Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fermentation of Soy Sauce
2.2.1. Fermentation Process of Koji and Moromi (Primary Fermentation)
2.2.2. Secondary Fermentation of Moromi by Three Selected Strains
2.3. Sensory Assessment
2.4. Amino Acid Nitrogen Content Analysis
2.5. Free Amino Acid Analysis
2.6. Determination of Nucleotide
2.7. Determination of Organic Acids
2.8. Fatty Acids Composition Analysis
2.9. Determination of Volatile Organic Compounds
2.10. Statistical Analysis
3. Results and Discussion
3.1. Change in pH and Amino Acid Nitrogen Content during Fermentation
3.2. Sensory Change during Fermentation
3.3. The Free Amino Acid Compositions during Fermentation
3.4. Changes in Flavor Nucleotides during Fermentation
3.5. Changes in Organic Acids during Fermentation
3.6. Changes in Volatile Compounds during Fermentation
3.7. Change in Fatty Acid Compositions during Fermentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rust, P.; Ekmekcioglu, C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. Adv. Exp. Med. Biol. 2017, 956, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Heyman, S.N.; Bursztyn, M.; Abassi, Z. Low-salt diet and renal safety: Taken with a pinch of salt. J. Physiol. 2020, 598, 5299–5300. [Google Scholar] [CrossRef]
- Kanchanachitra, M.; Chamchan, C.; Kanchanachitra, C.; Suttikasem, K.; Gunn, L.; Vlaev, I. Nudge interventions to reduce fish sauce consumption in Thailand. PLoS ONE 2020, 15, e0238642. [Google Scholar] [CrossRef] [PubMed]
- Lulf, R.H.; Vogel, R.F.; Ehrmann, M.A. Microbiota dynamics and volatile compounds in lupine based Moromi fermented at different salt concentrations. Int. J. Food Microbiol. 2021, 354, 109316. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, D.S.; Son, Y.; Le, H.G.; Jo, S.W.; Lee, J.; Song, Y.; Kim, H.J. Effects of Salt Treatment Time on the Metabolites, Microbial Composition, and Quality Characteristics of the Soy Sauce Moromi Extract. Foods 2021, 11, 63. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, S.B.; Kim, Y.S. Determination of Key Volatile Compounds Related to Long-Term Fermentation of Soy Sauce. J. Food Sci. 2019, 84, 2758–2776. [Google Scholar] [CrossRef] [PubMed]
- Chindapan, N.; Devahastin, S.; Chiewchan, N.; Sablani, S.S. Desalination of fish sauce by electrodialysis: Effect on selected aroma compounds and amino acid compositions. J. Food Sci. 2011, 76, S451–S457. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Chen, J.; Du, G.; Fang, F. Moromi mash dysbiosis trigged by salt reduction is relevant to quality and aroma changes of soy sauce. Food Chem. 2023, 406, 135064. [Google Scholar] [CrossRef] [PubMed]
- Chun, B.H.; Kim, K.H.; Jeong, S.E.; Jeon, C.O. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste. Food Microbiol. 2020, 86, 103329. [Google Scholar] [CrossRef]
- Wang, M.; Kuang, S.; Wang, X.; Kang, D.; Mao, D.; Qian, G.; Cai, X.; Tan, M.; Liu, F.; Zhang, Y. Transport of Amino Acids in Soy Sauce Desalination Process by Electrodialysis. Membranes 2021, 11, 408. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Linforth, R.; El Kadri, H.; Gkatzionis, K. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce. Food Chem. 2018, 257, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Wendisch, V.F.; Jorge, J.M.P.; Perez-Garcia, F.; Sgobba, E. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J. Microbiol. Biotechnol. 2016, 32, 105. [Google Scholar] [CrossRef]
- Zha, J.; Zhao, Z.; Xiao, Z.; Eng, T.; Mukhopadhyay, A.; Koffas, M.A.; Tang, Y.J. Biosystem design of Corynebacterium glutamicum for bioproduction. Curr. Opin. Biotechnol. 2023, 79, 102870. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, S.; Wang, J.; Liu, G.; Wu, S.; Tao, Y. Isolating promoters from Corynebacterium ammoniagenes ATCC 6871 and application in CoA synthesis. BMC Biotechnol 2019, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob. Proteins 2017, 9, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Singh, N.S.; Mohanty, S.; Kumar, M.; Virdi, J.S. Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro. Sci. Rep. 2021, 11, 15288. [Google Scholar] [CrossRef] [PubMed]
- Matejcekova, Z.; Dujmic, E.; Liptakova, D.; Valik, L. Modeling of lactic acid fermentation of soy formulation with Lactobacillus plantarum HM1. Food Sci. Technol. Int. 2019, 25, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.P.; Silvain, A.; Normanno, G.; Grieco, F.; Drider, D.; Spano, G.; Fiocco, D. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms. Front. Microbiol. 2016, 7, 464. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Hao, L.; Zhang, G.; Jin, Z.; Li, C.; Yang, Y.; Rao, J.; Chen, B. Traditional fermented soybean products: Processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 2022, 62, 1971–1989. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, M.; Xie, N.; Huang, M.; Feng, Y. Community structure of yeast in fermented soy sauce and screening of functional yeast with potential to enhance the soy sauce flavor. Int. J. Food Microbiol. 2022, 370, 109652. [Google Scholar] [CrossRef]
- Liu, R.; Gao, G.; Bai, Y.; Hou, L. Fermentation of high-salt liquid-state soy sauce without any additives by inoculation of lactic acid bacteria and yeast. Food Sci. Technol. Int. 2020, 26, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Song, J.; Kwok, L.Y.; Wang, J.; Dong, Y.; Yu, H.; Hou, Q.; Zhang, H.; Chen, Y. Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage. J. Dairy Sci. 2017, 100, 2512–2525. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and Sensory Characteristics of Soy Sauce: A Review. J. Agric. Food Chem. 2020, 68, 11612–11630. [Google Scholar] [CrossRef]
- Kato, H.; Rhue, M.R.; Nishimura, T. Role of Free Amino Acids and Peptides in Food Taste. In Flavor Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1989; pp. 158–174. [Google Scholar]
- Duan, W.; Huang, Y.; Xiao, J.; Zhang, Y.; Tang, Y. Determination of free amino acids, organic acids, and nucleotides in 29 elegant spices. Food Sci. Nutr. 2020, 8, 3777–3792. [Google Scholar] [CrossRef] [PubMed]
- Van Gemert, L.J. Flavour thresholds. In Compilations of Flavour Threshold Values in Water and Other Media; Oliemans Punter Utrecht: Utrecht, The Netherlands, 2003. [Google Scholar]
- Chen, Z.Y.; Feng, Y.Z.; Cui, C.; Zhao, H.F.; Zhao, M.M. Effects of koji-making with mixed strains on physicochemical and sensory properties of Chinese-type soy sauce. J. Sci. Food Agric. 2015, 95, 2145–2154. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Xue, C.H.; Xu, L.L.; Wang, X.H.; Bi, S.J.; Xue, Q.Q.; Zhang, T.; Xue, Y.; Li, Z.J.; Chen, G.D.; et al. Application of Plackett-Burman Design in Screening of Natural Antioxidants Suitable for Anchovy Oil. Antioxidants 2019, 8, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.-Q.; Xue, C.-H.; Zhang, H.-W.; Xu, L.-L.; Wang, X.-H.; Bi, S.-J.; Xue, Q.-Q.; Xue, Y.; Li, Z.-J.; Velasco, J.; et al. Recombination of oxidized samples of DHA and purified sunflower oil reproduces the odor profile of impaired algae oil from Schizochytrium sp. and reveals the odor contribution of fatty acids other than DHA. LWT 2022, 160, 113291. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The Carbohydrate Metabolism of Lactiplantibacillus plantarum. Int. J. Mol. Sci. 2021, 22, 13452. [Google Scholar] [CrossRef]
- Yang, Y.; Niu, C.; Shan, W.; Zheng, F.; Liu, C.; Wang, J.; Li, Q. Physicochemical, flavor and microbial dynamic changes during low-salt doubanjiang (broad bean paste) fermentation. Food Chem. 2021, 351, 128454. [Google Scholar] [CrossRef]
- Noma, S.; Koyanagi, L.; Kawano, S.; Hayashi, N. Application of Pressurized Carbon Dioxide during Salt-Reduced Sardine Fish Sauce Production. Food Sci. Technol. Res. 2020, 26, 195–204. [Google Scholar] [CrossRef]
- Ikeda, M. Sugar transport systems in Corynebacterium glutamicum: Features and applications to strain development. Appl. Microbiol. Biotechnol. 2012, 96, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Wendisch, V.F.; de Graaf, A.A.; Sahm, H.; Eikmanns, B.J. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 2000, 182, 3088–3096. [Google Scholar] [CrossRef] [PubMed]
- Frunzke, J.; Engels, V.; Hasenbein, S.; Gatgens, C.; Bott, M. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 2008, 67, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Yu, H.; Xu, J. The glucose uptake systems in Corynebacterium glutamicum: A review. World J. Microbiol. Biotechnol. 2020, 36, 126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.J.; Sun, G.J.; Li, Y.Q.; Zhao, X.Z.; He, J.X.; Hua, D.L.; Chen, L.; Mo, H.Z. Changes in quality components and antioxidant activity of peony seed soy sauce during low-salt solid-state fermentation. J. Sci. Food Agric. 2023, 103, 5432–5441. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Cai, Y.; Su, G.; Zhao, H.; Wang, C.; Zhao, M. Evaluation of aroma differences between high-salt liquid-state fermentation and low-salt solid-state fermentation soy sauces from China. Food Chem. 2014, 145, 126–134. [Google Scholar] [CrossRef]
- Udaka, S. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J. Bacteriol. 1960, 79, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, T.; Shimizu, H. Recent advances in amino acid production by microbial cells. Curr. Opin. Biotechnol. 2016, 42, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Devanthi, P.V.P.; Gkatzionis, K. Soy sauce fermentation: Microorganisms, aroma formation, and process modification. Food Res. Int. 2019, 120, 364–374. [Google Scholar] [CrossRef]
- Kinoshita, S.; Udaka, S.; Shimono, M. Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 2004, 50, 331–343. [Google Scholar]
- Becker, J.; Klopprogge, C.; Schroder, H.; Wittmann, C. Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl. Environ. Microbiol. 2009, 75, 7866–7869. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; He, J.; Pan, D.; Wu, Z.; Guo, Y.; Zeng, X.; Lian, L. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress. PLoS ONE 2018, 13, e0196231. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.E.; Saguir, F.M.; Manca de Nadra, M.C. Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. Int. J. Food Microbiol. 1999, 52, 155–161. [Google Scholar] [CrossRef]
- Higuchi, T.; Hayashi, H.; Abe, K. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 1997, 179, 3362–3364. [Google Scholar] [CrossRef]
- Shimizu, K.; Matsuoka, Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol. Adv. 2022, 55, 107887. [Google Scholar] [CrossRef]
- Servant, G.; Frerot, E. Pharmacology of the Umami Taste Receptor. Handb. Exp. Pharmacol. 2022, 275, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Ge, F.; Sun, J.; Ren, Y.; He, B.; Li, J.; Yang, S.; Li, W. Transcriptomic and enzymatic analysis reveals the roles of glutamate dehydrogenase in Corynebacterium glutamicum. AMB Express 2022, 12, 161. [Google Scholar] [CrossRef]
- Shimizu, K.; Matsuoka, Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol. Adv. 2019, 37, 284–305. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Kang, B.; Huang, Y.; Fu, C.; Li, W.; Wu, Q.; Liu, Z.; Li, D.; Wang, C.; et al. Effect of Lactobacillus plantarum or Enterococcus faecalis as co-inoculants with Aspergillus oryzae in koji making on the physicochemical properties of soy sauce. J. Food Sci. 2022, 87, 714–727. [Google Scholar] [CrossRef]
- Simões, S.; Santos, R.; Bento-Silva, A.; Santos, M.V.; Mota, M.; Duarte, N.; Sousa, I.; Raymundo, A.; Prista, C. Improving nutritional quality of unripe tomato through fermentation by a consortium of yeast and lactic acid bacteria. J. Sci. Food Agric. 2022, 102, 1422–1429. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kawaguchi, H.; Shirai, T.; Ninomiya, K.; Takahashi, K.; Kondo, A.; Tsuge, Y. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Corynebacterium glutamicum. ACS Synth. Biol. 2020, 9, 814–826. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Nichols, N.N.; Dien, B.S.; Cotta, M.A. Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. J. Ind. Microbiol. Biotechnol. 2006, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Shi, C.; Zhang, J.; Ji, Z. Comparison of freshness prediction method for salmon fillet during different storage temperatures. J. Sci. Food Agric. 2021, 101, 4987–4994. [Google Scholar] [CrossRef] [PubMed]
- Loch, C.; Reusch, H.; Ruge, I.; Godelmann, R.; Pflaum, T.; Kuballa, T.; Schumacher, S.; Lachenmeier, D.W. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages. Food Chem. 2016, 206, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Soares da Costa, M.; Goncalves, C.; Ferreira, A.; Ibsen, C.; Guedes de Pinho, P.; Silva Ferreira, A.C. Further insights into the role of methional and phenylacetaldehyde in lager beer flavor stability. J. Agric. Food Chem. 2004, 52, 7911–7917. [Google Scholar] [CrossRef] [PubMed]
- Walker, V.; Mills, G.A. 2-Pentanone production from hexanoic acid by Penicillium roqueforti from blue cheese: Is this the pathway used in humans? Sci. World J. 2014, 2014, 215783. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xie, T.; Xie, J.; Chen, C.; Ai, L.; Tian, H. Aroma perceptual interactions of benzaldehyde, furfural, and vanillin and their effects on the descriptor intensities of Huangjiu. Food Res. Int. 2020, 129, 108808. [Google Scholar] [CrossRef] [PubMed]
- Zea, L.; Serratosa, M.; Merida, J.; Moyano, L. Acetaldehyde as Key Compound for the Authenticity of Sherry Wines: A Study Covering 5 Decades. Compr. Rev. Food Sci. Food Saf. 2015, 14, 681–693. [Google Scholar] [CrossRef]
- Zou, M.; Zhu, X.; Li, X.; Zeng, X. Changes in lipids distribution and fatty acid composition during soy sauce production. Food Sci. Nutr. 2019, 7, 764–772. [Google Scholar] [CrossRef]
- Radmacher, E.; Alderwick, L.J.; Besra, G.S.; Brown, A.K.; Gibson, K.J.C.; Sahm, H.; Eggeling, L. Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology 2005, 151, 2421–2427. [Google Scholar] [CrossRef]
- Nickel, J.; Irzik, K.; van Ooyen, J.; Eggeling, L. The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate. Mol. Microbiol. 2010, 78, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Takeno, S.; Takasaki, M.; Urabayashi, A.; Mimura, A.; Muramatsu, T.; Mitsuhashi, S.; Ikeda, M. Development of fatty acid-producing Corynebacterium glutamicum strains. Appl. Environ. Microbiol. 2013, 79, 6776–6783. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Ferrada, B.M.; Gomez-Zavaglia, A.; Semorile, L.; Tymczyszyn, E.E. Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol. Lett. Appl. Microbiol. 2015, 60, 155–161. [Google Scholar] [CrossRef]
G-FD | Asp | Glu | Thr | Ser | Gly | Ala | Lys | Pro | Val | Met | Ile | Leu | Tyr | Phe | His | Arg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G1-0 | 83.1 ± 0.8 a | 215.9 ± 3.7 a | 208.2 ± 5.1 a | 145.8 ± 2.8 a | 97.8 ± 0.8 a | 293.1 ± 3.7 a | 205.3 ± 5.1 a | 328.8 ± 3.4 a | 453.4 ± 11.2 a | 104 ± 0.7 b | 456.2 ± 10.6 a | 847.1 ± 7.6 a | 105.4 ± 1.2 a | 442.3 ± 7.3 a | 59.6 ± 1.5 a | 124.3 ± 3.6 a |
G1-1 | 85 ± 3.8 a | 238.7 ± 15.6 a | 206.3 ± 8.5 a | 138.8 ± 6.3 a | 88.5 ± 6.2 b | 298 ± 20.2 a | 207.3 ± 9.1 a | 351.2 ± 18.1 a | 467.2 ± 15.1 a | 116.9 ± 4.0 c | 473 ± 32.2 a | 910.2 ± 41.6 b | 147.1 ± 5.9 d | 487 ± 26.1 b | 71.2 ± 2.6 b | 137.5 ± 4.4 b |
G1-3 | 103 ± 7.6 b | 362.1 ± 30.7 b | 306.2 ± 16.1 b | 202.8 ± 16.6 b | 114.3 ± 7.2 c | 377 ± 19.1 b | 284.9 ± 14.3 b | 418.7 ± 38.9 b | 575.5 ± 26.3 b | 63.6 ± 3.7 a | 648.7 ± 43.5 b | 1019.6 ± 59.4 c | 157.7 ± 9.4 e | 654.3 ± 60.4 c | 80.2 ± 5.3 c | 166.4 ± 7.2 c |
G1-5 | 102.6 ± 4.5 b | 394.7 ± 19.4 c | 342.6 ± 25.0 c | 220.4 ± 21.9 c | 129.9 ± 11.4 d | 483.8 ± 42.0 c | 342.7 ± 15.4 c | 541.2 ± 39.0 c | 621.4 ± 38.2 bc | 124 ± 10.1 c | 669.5 ± 41.2 b | 1189.9 ± 62.2 d | 134.8 ± 6.0 c | 777.4 ± 46.1 e | 79 ± 4.2 c | 194 ± 8.8 d |
G1-7 | 119.8 ± 4.3 c | 477 ± 15.4 d | 379.5 ± 35.3 d | 260.6 ± 8.9 d | 155 ± 13.7 e | 454.7 ± 27.7 c | 322.9 ± 32.4 d | 558.4 ± 24.4 d | 618 ± 29.4 c | 171.2 ± 5.9 e | 708 ± 32.9 c | 1055.4 ± 113.2 c | 121 ± 11.3 b | 647 ± 32.5 c | 95.8 ± 8.8 d | 182.7 ± 6.6 cd |
G1-10 | 139.6 ± 9.0 d | 509.4 ± 63.5 e | 366.6 ± 15.2 d | 262.6 ± 14.3 d | 158.6 ± 6.4 e | 438.6 ± 39.7 d | 306.3 ± 9.0 e | 492.3 ± 27.3 d | 598.9 ± 21.9 c | 158.1 ± 14.9 d | 759.8 ± 79.4 d | 1109.4 ± 42.4 e | 146.9 ± 6.6 d | 707.7 ± 35.0 d | 97.8 ± 3.7 d | 176 ± 5.9 c |
G2-0 | 82.8 ± 0.6 b | 219 ± 2.0 a | 205.6 ± 4.5 a | 145.8 ± 3.0 a | 98.9 ± 2.0 a | 290.1 ± 7.0 a | 204 ± 3.1 a | 328.2 ± 6.7 a | 458.8 ± 9.2 a | 103.8 ± 2.5 c | 456.4 ± 4.1 a | 841.8 ± 15.6 a | 106.1 ± 1.6 a | 443.6 ± 5.2 a | 59.7 ± 0.7 a | 124.3 ± 3.9 a |
G2-1 | 78.7 ± 3.1 a | 283.8 ± 11.6 b | 239.1 ± 9.4 b | 162 ± 11.7 b | 102.8 ± 7.7 a | 271.3 ± 20.1 a | 232.7 ± 12.2 b | 404.7 ± 15.1 b | 522.6 ± 31.0 b | 139.2 ± 9.5 e | 544.7 ± 29.1 b | 865.2 ± 63.4 a | 150.4 ± 11.0 d | 556.4 ± 39.8 b | 66 ± 3.2 b | 133.9 ± 4.5 c |
G2-3 | 95.2 ± 7.6 c | 372.8 ± 25.4 c | 252.9 ± 19.9 b | 211.6 ± 18.4 c | 120.2 ± 10.8 b | 281.5 ± 24.6 a | 301.6 ± 28.5 c | 450.7 ± 36.6 c | 610 ± 53.5 d | 165.9 ± 8.7 f | 664 ± 31.4 c | 1048.3 ± 60.5 b | 154.4 ± 12.4 d | 642.3 ± 46.4 c | 97.7 ± 8.5 e | 182.5 ± 3.9 cd |
G2-5 | 99.1 ± 9.2 d | 438.1 ± 27.9 d | 273.4 ± 16.3 c | 242.8 ± 18.3 d | 146.1 ± 12.2 c | 286.9 ± 26.4 a | 310 ± 29.0 cd | 515.1 ± 42.5 d | 597.9 ± 34.7 cd | 122.8 ± 8.7 d | 681.8 ± 62.9 cd | 1117.6 ± 95.6 bc | 126.2 ± 6.9 b | 730.3 ± 58.2 e | 87.4 ± 6.7 d | 176.1 ± 6.9 c |
G2-7 | 102.3 ± 8.8 d | 450.2 ± 20.7 d e | 305.4 ± 19.5 d | 258.3 ± 13.2 e | 155.5 ± 9.9 d | 315.6 ± 24.2 b | 322.1 ± 9.5 d | 555.4 ± 35.4 e | 583 ± 24.2 c | 72.4 ± 3.5 b | 713.4 ± 45.8 d | 1067.8 ± 90.8 c | 131.1 ± 14.1 b | 687.5 ± 81.5 d | 84.7 ± 10.3 cd | 176.1 ± 9.0 c |
G2-10 | 107.2 ± 6.5 e | 459.4 ± 49.2 e | 332.2 ± 10.1 e | 260 ± 8.4 e | 156.6 ± 15.5 d | 340.6 ± 21.0 c | 340.8 ± 42.1 e | 558.8 ± 43.9 e | 620.8 ± 73.1 e | 32.6 ± 3.1 a | 774.1 ± 30.4 e | 1213.4 ± 23.5 d | 144.6 ± 11.9 c | 774.2 ± 81.7 f | 80.9 ± 7.6 c | 190.6 ± 7.1 d |
G3-0 | 82.4 ± 1.4 a | 214 ± 3.2 a | 208.8 ± 2.5 c | 144.7 ± 3.4 a | 97.5 ± 2.1 a | 292.3 ± 3.7 c | 208.1 ± 2.1 b | 330.6 ± 6.2 ab | 452.6 ± 8.5 a | 104.5 ± 1.9 e | 461.8 ± 5.5 d | 857.8 ± 17.6 f | 103.9 ± 1.2 a | 435.7 ± 7.3 d | 59.2 ± 1.3 b | 124.3 ± 3.4 a |
G3-1 | 86.6 ± 5.8 b | 263.3 ± 8.6 b | 179.2 ± 12.2 a | 186.7 ± 6.2 bc | 101 ± 5.8 a | 257.1 ± 10.9 a | 215.3 ± 7.3 b | 314.6 ± 23.0 a | 539.6 ± 25.9 bc | 107.1 ± 5.8 e | 517.9 ± 26.4 e | 759.7 ± 52.8 e | 129.3 ± 5.2 b | 525.6 ± 18.8 e | 65.2 ± 2.4 c | 150.7 ± 5.5 b |
G3-3 | 119.5 ± 7.5 c | 278.1 ± 24.6 b | 197.2 ± 18.2 b | 190.4 ± 14.5 c | 115.6 ± 6.9 b | 274.2 ± 14.6 b | 232.2 ± 21.0 c | 348.3 ± 33.4 ab | 550 ± 43.2 c | 51.5 ± 2.7 d | 370.3 ± 18.6 c | 540.9 ± 46.5 d | 173.4 ± 9.6 c | 439.9 ± 29.3 d | 68.7 ± 3.9 d | 150.1 ± 6.2 b |
G3-5 | 140.9 ± 10.4 d | 315 ± 21.8 c | 216.3 ± 13.5 c | 175.8 ± 16.9 b | 116.2 ± 8.5 b | 294.4 ± 14.2 c | 183.4 ± 8.6 a | 333.4 ± 23.2 b | 514.6 ± 34.1 b | 42.7 ± 4.1 c | 347.5 ± 30.2 b | 488.8 ± 21.5 c | 235.2 ± 12.5 e | 406.5 ± 22.1 c | 53.3 ± 4.1 a | 119.7 ± 9.5 a |
G3-7 | 170.6 ± 16.4 e | 329.8 ± 39.2 c | 256.3 ± 11.5 d | 203.8 ± 18.8 d | 117.1 ± 4.3 b | 325.6 ± 16.5 d | 211.6 ± 13.9 b | 395.3 ± 29.5 c | 609.4 ± 39.9 d | 23 ± 1.5 a | 304.3 ± 34.61 a | 445 ± 43.3 b | 209.4 ± 13.9 d | 367.5 ± 14.7 b | 61 ± 3.5 b | 142.3 ± 6.5 b |
G3-10 | 171 ± 13.1 e | 419.2 ± 15.9 d | 250.1 ± 16.4 d | 240.9 ± 17.5 e | 143.6 ± 11.7 c | 357 ± 17.1 e | 287.5 ± 16.7 e | 424.2 ± 39.6 d | 596.5 ± 47.6 e | 37.4 ± 1.2 b | 293 ± 16.1 a | 411.6 ± 48.5 a | 223.1 ± 24.5 e | 347 ± 16.1 a | 85.2 ± 8.2 e | 186 ± 7.7 d |
G4-0 | 83.1 ± 1.6 a | 218.5 ± 5.1 a | 206 ± 2.6 a | 146.9 ± 1.8 a | 99.1 ± 1.8 a | 290 ± 2.8 a | 204.7 ± 1.4 a | 328.5 ± 2.6 b | 449.3 ± 3.0 a | 104.1 ± 1.8 f | 459.4 ± 6.2 a | 857.8 ± 13.1 d | 104.9 ± 1.3 a | 447 ± 8.3 a | 59.2 ± 0.9 a | 124.3 ± 3.3 a |
G4-1 | 93.8 ± 5.9 b | 282.2 ± 20.2 b | 237.3 ± 12.2 b | 222.7 ± 8.6 b | 124.4 ± 7.5 b | 339.5 ± 19.9 b | 231.6 ± 10.1 b | 288.9 ± 18.8 a | 539.4 ± 33.4 c | 97.9 ± 6.6 e | 615.9 ± 37.3 b | 920.8 ± 29.9 e | 130.6 ± 8.7 b | 567.8 ± 26.7 b | 75.5 ± 4.3 c | 146 ± 6.2 b |
G4-3 | 137.2 ± 6.8 c | 347.9 ± 34.7 c | 342.1 ± 34.0 d | 242.6 ± 13.9 c | 138.3 ± 8.6 c | 401.8 ± 32.5 c | 253.5 ± 21.9 c | 289.8 ± 24.3 a | 503.3 ± 23.2 b | 64 ± 5.0 d | 653.6 ± 44.1 c | 517.8 ± 32.8 ab | 143.3 ± 9.7 c | 603.8 ± 48 cd | 87.7 ± 6.7 d | 159.8 ± 7.1 bc |
G4-5 | 142.1 ± 14.1 d | 389.2 ± 29.2 d | 348.4 ± 26.8 d | 221 ± 10.7 b | 135.4 ± 6.6 c | 456 ± 39.5 d | 284.8 ± 14.5 d | 303.9 ± 26.9 a | 497.1 ± 22.0 b | 56 ± 4.2 c | 661.6 ± 36.1 c d | 502.7 ± 31.2 a | 131.6 ± 6.5 b | 592.2 ± 57 b c | 68.3 ± 3.5 b | 175.7 ± 7.2 c |
G4-7 | 158 ± 19.1 e | 406.2 ± 21.0 d | 321.4 ± 35.8 c | 240.6 ± 12.2 c | 141.9 ± 11.9 c | 451.1 ± 30 d | 297.8 ± 10.2 e | 324.2 ± 21.6 b | 521.6 ± 49.7 b c | 26.7 ± 1.3 a | 689.7 ± 34.0 d | 531 ± 17.8 b | 143.8 ± 16.9 c | 619.2 ± 40.1 d | 74.6 ± 4.8 c | 213.2 ± 5.5 d |
G4-10 | 169.8 ± 10.0 f | 474.5 ± 19.0 e | 416.81 ± 19.0 e | 275.9 ± 27.6 d | 159.6 ± 15.5 d | 495.3 ± 53.4 e | 317.8 ± 18.2 f | 480.2 ± 22.8 c | 565.4 ± 54.6 d | 37.9 ± 4.6 b | 729.6 ± 80.6 e | 581.6 ± 28.5 c | 157.5 ± 4.6 d | 669.2 ± 27.8 e | 96.4 ± 5.4 e | 199 ± 3.5 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-H.; Qu, W.-H.; Xu, Y.-N.; Xia, S.-G.; Xue, Q.-Q.; Jiang, X.-M.; Liu, H.-Y.; Xue, C.-H.; Wen, Y.-Q. Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains. Foods 2024, 13, 1386. https://doi.org/10.3390/foods13091386
Wang L-H, Qu W-H, Xu Y-N, Xia S-G, Xue Q-Q, Jiang X-M, Liu H-Y, Xue C-H, Wen Y-Q. Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains. Foods. 2024; 13(9):1386. https://doi.org/10.3390/foods13091386
Chicago/Turabian StyleWang, Li-Hao, Wen-Hui Qu, Ya-Nan Xu, Song-Gang Xia, Qian-Qian Xue, Xiao-Ming Jiang, Hong-Ying Liu, Chang-Hu Xue, and Yun-Qi Wen. 2024. "Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains" Foods 13, no. 9: 1386. https://doi.org/10.3390/foods13091386
APA StyleWang, L. -H., Qu, W. -H., Xu, Y. -N., Xia, S. -G., Xue, Q. -Q., Jiang, X. -M., Liu, H. -Y., Xue, C. -H., & Wen, Y. -Q. (2024). Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains. Foods, 13(9), 1386. https://doi.org/10.3390/foods13091386