Broccoli, Artichoke, Carob and Apple By-Products as a Source of Soluble Fiber: How It Can Be Affected by Enzymatic Treatment with Pectinex® Ultra SP-L, Viscozyme® L and Celluclast® 1.5 L
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzymatic Treatment
2.3. Determination of Physicochemical Characteristics
2.4. Dietary Fiber Quantification
2.5. Total Phenolic Content (TPC) and Antioxidant Capacity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Dietary Fiber Analysis
3.2. Physicochemical Characteristics
3.3. Antioxidant Activity and Total Phenolic Content (TPC) Determination
3.4. Pearson Correlations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary Fibre in Europe: Current State of Knowledge on Definitions, Sources, Recommendations, Intakes and Relationships to Health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Meyer, R.W.; Greenhawt, M.; Pali-Schöll, I.; Nwaru, B.; Roduit, C.; Untersmayr, E.; Adel-Patient, K.; Agache, I.; Agostoni, C.; et al. Role of Dietary Fiber in Promoting Immune Health—An EAACI Position Paper. Allergy 2022, 77, 3185–3198. [Google Scholar] [CrossRef] [PubMed]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.L.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary Fiber Intake and Risk of First Stroke. Stroke 2013, 44, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.L.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary Fibre Intake and Risk of Cardiovascular Disease: Systematic Review and Meta-Analysis. BMJ 2013, 347, f6879. [Google Scholar] [CrossRef] [PubMed]
- Kapler, M.; Kotula, J.; Mąsior, M.N.; Zinkow, K.; Gawlik, Ł.M. The Role of Dietary Fiber in Gastrointestinal Health: Focus on Irritable Bowel Syndrome and Diverticular Disease. Qual. Sport 2024, 18, 53478. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.M.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary Fibre, Whole Grains, and Risk of Colorectal Cancer: Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef]
- Xiong, R.-G.; Zhou, D.-D.; Wu, S.-X.; Huang, S.-Y.; Saimaiti, A.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022, 11, 2863. [Google Scholar] [CrossRef]
- Yusefi, M.; Shameli, K.; Ali, R.R.; Pang, S.-W.; Teow, S.-Y. Evaluating Anticancer Activity of Plant-Mediated Synthesized Iron Oxide Nanoparticles Using Punica Granatum Fruit Peel Extract. J. Mol. Struct. 2020, 1204, 127539. [Google Scholar] [CrossRef]
- Olsson, A.; Gustavsen, S.; Nguyen, T.D.; Nyman, M.; Langkilde, A.R.; Hansen, T.H.; Sellebjerg, F.; Oturai, A.B.; Bach Søndergaard, H. Serum Short-Chain Fatty Acids and Associations with Inflammation in Newly Diagnosed Patients With Multiple Sclerosis and Healthy Controls. Front. Immunol. 2021, 12, 661493. [Google Scholar] [CrossRef]
- Yang, W.; Yu, T.; Huang, X.; Bilotta, A.J.; Xu, L.; Lu, Y.; Sun, J.; Pan, F.; Zhou, J.; Zhang, W.; et al. Intestinal Microbiota-Derived Short-Chain Fatty Acids Regulation of Immune Cell IL-22 Production and Gut Immunity. Nat. Commun. 2020, 11, 4457. [Google Scholar] [CrossRef]
- Cao, S.-Y.; Zhao, C.-N.; Xu, X.-Y.; Tang, G.-Y.; Corke, H.; Gan, R.-Y.; Li, H.-B. Dietary Plants, Gut Microbiota, and Obesity: Effects and Mechanisms. Trends Food Sci. Technol. 2019, 92, 194–204. [Google Scholar] [CrossRef]
- Shimizu, H.; Masujima, Y.; Ushiroda, C.; Mizushima, R.; Taira, S.; Ohue-Kitano, R.; Kimura, I. Dietary Short-Chain Fatty Acid Intake Improves the Hepatic Metabolic Condition via FFAR3. Sci. Rep. 2019, 9, 16574. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Mu, T. Effects of Extraction Methods and Particle Size Distribution on the Structural, Physicochemical, and Functional Properties of Dietary Fiber from Deoiled Cumin. Food Chem. 2016, 194, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Yapo, B.M.; Gnakri, D. PecticPolysaccharides and Their Functional Properties. In Polysaccharides; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–18. [Google Scholar]
- Schneeman, B.O. Soluble vs Insoluble Fiber: Different Physiological Responses. Food Technol. 1987, 41, 81–82. [Google Scholar]
- Borchani, C.; Besbes, S.; Masmoudi, M.; Bouaziz, M.A.; Blecker, C.; Attia, H. Influence of Oven-Drying Temperature on Physicochemical and Functional Properties of Date Fibre Concentrates. Food Bioprocess Technol. 2012, 5, 1541–1551. [Google Scholar] [CrossRef]
- He, C.; Sampers, I.; Van de Walle, D.; Dewettinck, K.; Raes, K. Encapsulation of Lactobacillus in Low-Methoxyl Pectin-Based Microcapsules Stimulates Biofilm Formation: Enhanced Resistances to Heat Shock and Simulated Gastrointestinal Digestion. J. Agric. Food Chem. 2021, 69, 6281–6290. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Yan, X.-H.; Zhang, J.-L.; Wang, L.-Y.; Xue, H.; Jiang, G.-C.; Ma, X.-T.; Liu, X.-J. Characterization, Hypolipidemic and Antioxidant Activities of Degraded Polysaccharides from Ganoderma Lucidum. Int. J. Biol. Macromol. 2019, 135, 706–716. [Google Scholar] [CrossRef]
- Chen, J.; Gao, D.; Yang, L.; Gao, Y. Effect of Microfluidization Process on the Functional Properties of Insoluble Dietary Fiber. Food Res. Int. 2013, 54, 1821–1827. [Google Scholar] [CrossRef]
- Escobar, E.L.N.; da Silva, T.A.; Pirich, C.L.; Corazza, M.L.; Pereira Ramos, L. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Front. Bioeng. Biotechnol. 2020, 8, 252. [Google Scholar] [CrossRef]
- Hashemifesharaki, R.; Xanthakis, E.; Altintas, Z.; Guo, Y.; Gharibzahedi, S.M.T. Microwave-Assisted Extraction of Polysaccharides from the Marshmallow Roots: Optimization, Purification, Structure, and Bioactivity. Carbohydr. Polym. 2020, 240, 116301. [Google Scholar] [CrossRef]
- Gan, J.; Xie, L.; Peng, G.; Xie, J.; Chen, Y.; Yu, Q. Systematic Review on Modification Methods of Dietary Fiber. Food Hydrocoll. 2021, 119, 106872. [Google Scholar] [CrossRef]
- Meyabadi, T.F.; Dadashian, F. Optimization of Enzymatic Hydrolysis of Waste Cotton Fibers for Nanoparticles Production Using Response Surface Methodology. Fibers Polym. 2012, 13, 313–321. [Google Scholar] [CrossRef]
- Canela-Xandri, A.; Balcells, M.; Villorbina, G.; Cubero, M.Á.; Canela-Garayoa, R. Effect of Enzymatic Treatments on Dietary Fruit Fibre Properties. Biocatal. Biotransformation 2018, 36, 172–179. [Google Scholar] [CrossRef]
- Meyer, A.S.; Dam, B.P.; Lærke, H.N. Enzymatic Solubilization of a Pectinaceous Dietary Fiber Fraction from Potato Pulp: Optimization of the Fiber Extraction Process. Biochem. Eng. J. 2009, 43, 106–112. [Google Scholar] [CrossRef]
- Gu, M.; Fang, H.; Gao, Y.; Su, T.; Niu, Y.; Yu, L. (Lucy) Characterization of Enzymatic Modified Soluble Dietary Fiber from Tomato Peels with High Release of Lycopene. Food Hydrocoll. 2020, 99, 105321. [Google Scholar] [CrossRef]
- Ma, R.; Chen, J.-N.; Zhou, X.; Lin, H.; Gao, Q.; Peng, X.; Tanokura, M.; Xue, Y. Effect of Chemical and Enzymatic Modifications on the Structural and Physicochemical Properties of Dietary Fiber from Purple Turnip (Brassica Rapa L.). LWT 2021, 145, 111313. [Google Scholar] [CrossRef]
- Hernandez, N.; Rodriguez-Alegría, M.E.; Gonzalez, F.; Lopez-Munguia, A. Enzymatic Treatment of Rice Bran to Improve Processing. J. Am. Oil Chem. Soc. 2000, 77, 177–180. [Google Scholar] [CrossRef]
- Wang, C.; Song, R.; Wei, S.; Wang, W.; Li, F.; Tang, X.; Li, N. Modification of Insoluble Dietary Fiber from Ginger Residue through Enzymatic Treatments to Improve Its Bioactive Properties. LWT 2020, 125, 109220. [Google Scholar] [CrossRef]
- Mrabet, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Hamza, H.; Rodríguez-Arcos, R.; Guillén-Bejarano, R.; Sindic, M.; Jiménez-Araujo, A. Enzymatic Conversion of Date Fruit Fiber Concentrates into a New Product Enriched in Antioxidant Soluble Fiber. LWT 2017, 75, 727–734. [Google Scholar] [CrossRef]
- Takó, M.; Zambrano, C.; Kotogán, A.; Kerekes, E.B.; Papp, T.; Krisch, J.; Vágvölgyi, C. Fermentative and Enzyme-Assisted Production of Phenolic Antioxidants from Plant Residues. In Microbial Fermentation and Enzyme Technology; CRC Press: Boca Raton, FL, USA, 2020; pp. 175–193. [Google Scholar]
- Napolitano, A.; Lanzuise, S.; Ruocco, M.; Arlotti, G.; Ranieri, R.; Knutsen, S.H.; Lorito, M.; Fogliano, V. Treatment of Cereal Products with a Tailored Preparation of Trichoderma Enzymes Increases the Amount of Soluble Dietary Fiber. J. Agric. Food Chem. 2006, 54, 7863–7869. [Google Scholar] [CrossRef]
- Shen, M.; Weihao, W.; Cao, L. Soluble Dietary Fibers from Black Soybean Hulls: Physical and Enzymatic Modification, Structure, Physical Properties, and Cholesterol Binding Capacity. J. Food Sci. 2020, 85, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Dou, W.; Alaxi, S.; Niu, Y.; Yu, L. (Lucy) Modified Soluble Dietary Fiber from Black Bean Coats with Its Rheological and Bile Acid Binding Properties. Food Hydrocoll. 2017, 62, 94–101. [Google Scholar] [CrossRef]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the Carriers on the Microstructure of Mango Powder Obtained by Spray Drying and Its Functional Characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Zheng, B.; Lin, L.; Chen, B.; Zheng, Y.; Xiao, J. Hydration Properties and Binding Capacities of Dietary Fibers from Bamboo Shoot Shell and Its Hypolipidemic Effects in Mice. Food Chem. Toxicol. 2017, 109, 1003–1009. [Google Scholar] [CrossRef]
- Sosulsky, F.W.; Cadden, A.M. Composition and Physiological Properties of Several Sources of Dietary Fiber. J. Food Sci. 1982, 47, 1472–1477. [Google Scholar] [CrossRef]
- Prosky, L.; Asp, N.G.; Schweizer, T.F.; DeVries, J.W.; Furda, I. Determination of Insoluble, Soluble, and Total Dietary Fiber in Foods and Food Products: Interlaboratory Study. J. AOAC Int. 1988, 71, 1017–1023. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of AOAC International, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012.
- Singleton, V.L.; Orthofer, R.; Lamuela-Ravents, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gruendel, S.; Garcia, A.L.; Otto, B.; Mueller, C.; Steiniger, J.; Weickert, M.O.; Speth, M.; Katz, N.; Koebnick, C. Carob Pulp Preparation Rich in Insoluble Dietary Fiber and Polyphenols Enhances Lipid Oxidation and Lowers Postprandial Acylated Ghrelin in Humans. J. Nutr. 2006, 136, 1533–1538. [Google Scholar] [CrossRef]
- De La Peña-Armada, R.; Villanueva-Suárez, M.J.; Rupérez, P.; Mateos-Aparicio, I. High Hydrostatic Pressure Assisted by Celluclast® Releases Oligosaccharides from Apple By-Product. Foods 2020, 9, 1058. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, M.; Marone, M.; Marasco, P.; Contillo, F.; Monteleone, M. Artichoke Biorefinery: From Food to Advanced Technological Applications. Foods 2021, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.J.; Zayed, M.Z.; Zhu, H.X.; Zhao, J.; Li, S.P. Functional Polysaccharides of Carob Fruit: A Review. Chin. Med. 2019, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Houben, K.; Jolie, R.P.; Fraeye, I.; Van Loey, A.M.; Hendrickx, M.E. Comparative Study of the Cell Wall Composition of Broccoli, Carrot, and Tomato: Structural Characterization of the Extractable Pectins and Hemicelluloses. Carbohydr. Res. 2011, 346, 1105–1111. [Google Scholar] [CrossRef]
- Sabater, C.; Corzo, N.; Olano, A.; Montilla, A. Enzymatic Extraction of Pectin from Artichoke (Cynara scolymus L.) by-Products Using Celluclast®1.5L. Carbohydr. Polym. 2018, 190, 43–49. [Google Scholar] [CrossRef]
- Fissore, E.N.; Domingo, C.S.; Pujol, C.A.; Damonte, E.B.; Rojas, A.M.; Gerschenson, L.N. Upgrading of Residues of Bracts, Stems and Hearts of Cynara cardunculus L. var. scolymus to Functional Fractions Enriched in Soluble Fiber. Food Funct. 2014, 5, 463–470. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Kolniak, J. Effect of Pectinase Treatment on Extraction of Antioxidant Phenols from Pomace, for the Production of Puree-Enriched Cloudy Apple Juices. Food Chem. 2011, 127, 623–631. [Google Scholar] [CrossRef]
- Jagelaviciute, J.; Staniulyte, G.; Cizeikiene, D.; Basinskiene, L. Influence of Enzymatic Hydrolysis on Composition and Technological Properties of Apple Pomace and Its Application for Wheat Bread Making. Plant Foods Hum. Nutr. 2023, 78, 307–313. [Google Scholar] [CrossRef]
- De la Peña-Armada, R.; Villanueva-Suárez, M.J.; Molina-García, A.D.; Rupérez, P.; Mateos-Aparicio, I. Novel Rich-in-Soluble Dietary Fiber Apple Ingredient Obtained from the Synergistic Effect of High Hydrostatic Pressure Aided by Celluclast®. LWT 2021, 146, 111421. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, K.; Tian, X.; Sui, W.; Wu, T.; Wang, S.; Jin, Y.; Zhu, Q.; Meng, J.; Zhang, M. Combined Modification of Soluble Dietary Fibers from Apple Pomace by Steam Explosion and Enzymatic Hydrolysis to Improve Its Structural, Physicochemical and Functional Properties. Waste Biomass Valorization 2022, 13, 4869–4879. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich by-Products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Huang, K.; Du, B.; Xu, B. Alterations in Physicochemical Properties and Bile Acid Binding Capacities of Dietary Fibers upon Ultrafine Grinding. Powder Technol. 2018, 326, 146–150. [Google Scholar] [CrossRef]
- Rivas, M.Á.; Benito, M.J.; Martín, A.; de Guía Córdoba, M.; Ruíz-Moyano, S.; Casquete, R. Improve the Functional Properties of Dietary Fibre Isolated from Broccoli By-Products by Using Different Technologies. Innov. Food Sci. Emerg. Technol. 2022, 80, 103075. [Google Scholar] [CrossRef]
- Tounsi, L.; Kechaou, N. Influence of Enzymatic Treatment on Improving Carob Juice Extraction and Quality. J. Biochem. Int. 2022, 9, 12–21. [Google Scholar] [CrossRef]
- Li, S.; Hu, N.; Zhu, J.; Zheng, M.; Liu, H.; Liu, J. Influence of Modification Methods on Physicochemical and Structural Properties of Soluble Dietary Fiber from Corn Bran. Food Chem. X 2022, 14, 100298. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martín-Belloso, O. Characterization of Dietary Fiber from Orange Juice Extraction. Food Res. Int. 1998, 31, 355–361. [Google Scholar] [CrossRef]
- Martínez, J.A.; Melgosa, M.; Pérez, M.M.; Hita, E.; Negueruela, A.I. Note. Visual and Instrumental Color Evaluation in Red Wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar] [CrossRef]
- Lotfi, L.; Kalbasi-Ashtari, A.; Hamedi, M.; Ghorbani, F. Effects of Enzymatic Extraction on Anthocyanins Yield of Saffron Tepals (Crocos sativus) along with Its Color Properties and Structural Stability. J. Food Drug Anal. 2015, 23, 210–218. [Google Scholar] [CrossRef]
- Chandini, S.K.; Rao, L.J.; Gowthaman, M.K.; Haware, D.J.; Subramanian, R. Enzymatic Treatment to Improve the Quality of Black Tea Extracts. Food Chem. 2011, 127, 1039–1045. [Google Scholar] [CrossRef]
- Konopacka, D. The Effect of Enzymatic Treatment on Dried Vegetable Color. Dry. Technol. 2006, 24, 1173–1178. [Google Scholar] [CrossRef]
- Singh, B.; Suri, K.; Shevkani, K.; Kaur, A.; Kaur, A.; Singh, N. Enzymatic Browning of Fruit and Vegetables: A Review. In Enzymes in Food Technology; Springer: Singapore, 2018; pp. 63–78. [Google Scholar]
- Landbo, A.-K.; Meyer, A.S. Enzyme-Assisted Extraction of Antioxidative Phenols from Black Currant Juice Press Residues (Ribes nigrum). J. Agric. Food Chem. 2001, 49, 3169–3177. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef]
Treatment | Extracts | |||
---|---|---|---|---|
CE | APE | ARE | BE | |
Without Treatment | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
Pectinex® Ultra SP-L | 2.73 ± 0.49 b | 7.22 ± 1.54 b | 3.27 ± 1.00 b | 7.37 ± 0.57 b |
Viscozyme® L | 1.85 ± 0.32 bc | 4.34 ± 2.08 b | 3.82 ± 0.48 b | 13.39 ± 2.07 a |
Celluclast® 1.5 L | 12.59 ± 1.36 a | 17.01 ± 1.55 a | 14.38 ± 1.76 a | 11.82 ± 0.91 a |
Treatment | Extracts | |||
---|---|---|---|---|
CE | APE | ARE | BE | |
Pectinex® Ultra SP-L | 87.13 ± 0.83 a | 81.44 ± 0.39 a | 86.97 ± 0.67 a | 84.13 ± 0.32 a |
Viscozyme® L | 78.42 ± 0.67 b | 83.72 ± 1.12 a | 81.55 ± 0.48 b | 78.32 ± 0.21 b |
Celluclast® 1.5 L | 86.70 ± 0.87 a | 79.15 ± 1.23 a | 80.24 ± 0.57 b | 82.17± 0.67 a |
Treatment | Extracts | |||
---|---|---|---|---|
CE | APE | ARE | BE | |
Solubility (%) | ||||
Without Treatment | 17.41 ± 2.91 b | 29.25 ± 0.34 c | 24.88 ± 0.29 c | 38.69 ± 0.51 c |
Pectinex® Ultra SP-L | 21.55 ± 3.51 b | 42.38 ± 0.62 a | 36.21 ± 0.41 b | 29.20 ± 0.67 d |
Viscozyme® L | 31.17 ± 0.88 a | 36.83 ± 0.27 b | 37.49 ± 0.89 b | 62.97 ± 0.62 a |
Celluclast® 1.5 L | 22.04 ± 4.03 b | 42.37 ± 0.26 a | 44.49 ± 0.21 a | 58.04 ± 0.08 b |
WHC (g/g) | ||||
Without Treatment | 2.32 ± 0.16 b | 1.45 ± 0.06 c | 2.89 ± 0.07 c | 1.91 ± 0.09 a |
Pectinex® Ultra SP-L | 3.79 ± 0.63 ab | 1.72 ± 0.04 bc | 3.77 ± 0.04 a | 2.11 ± 0.00 a |
Viscozyme® L | 2.63 ± 0.03 ab | 1.84 ± 0.12 b | 3.33 ± 0.05 b | 1.79 ± 0.18 a |
Celluclast® 1.5 L | 3.11 ± 0.30 b | 2.37 ± 0.07 a | 3.63 ± 0.05 a | 2.13 ± 0.14 a |
PAC (g/g) | ||||
Without Treatment | 1.03 ± 0.02 c | 0.77 ± 0.02 a | 1.69 ± 0.00 c | 0.56 ± 0.01 c |
Pectinex® Ultra SP-L | 3.64 ± 0.13 a | 1.08 ± 0.03 a | 2.69 ± 0.03 ab | 0.97 ± 0.02 b |
Viscozyme® L | 1.40 ± 0.06 ab | 0.71 ± 0.20 a | 2.38 ± 0.15 b | 0.92 ± 0.03 bc |
Celluclast® 1.5 L | 1.32 ± 0.02 b | 1.13 ± 0.06 a | 2.90 ± 0.18 a | 1.07 ± 0.03 a |
Treatment | CE | APE | ARE | BE |
---|---|---|---|---|
L* | ||||
Without Treatment | 44.20 ± 1.93 a | 50.83 ± 2.17 a | 54.39 ± 0.42 a | 54.8 ± 2.02 a |
Pectinex® Ultra SP-L | 46.94 ± 1.21 a | 39.77 ± 0.48 c | 49.41 ± 0.13 b | 46.56 ± 0.11 b |
Viscozyme® L | 41.19 ± 0.01 b | 36.76 ± 0.76 c | 47.73 ± 0.46 ca | 43.64 ± 0.72 c |
Celluclast® 1.5 L | 39.80 ± 0.31 b | 44.30 ± 2.10 b | 49.20 ± 0.09 b | 48.97 ± 0.29 b |
a* | ||||
Without Treatment | 11.17 ± 0.12 a | 12.19 ± 0.32 a | 8.74 ± 0.07 a | 4.94 ± 0.27 a |
Pectinex® Ultra SP-L | 4.62 ± 0.04 c | 9.12 ± 0.02 b | 4.84 ± 0.03 c | 3.64 ± 0.07 b |
Viscozyme® L | 11.07 ± 0.03 a | 8.51 ± 0.03 c | 6.50 ± 0.03 b | 3.74 ± 0.26 b |
Celluclast® 1.5 L | 10.50 ± 0.08 a | 8.74 ± 0.28 bc | 4.68 ± 0.14 c | 3.83 ± 0.04 b |
b* | ||||
Without Treatment | 19.03 ± 0.39 a | 28.47 ± 0.31 a | 26.27 ± 0.45 a | 27.62 ± 0.26 a |
Pectinex® Ultra SP-L | 19.35 ± 0.20 a | 19.51 ± 0.23 b | 21.51 ± 0.07 ab | 19.67 ± 0.11 b |
Viscozyme® L | 18.24 ± 0.01 b | 16.83 ± 1.29 c | 21.93 ± 0.08 b | 17.82 ± 0.75 c |
Celluclast® 1.5 L | 16.46 ± 0.10 c | 17.90 ± 0.37 bc | 21.29 ± 0.14 c | 20.51 ± 0.19 b |
∆E | ||||
Without Treatment | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 b | 0.00 ± 0.00 c |
Pectinex® Ultra SP-L | 7.13 ± 0.30 a | 14.61 ± 2.08 ab | 7.92 ± 0.28 a | 11.59 ± 1.57 ab |
Viscozyme® L | 3.20 ± 1.95 bc | 18.79 ± 0.45 a | 8.27 ± 0.09 a | 14.95 ± 0.79 a |
Celluclast® 1.5 L | 5.30 ± 1.58 ab | 10.08 ± 2.87 b | 8.27 ± 0.33 a | 9.33 ± 1.21 bc |
Assay | Treatment | CE | APE | ARE | BE |
---|---|---|---|---|---|
FRAP | Without Treatment | 140.81 ± 37.74 a | 94.70 ± 11.03 a | 123.22 ± 2.45 b | 74.10 ± 2.17 a |
Pectinex® Ultra SP-L | 163.32 ± 0.54 a | 98.94 ± 16.92 a | 130.47 ± 4.32 b | 84.67 ± 2.98 a | |
Viscozyme® L | 179.07 ± 4.38 a | 63.69 ± 0.27 b | 182.12 ± 4.90 a | 85.56 ± 7.10 a | |
Celluclast® 1.5 L | 181.60 ± 18.6 a | 113.79 ± 4.09 a | 130.61 ± 2.73 b | 65.22 ± 7.37 a | |
ABTS | Without Treatment | 124.40 ± 20.49 b | 58.22 ± 0.39 ab | 80.92 ± 12.35 b | 55.83 ± 1.19 b |
Pectinex® Ultra SP-L | 171.90 ± 3.97 ab | 82.47 ± 0.00 ab | 83.58 ± 6.00 b | 68.51 ± 2.60 a | |
Viscozyme® L | 179.63 ± 14.41 ab | 41.02 ± 4.39 b | 126.10 ± 1.20 a | 76.66 ± 0.40 a | |
Celluclast® 1.5 L | 198.32 ± 18.00 a | 85.55 ± 11.47 a | 85.86 ± 4.34 b | 54.01 ± 2.79 b | |
DPPH | Without Treatment | 199.00 ± 44.07 a | 129.75 ± 31.41 a | 126.85 ± 19.08 b | 106.06 ± 25.31 ab |
Pectinex® Ultra SP-L | 269.93 ± 31.71 a | 129.33 ± 22.31 a | 129.20 ± 31.41 b | 137.90 ± 3.71 a | |
Viscozyme® L | 276.81 ± 0.00 a | 68.56 ± 3.18 a | 217.02 ± 25.47 a | 143.06 ± 3.91 a | |
Celluclast® 1.5 L | 280.93 ± 28.73 a | 137.21 ± 22.12 a | 174.96 ± 3.20 ab | 69.67 ± 7.97 b | |
TPC | Without Treatment | 59.22 ± 24.82 a | 74.20 ± 9.32 ab | 84.78 ± 0.74 b | 63.72 ± 0.74 bc |
Pectinex® Ultra SP-L | 71.11 ± 3.75 a | 81.44 ± 0.39 ab | 85.85 ± 1.72 ab | 74.45 ± 2.62 ab | |
Viscozyme® L | 47.57 ± 0.99 a | 53.48 ± 0.50 b | 127.91 ± 0.00 a | 88.75 ± 5.48 a | |
Celluclast® 1.5 L | 55.32 ± 1.00 a | 83.36 ± 1.97 a | 109.2 ± 23.71 ab | 51.01 ± 3.49 c |
SDF | DFC | FRAP | TPC | DPPH | ABTS | a* | b* | L* | ∆E | WHC | FAC | Solubility | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDF | 0.729 ** | −0.188 | 0.067 | −0.112 | −0.105 | 0.208 | −0.447 ** | −0.528 ** | 0.524 ** | −0.216 | −0.186 | 0.342 * | |
DFC | 0.729 ** | −0.152 | 0.257 | −0.034 | −0.029 | −0.299 * | −0.533 ** | −0.321 * | 0.531 ** | 0.006 | −0.028 | 0.627 ** | |
FRAP | −0.188 | −0.152 | 0.26 | 0.840 ** | 0.859 ** | 0.318 | −0.213 | −0.154 | −0.33 | 0.663 ** | 0.574 ** | −0.518 ** | |
TPC | 0.067 | 0.257 | 0.26 | 0.044 | −0.09 | −0.189 | 0.157 | 0.222 | 0.044 | 0.291 | 0.294 | 0.29 | |
DPPH | −0.112 | −0.034 | 0.840 ** | 0.044 | 0.944 ** | 0.276 | −0.322 | −0.235 | −0.282 | 0.517 ** | 0.459 ** | −0.532 ** | |
ABTS | −0.105 | −0.029 | 0.859 ** | −0.09 | 0.944 ** | 0.311 | −0.415 * | −0.322 | −0.26 | 0.531 ** | 0.421 * | −0.541 ** | |
a* | 0.208 | −0.299 * | 0.318 | −0.189 | 0.276 | 0.311 | 0.025 | −0.335 * | −0.380 ** | −0.242 | −0.329 | −0.526 ** | |
b* | −0.447 ** | −0.533 ** | −0.213 | 0.157 | −0.322 | −0.415 * | 0.025 | 0.843 ** | −0.623 ** | −0.142 | −0.059 | −0.106 | |
L* | −0.528 ** | −0.321 * | −0.154 | 0.222 | −0.235 | −0.322 | −0.335 * | 0.843 ** | −0.592 ** | 0.134 | 0.176 | −0.001 | |
∆E | 0.524 ** | 0.532 ** | −0.33 | 0.044 | −0.282 | −0.26 | −0.380 ** | −0.623 ** | −0.592 ** | −0.169 | −0.059 | 0.531 ** | |
WHC | −0.216 | 0.006 | 0.663 ** | 0.291 | 0.517 ** | 0.531 ** | −0.242 | −0.142 | 0.134 | −0.169 | 0.900 ** | −0.297 | |
FAC | −0.186 | −0.028 | 0.574 ** | 0.294 | 0.459 ** | 0.421 * | −0.329 | −0.059 | 0.176 | −0.059 | 0.900 ** | −0.208 | |
Solubility | 0.342 * | 0.627 ** | −0.518 ** | 0.290 | −0.532 ** | −0.541 ** | −0.526 ** | −0.106 | −0.001 | 0.532 ** | −0.297 | −0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayuso, P.; Peñalver, R.; Quizhpe, J.; Rosell, M.d.l.Á.; Nieto, G. Broccoli, Artichoke, Carob and Apple By-Products as a Source of Soluble Fiber: How It Can Be Affected by Enzymatic Treatment with Pectinex® Ultra SP-L, Viscozyme® L and Celluclast® 1.5 L. Foods 2025, 14, 10. https://doi.org/10.3390/foods14010010
Ayuso P, Peñalver R, Quizhpe J, Rosell MdlÁ, Nieto G. Broccoli, Artichoke, Carob and Apple By-Products as a Source of Soluble Fiber: How It Can Be Affected by Enzymatic Treatment with Pectinex® Ultra SP-L, Viscozyme® L and Celluclast® 1.5 L. Foods. 2025; 14(1):10. https://doi.org/10.3390/foods14010010
Chicago/Turabian StyleAyuso, Pablo, Rocío Peñalver, Jhazmin Quizhpe, María de los Ángeles Rosell, and Gema Nieto. 2025. "Broccoli, Artichoke, Carob and Apple By-Products as a Source of Soluble Fiber: How It Can Be Affected by Enzymatic Treatment with Pectinex® Ultra SP-L, Viscozyme® L and Celluclast® 1.5 L" Foods 14, no. 1: 10. https://doi.org/10.3390/foods14010010
APA StyleAyuso, P., Peñalver, R., Quizhpe, J., Rosell, M. d. l. Á., & Nieto, G. (2025). Broccoli, Artichoke, Carob and Apple By-Products as a Source of Soluble Fiber: How It Can Be Affected by Enzymatic Treatment with Pectinex® Ultra SP-L, Viscozyme® L and Celluclast® 1.5 L. Foods, 14(1), 10. https://doi.org/10.3390/foods14010010