± 2.17 | 0.239 |
Collinsella | 1.70 ± 0.61 | 2.22 ± 0.77 | 0.388 |
Weissella | 3.89 ± 3.70 | 0.07 ± 0.03 | 0.308 |
Subdoligranulum | 0.79 ± 0.32 | 1.32 ± 0.48 | 0.638 |
Agathobacter | 0.41 ± 0.13 | 1.13 ± 0.41 | 0.100 |
Romboutsia | 0.52 ± 0.21 | 0.39 ± 0.14 | 1.000 |
Roseburia | 0.72 ± 0.22 | 0.99 ± 0.55 | 0.784 |
Alistipes | 0.45 ± 0.17 | 0.42 ± 0.36 | 0.325 |
Paraprevotella | 2.05 ± 1.17 | 2.79 ± 2.40 | 0.305 |
Streptococcus | 1.43 ± 0.90 | 1.38 ± 0.87 | 0.433 |
Fusobacterium | 1.14 ± 0.85 | 0.38 ± 0.16 | 0.969 |
Slackia | 0.84 ± 0.37 | 1.76 ± 1.12 | 0.906 |
UCG 002 | 0.69 ± 0.17 | 1.14 ± 0.28 | 0.410 |
Dorea | 1.53 ± 1.24 | 1.09 ± 0.53 | 0.255 |
Lactobacillus | 0.08 ± 0.02 | 0.39 ± 0.16 | 0.784 |
Monoglobus | 0.05 ± 0.03 | 1.31 ± 1.18 | 0.365 |
Parasutterella | 0.57 ± 0.43 | 0.55 ± 0.42 | 0.184 |
Enterococcus | 0.22 ± 0.08 | 0.64 ± 0.33 | 0.723 |
Butyricicoccus | 0.91 ± 0.74 | 0.08 ± 0.04 | 0.388 |
Olsenella | 0.20 ± 0.11 | 0.72 ± 0.32 | 0.305 |
CAG 352 | 0.81 ± 0.39 | 0.30 ± 0.15 | 0.076 |
Holdemanella | 0.33 ± 0.17 | 0.35 ± 0.11 | 0.145 |
Fusicatenibacter | 0.45 ± 0.17 | 0.42 ± 0.36 | 0.583 |
Parabacteroides | 0.66 ± 0.22 | 0.61 ± 0.21 | 0.969 |
Coprococcus | 0.28 ± 0.14 | 0.69 ± 0.27 | 0.383 |
Lachnoclostridium | 0.50 ± 0.15 | 0.30 ± 0.12 | 0.153 |
Barnesiella | 0.38 ± 0.15 | 0.07 ± 0.04 | 0.178 |
Odoribacter | 0.32 ± 0.10 | 0.17 ± 0.10 | 0.267 |
Atopobium | 0.52 ± 0.51 | 0.06 ± 0.05 | 0.344 |
Megamonas | 0.85 ± 0.35 | 0.39 ± 0.27 | 0.268 |
Clostridia UCG 014 | 0.09 ± 0.06 | 0.49 ± 0.37 | 0.767 |
Klebsiella | 1.32 ± 0.63 | 0.48 ± 0.21 | 0.289 |
Ruminococcus | 0.38 ± 0.24 | 0.24 ± 0.12 | 0.969 |
Erysipelotrichaceae UCG 003 | 0.31 ± 0.13 | 0.08 ± 0.04 | 0.234 |
Enterobacteriaceae | 0.35 ± 0.18 | 0.19 ± 0.12 | 0.456 |
Anaerostipes | 0.08 ± 0.03 | 0.38 ± 0.16 | 0.132 |
Enterobacter | 0.21 ± 0.07 | 0.31 ± 0.20 | 0.505 |
Veillonella | 0.37 ± 0.15 | 1.25 ± 1.14 | 0.326 |
Flavonifractor | 0.10 ± 0.04 | 0.13 ± 0.10 | 1.000 |
UBA1819 | 0.09 ± 0.03 | 0.13 ± 0.07 | 0.875 |
Lachnospiraceae UCG 010 | 0.13 ± 0.09 | 0.04 ± 0.02 | 0.692 |
Hungatella | 0.15 ± 0.12 | 0.15 ± 0.09 | 0.966 |
Butyricimonas | 0.18 ± 0.05 | 0.06 ± 0.04 | 0.017 * |
Bilophila | 0.11 ± 0.06 | 0.11 ± 0.06 | 0.784 |
Lachnospiraceae | 0.23 ± 0.06 | 0.26 ± 0.13 | 0.724 |
Sutterella | 0.10 ± 0.04 | 0.15 ± 0.11 | 1.000 |
Species | |||
Bacteroides stercoris | 10.31 ± 7.83 | 1.96 ± 1.01 | 0.422 |
Bacteroides vulgatus | 12.34 ± 3.94 | 28.81 ± 8.31 | 0.021 * |
Bacteroides fragilis | 3.26 ± 1.61 | 13.96 ± 7.30 | 0.222 |
Bacteroides uniformis | 10.70 ± 3.76 | 5.32 ± 2.28 | 0.365 |
Lachnospiraceae NK4A136 group | 4.77 ± 2.02 | 6.29 ± 2.67 | 0.634 |
Eubacterium hallii group | 12.40 ± 5.98 | 12.80 ± 5.46 | 0.610 |
Ruminococcus torques group | 7.95 ± 2.23 | 6.66 ± 2.75 | 0.326 |
Slackia isoflavoniconvertens | 7.76 ± 4.49 | 3.97 ± 1.77 | 0.579 |
Bacteroides massiliensis | 6.64 ± 3.71 | 1.14 ± 0.62 | 0.148 |
Eubacterium eligens group | 2.30 ± 0.96 | 1.12 ± 0.47 | 0.222 |
Incertae sedis | 0.66 ± 0.22 | 0.56 ± 0.29 | 0.555 |
Eubacterium ramulus | 0.48 ± 0.21 | 0.95 ± 0.42 | 0.969 |
Parabacteroides distasonis | 1.49 ± 0.61 | 0.88 ± 0.49 | 0.422 |
Taxonomy | Baseline (PW0) | After Treatment (PW8) | p-Value |
---|---|---|---|
Phyla | |||
Proteobacteria | 19.71 ± 6.45 | 7.66 ± 1.86 | 0.071 |
Bacteroidota | 30.95 ± 8.51 | 24.05 ± 4.91 | 0.754 |
Firmicutes | 44.75 ± 6.74 | 60.11 ± 2.45 | 0.136 |
Actinobacteriota | 1.68 ± 0.46 | 4.35 ± 1.57 | 0.023 * |
Fusobacteriota | 1.69 ± 1.17 | 0.80 ± 0.50 | 0.938 |
Verrucomicrobiota | 1.02 ± 0.39 | 2.85 ± 2.24 | 0.609 |
Desulfobacterota | 0.21 ± 0.09 | 0.18 ± 0.06 | 0.969 |
Genera | |||
Escherichia-Shigella | 16.30 ± 6.58 | 5.85 ± 2.14 | 0.050 * |
Bacteroides | 14.37 ± 4.14 | 14.92 ± 3.88 | 1.000 |
Faecalibacterium | 3.22 ± 0.83 | 3.46 ± 1.24 | 0.530 |
Blautia | 6.07 ± 3.24 | 5.11 ± 0.88 | 0.182 |
Prevotella | 14.65 ± 6.52 | 6.97 ± 2.54 | 0.609 |
Agathobacter | 1.90 ± 0.83 | 0.57 ± 0.24 | 0.224 |
Collinsella | 0.98 ± 0.29 | 3.62 ± 1.89 | 0.045 * |
Subdoligranulum | 2.49 ± 1.04 | 1.20 ± 0.53 | 0.158 |
Streptococcus | 2.13 ± 1.53 | 5.47 ± 3.56 | 0.695 |
Roseburia | 1.33 ± 0.28 | 2.41 ± 0.83 | 0.195 |
Phascolarctobacterium | 2.61 ± 0.55 | 3.78 ± 1.09 | 0.433 |
Romboutsia | 0.46 ± 0.16 | 1.22 ± 0.51 | 0.081 |
Klebsiella | 1.54 ± 0.59 | 0.63 ± 0.22 | 0.170 |
Fusobacterium | 1.75 ± 1.21 | 0.92 ± 0.57 | 0.938 |
Ruminococcus | 0.92 ± 0.33 | 1.11 ± 0.46 | 0.906 |
Dorea | 0.64 ± 0.17 | 1.20 ± 0.53 | 0.254 |
Akkermansia | 1.12 ± 0.43 | 3.92 ± 3.04 | 0.609 |
Lachnoclostridium | 0.77 ± 0.14 | 1.28 ± 0.49 | 0.814 |
UCG-002 | 1.50 ± 0.55 | 0.95 ± 0.44 | 0.289 |
Fusicatenibacter | 0.68 ± 0.28 | 0.35 ± 0.25 | 0.209 |
Enterobacter | 1.29 ± 0.60 | 0.09 ± 0.03 | 0.090 |
Veillonella | 0.21 ± 0.08 | 4.91 ± 2.59 | 0.100 |
Alistipes | 1.23 ± 0.54 | 0.96 ± 0.38 | 0.480 |
CAG-352 | 0.39 ± 0.12 | 0.52 ± 0.22 | 0.969 |
Enterobacteriaceae | 1.88 ± 1.10 | 0.35 ± 0.17 | 0.209 |
Coprococcus | 0.70 ± 0.23 | 0.77 ± 0.22 | 0.410 |
Sutterella | 0.49 ± 0.24 | 1.64 ± 0.99 | 0.047 * |
Anaerostipes | 0.41 ± 0.18 | 0.64 ± 0.22 | 0.556 |
Parabacteroides | 0.90 ± 0.29 | 1.04 ± 0.35 | 0.875 |
Holdemanella | 0.68 ± 0.37 | 0.53 ± 0.32 | 0.906 |
Butyricicoccus | 0.52 ± 0.14 | 1.03 ± 0.25 | 0.100 |
Enterococcus | 0.15 ± 0.09 | 2.62 ± 1.83 | 0.057 |
Lachnospira | 0.41 ± 0.20 | 0.22 ± 0.10 | 0.428 |
Lachnospiraceae | 0.62 ± 0.24 | 1.04 ± 0.31 | 0.255 |
Paraprevotella | 0.58 ± 0.39 | 0.42 ± 0.25 | 0.969 |
Muribaculaceae | 0.38 ± 0.18 | 0.95 ± 0.54 | 0.937 |
Haemophilus | 0.10 ± 0.05 | 0.26 ± 0.15 | 0.178 |
Bifidobacterium | 0.13 ± 0.05 | 0.50 ± 0.22 | 0.170 |
UBA1819 | 0.06 ± 0.02 | 0.10 ± 0.05 | 0.969 |
Lachnospiraceae UCG010 | 0.16 ± 0.04 | 0.14 ± 0.05 | 0.692 |
Odoribacter | 0.15 ± 0.06 | 0.17 ± 0.10 | 0.937 |
Oscillibacter | 0.05 ± 0.01 | 0.13 ± 0.08 | 0.937 |
Bilophila | 0.13 ± 0.10 | 0.07 ± 0.03 | 0.783 |
Butyricimonas | 0.26 ± 0.12 | 0.15 ± 0.06 | 0.844 |
Species | |||
Bacteroides uniformis | 7.72 ± 2.21 | 5.48 ± 3.86 | 0.158 |
Bacteroides vulgatus | 7.99 ± 2.23 | 8.17 ± 2.28 | 0.875 |
Bacteroides plebeius | 5.44 ± 3.84 | 4.16 ± 2.49 | 0.937 |
Lachnospiraceae NK4A136 group | 2.39 ± 1.72 | 3.78 ± 1.52 | 0.665 |
Bacteroides coprophilus | 3.10 ± 2.96 | 2.03 ± 1.32 | 1.000 |
Eubacterium hallii group | 11.47 ± 6.49 | 9.85 ± 5.06 | 0.754 |
Ruminococcus gnavus group | 0.84 ± 0.38 | 7.56 ± 4.52 | 0.812 |
Ruminococcus bicirculans | 1.81 ± 0.82 | 1.70 ± 0.80 | 0.906 |
Lactobacillus salivarius | 7.42 ± 7.29 | 4.51 ± 4.36 | 0.902 |
Prevotella stercorea | 3.32 ± 1.81 | 2.87 ± 1.50 | 0.475 |
Prevotella copri | 1.55 ± 1.36 | 10.04 ± 4.89 | 0.475 |
Ruminococcus torques group | 2.35 ± 0.48 | 3.51 ± 1.05 | 0.194 |
Bacteroides stercoris | 4.60 ± 1.84 | 1.11 ± 0.59 | 0.194 |
Parabacteroides merdae | 1.30 ± 0.43 | 0.90 ± 0.30 | 0.255 |
Eubacterium eligens group | 1.28 ± 0.36 | 1.36 ± 0.63 | 0.433 |
Parabacteroides distasonis | 2.05 ± 1.14 | 1.41 ± 0.81 | 0.692 |
Ruminococcus gauvreauii group | 0.71 ± 0.36 | 1.75 ± 1.45 | 0.410 |
Alistipes shahii | 0.87 ± 0.45 | 0.46 ± 0.23 | 0.194 |
Taxonomy | Placebo vs. Treatment | p-Value | |
---|---|---|---|
Phylum | |||
Proteobacteria | −12.06 | 8.67 | 0.015 * |
Bacteroidota | −6.90 | −3.15 | 0.773 |
Firmicutes | 15.36 | 0.39 | 0.166 |
Actinobacteriota | 2.67 | −2.61 | 0.564 |
Fusobacteriota | −0.89 | −0.05 | 0.817 |
Verrucomicrobiota | 1.84 | −3.15 | 0.384 |
Desulfobacterota | −0.03 | −0.07 | 0.686 |
Genus | |||
Escherichia-Shigella | −10.45 | 8.20 | 0.024 * |
Bacteroides | 0.55 | 1.40 | 0.326 |
Faecalibacterium | 0.24 | 2.90 | 0.273 |
Blautia | −0.96 | −1.76 | 0.106 |
Prevotella | −7.68 | −4.61 | 0.908 |
Agathobacter | −1.33 | 0.72 | 0.050 |
Collinsella | 2.63 | 0.52 | 0.525 |
Subdoligranulum | −1.29 | 0.53 | 0.133 |
Streptococcus | 3.34 | 0.75 | 0.225 |
Roseburia | 1.08 | 0.27 | 0.237 |
Phascolarctobacterium | 1.18 | −1.99 | 0.419 |
Romboutsia | 0.76 | −0.12 | 0.138 |
Klebsiella | −0.91 | −0.83 | 0.977 |
Fusobacterium | −0.83 | −0.05 | 0.817 |
Ruminococcus | 0.19 | −0.14 | 0.862 |
Dorea | 0.55 | 0.45 | 0.817 |
Akkermansia | 2.80 | −3.14 | 0.487 |
Lachnoclostridium | 0.50 | −0.20 | 0.453 |
UCG-002 | −0.55 | 0.92 | 0.260 |
Fusicatenibacter | −0.33 | 0.02 | 0.204 |
Enterobacter | −1.19 | 0.10 | 0.355 |
Veillonella | 4.70 | 0.88 | 0.106 |
Alistipes | −0.28 | −0.25 | 1.000 |
CAG-352 | 0.13 | 0.52 | 0.148 |
Enterobacteriaceae | −1.53 | −0.16 | 0.419 |
Coprococcus | 0.07 | 0.40 | 0.977 |
Sutterella | 1.15 | 0.05 | 0.039 * |
Anaerostipes | 0.23 | 0.30 | 0.470 |
Parabacteroides | 0.13 | −0.04 | 0.908 |
Holdemanella | −0.16 | −0.50 | 0.386 |
Butyricicoccus | 0.51 | 0.43 | 0.326 |
Enterococcus | 2.47 | −0.02 | 0.182 |
Lachnospiraceae | 0.41 | 0.03 | 0.312 |
Paraprevotella | −0.16 | −0.03 | 0.541 |
Bifidobacterium | 0.37 | −1.50 | 0.795 |
UBA1819 | 0.04 | 0.04 | 0.729 |
Lachnospiraceae UCG-010 | −0.02 | −0.09 | 0.931 |
Odoribacter | 0.03 | −0.15 | 0.309 |
Bilophila | −0.06 | 0.00 | 0.862 |
Butyricimonas | −0.11 | −0.12 | 0.271 |
Species | |||
Bacteroides uniformis | −2.24 | −5.38 | 0.908 |
Bacteroides vulgatus | 0.18 | 16.47 | 0.033 * |
Lachnospiraceae NK4A136 group | 1.39 | 1.52 | 1.000 |
Bacteroides stercoris | −3.49 | −8.35 | 0.727 |
Parabacteroides distasonis | −0.64 | −0.61 | 0.447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaiyasut, C.; Sivamaruthi, B.S.; Thangaleela, S.; Sisubalan, N.; Bharathi, M.; Khongtan, S.; Kesika, P.; Sirilun, S.; Choeisoongnern, T.; Peerajan, S.; et al. Influence of Lactobacillus rhamnosus Supplementation on the Glycaemic Index, Lipid Profile, and Microbiome of Healthy Elderly Subjects: A Preliminary Randomized Clinical Trial. Foods 2024, 13, 1293. https://doi.org/10.3390/foods13091293
Chaiyasut C, Sivamaruthi BS, Thangaleela S, Sisubalan N, Bharathi M, Khongtan S, Kesika P, Sirilun S, Choeisoongnern T, Peerajan S, et al. Influence of Lactobacillus rhamnosus Supplementation on the Glycaemic Index, Lipid Profile, and Microbiome of Healthy Elderly Subjects: A Preliminary Randomized Clinical Trial. Foods. 2024; 13(9):1293. https://doi.org/10.3390/foods13091293
Chicago/Turabian StyleChaiyasut, Chaiyavat, Bhagavathi Sundaram Sivamaruthi, Subramanian Thangaleela, Natarajan Sisubalan, Muruganantham Bharathi, Suchanat Khongtan, Periyanaina Kesika, Sasithorn Sirilun, Thiwanya Choeisoongnern, Sartjin Peerajan, and et al. 2024. "Influence of Lactobacillus rhamnosus Supplementation on the Glycaemic Index, Lipid Profile, and Microbiome of Healthy Elderly Subjects: A Preliminary Randomized Clinical Trial" Foods 13, no. 9: 1293. https://doi.org/10.3390/foods13091293
APA StyleChaiyasut, C., Sivamaruthi, B. S., Thangaleela, S., Sisubalan, N., Bharathi, M., Khongtan, S., Kesika, P., Sirilun, S., Choeisoongnern, T., Peerajan, S., Fukngoen, P., Sittiprapaporn, P., & Rungseevijitprapa, W. (2024). Influence of Lactobacillus rhamnosus Supplementation on the Glycaemic Index, Lipid Profile, and Microbiome of Healthy Elderly Subjects: A Preliminary Randomized Clinical Trial. Foods, 13(9), 1293. https://doi.org/10.3390/foods13091293