Amino Acid Profile and Mineral Content of Cultivated Snails Acusta despecta and Achatina fulica: Assessing Their Potential as Nutritional Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation for Nutrient Analyses
2.2. Proximate Nutrient Composition Analysis
2.3. Amino Acid Analysis
2.4. Mineral Analysis
2.5. Statistical Analysis
3. Results
3.1. Proximate Nutrient Composition
3.2. Amino Acid Composition
3.3. Mineral Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Meyer-Rochow, V.B.; Jung, C. Importance of neglected traditional food to ensure health and well-being. Nutr. Food Sci. Int. J. 2018, 8, 555729. [Google Scholar]
- Baghele, M.; Mishra, S.; Meyer-Rochow, V.B.; Jung, C.; Ghosh, S. A review of the nutritional potential of edible snails: A sustainable underutilized food resource. Indian J. Nat. Prod. Resour. 2022, 13, 419–433. [Google Scholar] [CrossRef]
- Bonnemain, B. Helix and drugs: Snails for western health care from antiquity to the present. Evid.-Based Complement. Altern. Med. 2005, 2, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.B.; Liu, L.; Kotiw, M.; Benkendorff, K. Review of anti-inflammatory, immune-modulatory and wound healing properties of mollusca. J. Ethnopharmacol. 2018, 210, 156–178. [Google Scholar] [CrossRef]
- Dhiman, V.; Pant, D. Human health and snails. J. Immunoassay Immunochem. 2021, 42, 211–235. [Google Scholar] [CrossRef]
- Kim, Y.; Sim, W.-J.; Lee, J.-S.; Lim, T.-G. Snail mucin is a functional food ingredient for skin. J. Funct. Foods 2022, 92, 105053. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, Z.; Li, G.; Sun, J.; Gu, T.; Ain, N.U.; Zhang, X.; Li, D. Extraction, structure, pharmacological activities and applications of polysaccharides and proteins isolated from snail mucus. Int. J. Biol. Macromol. 2024, 258, 128878. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Snail as mini-livestock: Nutritional potential of farmed Pomacea canaliculata (Ampullariidae). Agric. Nat. Resour. 2017, 51, 504–511. [Google Scholar] [CrossRef]
- Ghosh, S.; Meyer-Rochow, V.B.; Jung, C. Farming the edible aquatic snail Pomacea canaliculata as a mini-livestock. Fishes 2022, 7, 6. [Google Scholar] [CrossRef]
- Forte, A.; Zucaro, A.; Vico, G.D.; Fierro, A. Carbon footprint of heliciculture: A case study from an Italian experimental farm. Agric. Syst. 2016, 142, 99–111. [Google Scholar] [CrossRef]
- Apostolou, K.; Staikou, A.; Sotiraki, S.; Hatziioannou, M. An assessment of snail-farm systems based on land use and farm components. Animals 2021, 11, 272. [Google Scholar] [CrossRef] [PubMed]
- Obinaju, L.C.; Asa, U.A. Economics of rural livelihoods: A case study of snail farming in Itu local government area, Akwa Ibom state, Nigeria. Am. J. Res. Commun. 2016, 4, 75–85. [Google Scholar]
- Mvodo Meyo, E.S.; Nkemasong, Z.A.; Shu, G.; Ngono, J.P.N.; Ngosong, C. Snail farming as an alternative profitable livestock system for sustainable development. In Sustainable Development in Africa; Leal Filho, W., Pretorius, R., de Sousa, L.O., Eds.; World Sustainability Series; Springer: Cham, Switzerland, 2021; pp. 477–490. [Google Scholar] [CrossRef]
- Ahmadu, J.; Ida-Ogbomo, E.O.; Oyoboh, D.E. Contribution of snail production to income status of snail farmers in Edo South Edo state, Nigeria. Agro-Sci. 2021, 20, 49–52. [Google Scholar] [CrossRef]
- Tanyitiku, M.N. Nutritious food and health risks: A review on the edible land snails of Africa. J. Food Saf. Hyg. 2022, 8, 64–77. [Google Scholar] [CrossRef]
- Lee, M.-K.; Moon, J.-H.; Ryu, H.-S. Nutrient composition and protein quality of giant snail products. J. Korean Soc. Food Nutr. 1994, 23, 453–458. [Google Scholar]
- Cobbinah, J.R.; Vink, A.; Onwuka, B. Snail Farming Production, Processing and Marketing; Agrodok-Series No. 47; Agrimosa Foundation: Wageningen, The Netherlands, 2008; pp. 1–78. [Google Scholar]
- Kim, H.; Song, M.-J. Ethnozoological study of medicinal animals on Jeju Island, Korea. J. Ethnopharmacol. 2013, 146, 75–82. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Ministry of Foods and Drug Safety. Korean Food Standard Codex; Ministry of Foods and Drug Safety: Cheongju, Republic of Korea, 2010. [Google Scholar]
- RDA/AI Values of Minerals. Harvard Chan Home. Chan School of Public Health’s Nutrition Source. Available online: https://nutritionsource.hsph.harvard.edu/vitamins/ (accessed on 23 November 2024).
- Nkansah, M.A.; Agyei, E.A.; Opoku, F. Mineral and proximate composition of the meat and shell of three snail species. Heliyon 2021, 7, e08149. [Google Scholar] [CrossRef]
- Etukudo, O.M.; Ekerette, E.E.; Okonko, L.E.; Bassey, N.S. Nutritional potential of garden snail (Limicolaria aurora) and giant African snail (Achatina fulica) in Akwa Ibom state, Nigeria. Int. J. Food Sci. Nutr. 2024, 9, 8–14. [Google Scholar]
- Tovignon, G.C.Z.; Touré, A.I.; Obiang, C.S.; Djinda, B.-S.; Nono, F.C.N.; Mboko, A.V.; Matumuini, F.N.; Engonga, L.C.O.; Ondo, J.-P.; Tendonkeng, F.; et al. Chemical composition of the flesh and mucus of land snail species (Archachatina marginata (Swainson), Archachatina marginata (Suturalis), Achatina fulica, Achatina iostoma, Limicolaria spp.) in Gabon: Case of the Haut-Ogooué province. J. Appl. Biosci. 2021, 167, 17391–17405. [Google Scholar]
- Aboua, F. Chemical composition of Achatina fulica. Tropicultura 1990, 8, 121–122. [Google Scholar]
- Amboi, M.I.; Ezewudo, B.I.; Okpoko, V.O.; Ugokwe, C.U.; Okereke, H.N. Effects of three leafy vegetables on the growth performance of giant African snail Achatina (Lissachatina) fulica. J. Agric. Rural Dev. Trop. Subtrop. 2019, 120, 15–20. [Google Scholar] [CrossRef]
- Merlin, T.G.; Besong, E.B.; Paul, T.J.; Ferdinand, N.; Joseph, T. Effect of feed protein on reproduction, proximate composition, and hemolymph metabolite profile of snail (Achatina achatina). Nutr. Anim. Trop. 2024, 18, 26–46. [Google Scholar]
- Gorissen, S.H.M.; Phillips, S.M. Branched-chain amino acids (Leucine, Isoleucine, and Valine) and skeletal muscle. Nutr. Skelet. Muscle 2019, 2019, 283–298. [Google Scholar] [CrossRef]
- Pencharz, P.B.; Elango, R.; Ball, R.O. Determination of tolerable upper intake level of leucine in acute men. J. Nutr. 2012, 142, 2220S–2224S. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007, 46, 239–250. [Google Scholar] [CrossRef]
- Galili, G.; Amir, R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol. J. 2013, 11, 211–222. [Google Scholar] [CrossRef]
- Elango, R. Methionine nutrition and metabolism: Insights from animal studies to inform human nutrition. J. Nutr. 2020, 150, 2518S–2523S. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.-L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef]
- Tang, Q.; Tan, P.; Ma, N.; Ma, X. Physiological functions of threonine in Animals: Beyond nutrition metabolism. Nutrients 2021, 13, 2592. [Google Scholar] [CrossRef]
- Han, Q.; Phillips, R.S.; Li, J. Editorial: Aromatic amino acid metabolism. Front. Mol. Biosci. 2019, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, M.E.; Brosnan, J.T. Histidine metabolism and function. J. Nutr. 2020, 150, 2570S–2575S. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.M. The global challenge of hidden hunger: Perspectives from the field. Proc. Nutr. Soc. 2021, 80, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US). Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. In Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press (US): Washington, DC, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK56070/ (accessed on 10 October 2024). [CrossRef]
- Shlisky, J.; Mandlik, R.; Askari, S.; Abrams, S.; Belizan, J.M.; Bourassa, M.W.; Cormick, G.; Driller-Colangelo, A.; Gomes, F.; Khadilkar, A.; et al. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes. Ann. N. Y. Acad. Sci. 2022, 1512, 10–28. [Google Scholar] [CrossRef]
- Tang, B.M.P.; Eslick, G.D.; Nowson, C.; Smith, C.; Bensoussan, A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet 2007, 370, 657–666. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- McMahon, L.P. Iron deficiency in pregnancy. Obstet. Med. 2010, 3, 17–24. [Google Scholar] [CrossRef]
- Fatima, G.; Dzupina, A.; Alhmadi, H.B.; Magomedova, A.; Siddiqui, Z.; Mehdi, A.; Hadi, N. Magnesium matters: A comprehensive review of its vital role in health and diseases. Cureus 2024, 16, e71392. [Google Scholar] [CrossRef]
- Liu, D.; Tian, Y.; Wang, R.; Zhang, T.; Shen, S.; Zeng, P.; Zou, T. Sodium, potassium intake, and all-cause mortality: Confusion and new findings. BMC Public Health 2024, 24, 180. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integhrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Prasad, A.S. Zinc is an antioxidant and anti-inflammatory agent: Its role in human health. Front. Nutr. 2014, 1, 00014. [Google Scholar] [CrossRef] [PubMed]
- Aschner, J.D.; Aschner, M. Nutritional aspects of manganese homeostatis. Mol. Aspects Med. 2005, 26, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Baroudi, F.; Alam, J.A.; Fajloun, Z.; Millet, M. Snail as sentinel organism for monitoring the environmental pollution; a review. Ecol. Indic. 2020, 113, 106240. [Google Scholar] [CrossRef]
- Bongiorno, D.; Giosuè, C.; Indelicato, S.; Avellone, G.; Maniaci, G.; Core, M.D.; D’Agostino, F. Helix aspersa flour: An evaluation for dietary supplementation. Heliyon 2024, 10, e33373. [Google Scholar] [CrossRef]
- Vukašinović-Pešić, V.; Blagojević, N.; Vukanović, S.; Savić, A.; Pešić, V. Heavy metal concentration in different tissues of the snail Viviparus mamillatus (Küster, 1852) from lacustrine and riverine environments in Montenegro. Turk. J. Fish. Aquat. Sci. 2017, 17, 557–563. [Google Scholar] [CrossRef]
Acusta despecta | Achatina fulica | p | |
---|---|---|---|
Moisture | 85.3 ± 0.55 a | 78.5 ± 0.56 b | 0.000 |
Crude protein | 70.9 ± 0.73 a | 44.2 ± 0.49 b | 0.000 |
Crude fat | 2.7 ± 0.21 a | 2.0 ± 0.26 b | 0.020 |
Crude ash | 6.3 ± 0.04 a | 4.9 ± 0.06 b | 0.000 |
Crude fiber | 2.9 ± 0.04 a | 0.4 ± 0.28 b | 0.004 |
NFE | 19.7 ± 0.92 a | 46.0 ± 0.35 b | 0.000 |
Amino Acid | Acusta despecta | Achatina fulica | p | ||
---|---|---|---|---|---|
g/100 g Dry Matter | % | g/100 g Dry Matter | % | ||
Aspartic acid | 4.8 ± 0.05 a | 8.3 | 3.4 ± 0.13 b | 8.5 | 0.042 |
Threonine * | 3.2 ± 0.03 a | 5.6 | 2.1 ± 0.08 b | 5.2 | 0.034 |
Serine | 3.2 ± 0.04 a | 5.6 | 2.3 ± 0.04 b | 5.7 | 0.002 |
Glutamic acid | 8.1 ± 0.01 a | 14.1 | 6.0 ± 0.30 a | 15.0 | 0.062 |
Proline | 3.2 ± 0.08 a | 5.6 | 2.3 ± 0.13 b | 5.7 | 0.014 |
Glycine | 3.5 ± 0.06 a | 6.1 | 2.7 ± 0.19 a | 6.7 | 0.109 |
Alanine | 3.4 ± 0.02 a | 5.9 | 2.3 ± 0.11 b | 5.7 | 0.045 |
Valine * | 3.2 ± 0.02 a | 5.6 | 2.1 ± 0.05 b | 5.2 | 0.025 |
Cysteine | 0.6 ± 0.05 a | 1.0 | 0.4 ± 0.01 a | 1.0 | 0.120 |
Methionine * | 0.8 ± 0.01 a | 1.4 | 0.7 ± 0.02 b | 1.7 | 0.014 |
Isoleucine * | 2.8 ± 0.03 a | 4.9 | 1.8 ± 0.06 b | 4.5 | 0.002 |
Leucine * | 5.1 ± 0.03 a | 8.9 | 3.4 ± 0.04 b | 8.5 | 0.000 |
Tyrosine ** | 2.3 ± 0.01 a | 4.0 | 1.5 ± 0.02 b | 3.7 | 0.000 |
Phenylalanine * | 2.9 ± 0.03 a | 5.0 | 1.9 ± 0.09 b | 4.7 | 0.045 |
Histidine * | 1.4 ± 0.01 a | 2.4 | 0.9 ± 0.00 b | 2.2 | 0.007 |
Lysine * | 4.3 ± 0.02 a | 7.5 | 2.8 ± 0.08 b | 7.0 | 0.025 |
Arginine | 4.7 ± 0.11 a | 8.2 | 3.5 ± 0.07 b | 8.7 | 0.006 |
Total | 57.6 ± 0.08 a | -- | 40.4 ± 1.30 b | -- | 0.034 |
Acusta despecta | Achatina fulica | p | |
---|---|---|---|
Ca | 1282.6 ± 5.36 a | 2008.3 ± 0.15 b | 0.003 |
P | 1251.2 ± 1.53 a | 699.2 ± 0.03 b | 0.001 |
Mg | 327.3 ± 0.81 a | 343.0 ± 0.40 b | 0.026 |
Na | 379.3 ± 0.79 a | 222.9 ± 0.12 b | 0.002 |
K | 280.8 ± 1.13 a | 203.1 ± 0.24 b | 0.007 |
Fe | 17.0 ± 0.89 a | 8.1 ± 0.29 b | 0.047 |
Zn | 25.3 ± 0.08 a | 4.6 ± 0.02 b | 0.002 |
Cu | 11.2 ± 0.03 a | 4.1 ± 0.03 b | 0.000 |
Mn | 21.2 ± 0.03 a | 3.3 ± 0.00 b | 0.001 |
Minerals | RDA/AI (mg) * | % of RDA Satisfied Upon Consumption of 100 g (Dry Matter) | ||||
---|---|---|---|---|---|---|
Acusta despecta | Achatina fulica | |||||
Women | Men | Women | Men | Women | Men | |
Ca | 1200 | 1200 | 106.9 | 106.9 | 167.4 | 167.4 |
P | 700 | 700 | 178.7 | 178.7 | 99.9 | 99.9 |
Mg | 320 | 420 | 102.3 | 77.9 | 107.2 | 81.7 |
Na | 1500 ** | 1500 ** | 25.3 | 25.3 | 14.9 | 14.9 |
K | 2600 ** | 3400 ** | 10.8 | 8.3 | 7.8 | 6.0 |
Fe | 18 | 8 | 94.5 | 212.5 | 45.1 | 101.5 |
Zn | 8 | 11 | 315.9 | 229.8 | 57.1 | 41.5 |
Cu | 0.9 | 0.9 | 1241.0 | 1241.0 | 451.7 | 451.7 |
Mn | 1.8 ** | 2.3 ** | 1176.3 | 920.6 | 181.2 | 141.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Kim, M.-J.; Sun, S.; Jung, C. Amino Acid Profile and Mineral Content of Cultivated Snails Acusta despecta and Achatina fulica: Assessing Their Potential as Nutritional Source. Foods 2025, 14, 123. https://doi.org/10.3390/foods14010123
Ghosh S, Kim M-J, Sun S, Jung C. Amino Acid Profile and Mineral Content of Cultivated Snails Acusta despecta and Achatina fulica: Assessing Their Potential as Nutritional Source. Foods. 2025; 14(1):123. https://doi.org/10.3390/foods14010123
Chicago/Turabian StyleGhosh, Sampat, Min-Jung Kim, Sukjun Sun, and Chuleui Jung. 2025. "Amino Acid Profile and Mineral Content of Cultivated Snails Acusta despecta and Achatina fulica: Assessing Their Potential as Nutritional Source" Foods 14, no. 1: 123. https://doi.org/10.3390/foods14010123
APA StyleGhosh, S., Kim, M.-J., Sun, S., & Jung, C. (2025). Amino Acid Profile and Mineral Content of Cultivated Snails Acusta despecta and Achatina fulica: Assessing Their Potential as Nutritional Source. Foods, 14(1), 123. https://doi.org/10.3390/foods14010123