Impact of Esterification with Octenyl Succinic Anhydride on the Structural Characteristics and Glucose Response in Mice of Wheat Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of OSA-Treated Starch
2.2. Light Microscopy
2.3. Fourier-Transform–Infrared (FT-IR) Spectroscopy
2.4. Determination of the Degree of Substitution (DS)
2.5. Determination of In Vitro Digestibility
2.6. XRD
2.7. Gelatinization Parameters
2.8. Glucose Responses in Mice
2.9. Statistical Analysis
3. Results and Discussion
3.1. Morphology of OSA-Treated Starch
3.2. DS
3.3. FT-IR
3.4. In Vitro Digestibility
3.5. XRD
3.6. Thermal Properties
3.7. Glucose Responses in Mice
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization. Crop Prospects and Food Situation-Quarterly Global Report 2023; No. 3; FAO: Rome, Italy, 2023; Available online: https://www.fao.org/documents/card/en?details=cc8566en (accessed on 9 January 2024).
- Bradauskiene, V.; Vaiciulyte-Funk, L.; Martinaitiene, D.; Andruskiene, J.; Verma, A.K.; Lima, J.P.; Serin, Y.; Catassi, C. Wheat consumption and prevalence of celiac disease: Correlation from a multilevel analysis. Crit. Rev. Food Sci. 2023, 63, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Khlestkin, V.K.; Peltek, S.E.; Kolchanov, N.A. Review of direct chemical and biochemical transformations of starch. Carbohydr. Polym. 2018, 181, 460–476. [Google Scholar] [CrossRef] [PubMed]
- Jinhua, H.; Jie, L.; Genyi, Z. Slowly digestible waxy maize starch prepared by octenyl succinic anhydride estrification and heat-moisture treatment: Glycemic response and mechanism. Biomacromolecules 2008, 9, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Kim, Y.; Choi, S.J.; Moon, T.W. Slowly digestible starch from heat-moisture treated waxy potato starch: Preparation, structural characteristics, and glucose response in mice. Food Chem. 2012, 133, 1222–1229. [Google Scholar] [CrossRef]
- Lee, C.J.; Shin, S.I.; Kim, Y.; Choi, H.J.; Moon, T.W. Structural characteristics and glucose response in mice of potato starch modified by hydrothermal treatments. Carbohydr. Polym. 2011, 83, 1879–1886. [Google Scholar] [CrossRef]
- Na, J.H.; Kim, H.R.; Kim, Y.; Lee, J.S.; Park, H.J.; Moon, T.W.; Lee, C.J. Structure characteristics of low-digestible sweet potato starch prepared by heat-moisture treatment. Int. J. Biol. Macromol. 2020, 151, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Chen, Q.; Fu, M.; Xu, Q.; He, G. Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chem. 2009, 114, 81–86. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, Y.C. Structure and preparation of octenyl succinic esters of granular starch, microporous starch and soluble maltodextrin. Carbohydr. Polym. 2011, 83, 520–527. [Google Scholar] [CrossRef]
- Bhosale, R.; Singhal, R. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydr. Polym. 2006, 66, 521–527. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Cui, F.; Ping, L.; Song, J.; Ravee, Y.; Jin, L.; Xue, Y.; Xu, J.; Li, G.; et al. Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. J. Agric. Food Chem. 2008, 56, 11499–11506. [Google Scholar] [CrossRef]
- Altuna, L.; Herrera, M.L.; Foresti, M.L. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocolloid. 2018, 80, 97–110. [Google Scholar] [CrossRef]
- Lopez-Silva, M.; Bello-Perez, L.A.; Castillo-Rodriguez, V.M.; Agama-Acevedo, E.; Alvarez-Ramirez, J. In vitro digestibility characteristics of octenyl succinic acid (OSA) modified starch with different amylose content. Food Chem. 2020, 304, 125434. [Google Scholar] [CrossRef]
- Lehmann, U.; Robin, F. Slowly digestible starch–its structure and health implications: A review. Trends Food Sci. Technol. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Sweedman, M.C.; Tizzotti, M.J.; Schäfer, C.; Gilbert, R.G. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr. Polym. 2013, 92, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Li, R.; Jiang, B.; Cui, S.W.; Zhang, T.; Jin, Z. Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch. Food Chem. 2014, 151, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Nugent, A. Health properties of resistant starch. Nutr. Bull. 2005, 30, 27–54. [Google Scholar] [CrossRef]
- Jiali, L.; Wu, Z.; Liu, L.; Yang, J.; Wang, L.; Li, Z.; Liu, L. The research advance of resistant starch: Structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit. Rev. Food Sci. 2023, 6, 1–18. [Google Scholar] [CrossRef]
- Zhang, Z.; Bao, J. Recent advances in modification approaches, health benefits, and food applications of resistant starch. Starch-Starke 2021, 75, 2100141. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Zhang, B.; Mei, J.; Chen, B.; Chen, H. Digestibility, physicochemical and structural properties of octenyl succinic anhydride-modified cassava starches with different degree of substitution. Food Chem. 2017, 229, 136–141. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, H.J. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. Available online: https://europepmc.org/article/med/1330528 (accessed on 4 January 2024). [PubMed]
- Na, J.H.; Jeong, G.A.; Park, H.J.; Lee, C.J. Impact of esterification with malic acid on the structural characteristics and in vitro digestibilities of different starches. Int. J. Biol. Macromol. 2021, 174, 540–548. [Google Scholar] [CrossRef]
- Mansur, A.R.; Jeong, G.A.; Lee, C.J. Preparation, physicochemical properties, and in vivo digestibility of thermostable resistant starch from malic acid-treated wheat starch. Food Res. Int. 2022, 162, 112159. [Google Scholar] [CrossRef]
- Wolever, T.M.S. Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. Br. J. Nutr. 2004, 91, 295–300. [Google Scholar] [CrossRef]
- He, G.Q.; Song, X.Y.; Ruan, H.; Chen, F. Octenyl succinic anhydride modified early indica rice starches differing in amylose content. J. Agric. Food Chem. 2006, 54, 2775–2779. [Google Scholar] [CrossRef]
- Zainal Abiddin, N.F.; Yusoff, A.; Ahmad, N. Effect of octenylsuccinylation on physicochemical, thermal, morphological and stability of octenyl succinic anhydride (OSA) modified sago starch. Food Hydrocolloid. 2018, 75, 138–146. [Google Scholar] [CrossRef]
- Shorgen, R.L.; Vishwanathan, A.; Felker, F.; Gross, R.A. Distribution of octenyl succinate groups in octenyl succinic anhydride modified waxy maize starch. Starch-Starke 2000, 52, 196–204. [Google Scholar] [CrossRef]
- Shin, S.I.; Lee, C.J.; Kim, D.I.; Lee, H.A.; Cheong, J.J.; Chung, J.M.; Baik, M.Y.; Park, C.S.; Kim, C.H.; Moon, T.W. Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. J. Cereal. Sci. 2007, 45, 24–33. [Google Scholar] [CrossRef]
- Viswanathan, A. Effect of degree of substitution of octenyl succinate starch on the emulsification activity on different oil phases. J. Polym. Environ. 1999, 7, 191–196. [Google Scholar] [CrossRef]
- Li, M.N.; Xie, Y.; Chen, H.Q.; Zhang, B. Effects of heat-moisture treatment after citric acid esterification on structural properties and digestibility of wheat starch, A-and B-type starch granules. Food Chem. 2019, 272, 523–529. [Google Scholar] [CrossRef]
- Shin, S.I.; Kim, H.J.; Ha, H.J.; Lee, S.H.; Moon, T.W. Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch. Starch-Starke 2005, 57, 421–430. [Google Scholar] [CrossRef]
- Zhang, B.; Tao, H.; Niu, X.; Li, S.; Chen, H.Q. Lysozyme distribution, structural identification, and in vitro release of starch-based microgel-lysozyme complexes. Food Chem. 2017, 227, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Hu, L.; Ding, N.; Liu, P.; Yao, C.; Zhang, H. Physicochemical and structural characteristics of the octenyl succinic ester of ginkgo starch. Int. J. Biol. Macromol. 2017, 94, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Obadi, M.; Xu, B. Review on the physicochemical properties, modifications, and applications of starches and its common modified forms used in noodle products. Food Hydrocolloid. 2021, 112, 106286. [Google Scholar] [CrossRef]
- Eliasson, A.C.; Gudmunsson, M. Starch: Physicochemical and functional aspects. In Carbohydrates in Foods; Eliasson, A.C., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1996; pp. 431–503. [Google Scholar] [CrossRef]
- Ma, T.; Lee, C.D. Effect of high dose resistant starch on human glycemic response. J. Nutr. Med. Diet Care 2021, 7, 48. [Google Scholar] [CrossRef]
Sample | Degree of Substitution |
---|---|
Native starch | 0.001 ± 0.001 a |
Control | 0.006 ± 0.003 a |
OSA-2% | 0.044 ± 0.007 b |
OSA-4% | 0.068 ± 0.002 c |
OSA-6% | 0.079 ± 0.003 d |
OSA-8% | 0.090 ± 0.002 e |
OSA-10% | 0.091 ± 0.001 e |
Sample | Uncooked Starch | Cooked Starch | ||||
---|---|---|---|---|---|---|
RDS (%) | SDS (%) | RS (%) | RDS (%) | SDS (%) | RS (%) | |
Native starch | 51.0 ± 1.72 c | 43.8 ± 3.13 f | 5.18 ± 1.73 a | 93.1 ± 0.75 e | 1.77 ± 0.99 abc | 5.16 ± 0.36 a |
Control | 58.6 ± 1.24 d | 35.4 ± 1.23 e | 6.08 ± 0.27 a | 94.5 ± 1.67 e | 1.22 ± 0.28 ab | 4.54 ± 1.44 a |
OSA-2% | 47.6 ± 1.84 b | 29.0 ± 1.09 d | 23.4 ± 0.99 b | 76.3 ± 0.87 d | 4.16 ± 0.88 d | 19.5 ± 1.68 a |
OSA-4% | 50.3 ± 0.77 c | 22.7 ± 1.01 c | 27.0 ± 0.79 c | 71.8 ± 0.54 c | 2.30 ± 1.00 bc | 25.9 ± 0.83 b |
OSA-6% | 51.4 ± 0.94 c | 16.8 ± 1.61 b | 31.8 ± 2.10 d | 68.7 ± 0.74 b | 2.57 ± 0.36 c | 28.8 ± 0.38 c |
OSA-8% | 50.5 ± 1.14 c | 13.9 ± 1.15 a | 35.6 ± 1.30 e | 66.4 ± 0.53 a | 0.92 ± 0.58 a | 32.7 ± 0.35 d |
OSA-10% | 44.6 ± 0.94 a | 21.4 ± 0.84 c | 34.0 ± 0.72 e | 66.2 ± 1.58 a | 2.01 ± 0.33 abc | 31.8 ± 1.60 d |
Sample | To (°C) | Tp (°C) | Tc (°C) | Tc–To (°C) | ΔH (J/g) |
---|---|---|---|---|---|
Native starch | 59.2 ± 0.31 a | 64.8 ± 0.13 a | 73.4 ± 0.13 a | 14.3 ± 0.42 a | 6.75 ± 0.46 c |
Control | 59.2 ± 0.09 a | 64.7 ± 0.14 a | 73.8 ± 0.25 a | 14.6 ± 0.22 ab | 6.28 ± 0.18 bc |
OSA-2% | 59.3 ± 0.20 a | 64.8 ± 0.34 a | 74.0 ± 0.36 a | 14.7 ± 0.53 ab | 6.16 ± 0.55 bc |
OSA-4% | 59.4 ± 0.12 a | 64.9 ± 0.12 a | 74.3 ± 0.37 ab | 14.9 ± 0.43 ab | 5.82 ± 0.78 abc |
OSA-6% | 60.1 ± 0.10 b | 65.4 ± 0.15 b | 75.1 ± 0.70 bc | 15.0 ± 0.78 ab | 5.21 ± 0.45 ab |
OSA-8% | 60.2 ± 0.61 b | 65.1 ± 0.10 ab | 75.6 ± 0.47 c | 15.4 ± 0.41 b | 4.82 ± 0.48 a |
OSA-10% | 59.7 ± 0.11 ab | 65.4 ± 0.07 b | 75.3 ± 0.21 c | 15.6 ± 0.09 b | 4.70 ± 0.25 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.S.; Jeong, G.A.; Lim, S.; Lee, C.J. Impact of Esterification with Octenyl Succinic Anhydride on the Structural Characteristics and Glucose Response in Mice of Wheat Starch. Foods 2024, 13, 1395. https://doi.org/10.3390/foods13091395
Lee HS, Jeong GA, Lim S, Lee CJ. Impact of Esterification with Octenyl Succinic Anhydride on the Structural Characteristics and Glucose Response in Mice of Wheat Starch. Foods. 2024; 13(9):1395. https://doi.org/10.3390/foods13091395
Chicago/Turabian StyleLee, Hyun Sung, Gyeong A Jeong, Seokwon Lim, and Chang Joo Lee. 2024. "Impact of Esterification with Octenyl Succinic Anhydride on the Structural Characteristics and Glucose Response in Mice of Wheat Starch" Foods 13, no. 9: 1395. https://doi.org/10.3390/foods13091395
APA StyleLee, H. S., Jeong, G. A., Lim, S., & Lee, C. J. (2024). Impact of Esterification with Octenyl Succinic Anhydride on the Structural Characteristics and Glucose Response in Mice of Wheat Starch. Foods, 13(9), 1395. https://doi.org/10.3390/foods13091395