Development and Application of a Multiplex Reverse Transcription–Droplet Digital PCR Assay for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus in Bivalve Shellfish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses, Bacteria, and Samples
2.2. MS2 Phage Culture and Potency Assay
2.3. Primers and Probes Used in the RT-ddPCR Assay
2.4. Construction of HAV, HEV, and MS2 RNA Transcripts
2.5. RT-ddPCR Assay
2.6. Analytical Specificity and Sensitivity Analysis
2.7. Comparison of Viral RNA Enrichment Methods in Bivalve Shellfish
2.7.1. Method 1: Proteinase K
2.7.2. Method 2: Proteinase K + Trizol/Chloroform
2.7.3. Method 3: Proteinase K + 5 × PEG8000 + Chloroform/n-Butanol
2.8. Quantitative Detection of HAV and HEV in Bivalves
2.9. Statistical Analysis
3. Results
3.1. Optimization of Multiplex RT-ddPCR
3.2. Analysis of Specificity and Sensitivity
3.3. Viral Nucleic Acid Enrichment Method
3.4. Detection of HAV and HEV in Shellfish
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dumen, E.; Ekici, G.; Ergin, S.; Bayrakal, G.M. Presence of Foodborne Pathogens in Seafood and Risk Ranking for Pathogens. Foodborne Pathog. Dis. 2020, 17, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Chen, P.; Feng, Y.; Lu, J.; Meng, X.; Xu, Q.; Xu, A.; Zhang, L. A community-wide epidemic of hepatitis A virus genotype IA associated with consumption of shellfish in Yantai, eastern China, January to March 2020. Hum. Vaccines Immunother. 2022, 18, 2106081. [Google Scholar] [CrossRef] [PubMed]
- Rivera, D.; Toledo, V.; Reyes-Jara, A.; Navarrete, P.; Tamplin, M.; Kimura, B.; Wiedmann, M.; Silva, P.; Moreno Switt, A.I. Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food Microbiol. 2018, 75, 126–132. [Google Scholar] [CrossRef]
- Bellou, M.; Kokkinos, P.; Vantarakis, A. Shellfish-borne viral outbreaks: A systematic review. Food Environ. Virol. 2013, 5, 13–23. [Google Scholar] [CrossRef]
- La Bella, G.; Martella, V.; Basanisi, M.G.; Nobili, G.; Terio, V.; La Salandra, G. Food-Borne Viruses in Shellfish: Investigation on Norovirus and HAV Presence in Apulia (SE Italy). Food Environ. Virol. 2016, 9, 179–186. [Google Scholar] [CrossRef]
- La Bella, G.; Basanisi, M.G.; Nobili, G.; Terio, V.; Suffredini, E.; La Salandra, G. First Report of Hepatitis E Virus in Shellfish in Southeast Italy. Appl. Sci. 2020, 11, 43. [Google Scholar] [CrossRef]
- Macaluso, G.; Guercio, A.; Gucciardi, F.; Di Bella, S.; La Rosa, G.; Suffredini, E.; Randazzo, W.; Purpari, G. Occurrence of Human Enteric Viruses in Shellfish along the Production and Distribution Chain in Sicily, Italy. Foods 2021, 10, 1384. [Google Scholar] [CrossRef]
- Suffredini, E.; Pepe, T.; Ventrone, I.; Croci, L. Norovirus detection in shellfish using two Real-Time RT-PCR methods. New Microbiol. 2011, 34, 9–16. [Google Scholar] [PubMed]
- Benabbes, L.; Ollivier, J.; Schaeffer, J.; Parnaudeau, S.; Rhaissi, H.; Nourlil, J.; Le Guyader, F.S. Norovirus and Other Human Enteric Viruses in Moroccan Shellfish. Food Environ. Virol. 2012, 5, 35–40. [Google Scholar] [CrossRef]
- Alipoor Amroabadi, M.; Rahimi, E.; Shakerian, A. Presence of enteric viruses in shellfish samples from the Persian Gulf. Arch. Razi Inst. 2024, 79, 129–137. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernandez Escamez, P.S.; Herman, L.; Koutsoumanis, K.; Lindqvist, R.; et al. Public health risks associated with hepatitis E virus (HEV) as a food-borne pathogen. Efsa J. 2017, 15, e04886. [Google Scholar] [CrossRef]
- Nemes, K.; Persson, S.; Simonsson, M. Hepatitis A Virus and Hepatitis E Virus as Food- and Waterborne Pathogens—Transmission Routes and Methods for Detection in Food. Viruses 2023, 15, 1725. [Google Scholar] [CrossRef]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef] [PubMed]
- Sander, A.-L.; Corman, V.M.; Lukashev, A.N.; Drexler, J.F. Evolutionary Origins of Enteric Hepatitis Viruses. Cold Spring Harb. Perspect. Med. 2018, 8, a031690. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Holla, R.P.; Jameel, S. Molecular virology of hepatitis E virus. Virus Res. 2011, 161, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Hoofnagle, J.H.; Nelson, K.E.; Purcell, R.H. Hepatitis E. N. Engl. J. Med. 2012, 367, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Centre for Environment, Fisheries; Aquaculture Science; Price-Hayward, M.; Hartnell, R. Summary report of joint scientific workshop on foodborne viruses. EFSA Support. Publ. 2016, 13, 1103E. [Google Scholar] [CrossRef]
- WHO. WHO Estimates of the Global Burden of Foodborne Diseases. Foodborne Disease Burden Epidemiology Reference Group 2007–2015. 2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf (accessed on 24 October 2024).
- Terrault, N.A.; Levy, M.T.; Cheung, K.W.; Jourdain, G. Viral hepatitis and pregnancy. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 117–130. [Google Scholar] [CrossRef]
- Yoo, B.; Kim, M.-G.; Min, A.Y.; Seo, D.W.; Kim, S.H.; Kim, S.H. Optimization of RT-PCR methods for enterovirus detection in groundwater. Heliyon 2023, 9, e23028. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.; Szewzyk, R.; Gnirss, R.; Johne, R.; Selinka, H.-C. Detection and Characterization of Hepatitis E Virus Genotype 3 in Wastewater and Urban Surface Waters in Germany. Food Environ. Virol. 2020, 12, 137–147. [Google Scholar] [CrossRef]
- Sun, C.; Chen, J.; Li, H.; Fang, L.; Wu, S.; Jayavanth, P.; Tang, S.; Sanchez, G.; Wu, X. One-step duplex RT-droplet digital PCR assay for the detection of norovirus GI and GII in lettuce and strawberry. Food Microbiol. 2021, 94, 103653. [Google Scholar] [CrossRef] [PubMed]
- Mandli, J.; Attar, A.; Ennaji, M.M.; Amine, A. Indirect competitive electrochemical immunosensor for hepatitis A virus antigen detection. J. Electroanal. Chem. 2017, 799, 213–221. [Google Scholar] [CrossRef]
- Wang, P.; Jing, F.; Li, G.; Wu, Z.; Cheng, Z.; Zhang, J.; Zhang, H.; Jia, C.; Jin, Q.; Mao, H.; et al. Absolute quantification of lung cancer related microRNA by droplet digital PCR. Biosens. Bioelectron. 2015, 74, 836–842. [Google Scholar] [CrossRef]
- Chen, Y.; Pouillot, R.; Burall, L.S.; Strain, E.A.; Van Doren, J.M.; De Jesus, A.J.; Laasri, A.; Wang, H.; Ali, L.; Tatavarthy, A.; et al. Comparative evaluation of direct plating and most probable number for enumeration of low levels of Listeria monocytogenes in naturally contaminated ice cream products. Int. J. Food Microbiol. 2017, 241, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 2021, 93, 4182–4197. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, Y.; Selvaraj, V.; Hajeri, S.; Yokomi, R. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR. PLoS ONE 2017, 12, e0184751. [Google Scholar] [CrossRef]
- Cherkaoui, D.; Huang, D.; Miller, B.S.; Turbé, V.; McKendry, R.A. Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings. Biosens. Bioelectron. 2021, 189, 113328. [Google Scholar] [CrossRef]
- Morisset, D.; Štebih, D.; Milavec, M.; Gruden, K.; Žel, J. Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR. PLoS ONE 2013, 8, e62583. [Google Scholar] [CrossRef]
- Marchio, A.; Batejat, C.; Vanhomwegen, J.; Feher, M.; Grassin, Q.; Chazal, M.; Raulin, O.; Farges-Berth, A.; Reibel, F.; Estève, V.; et al. ddPCR increases detection of SARS-CoV-2 RNA in patients with low viral loads. Arch. Virol. 2021, 166, 2529–2540. [Google Scholar] [CrossRef] [PubMed]
- Oranger, A.; Manzari, C.; Chiara, M.; Notario, E.; Fosso, B.; Parisi, A.; Bianco, A.; Iacobellis, M.; d’Avenia, M.; D’Erchia, A.M.; et al. Accurate detection and quantification of SARS-CoV-2 genomic and subgenomic mRNAs by ddPCR and meta-transcriptomics analysis. Commun. Biol. 2021, 4, 1215. [Google Scholar] [CrossRef]
- Xu, L.; Wei, H.; Ma, D.; Wang, Q.; Zhang, X.; Li, D.; Fu, P.; Liu, L.; Wei, Y.; Zeng, J. Application of MS2 phage in process control in detection of food borne virus in shellfishes. Chin. J. Public Health 2016, 32, 1584–1590. [Google Scholar] [CrossRef]
- ISO 15216-2: 2019; Microbiology of the food chain—horizontal method for determination of hepatitis A virus and norovirus using real-time RT-PCR—Part 2: Method for detection. International Standardization Organization: Geneva, Switzerland, 2019.
- Wang, K.; Liu, L.; Wang, J.; Sun, X.; Han, Q.; Zhou, C.; Xu, X.; Wang, J. Quantification of hepatitis E virus in raw pork livers using droplet digital RT-PCR. Food Microbiol. 2023, 109, 104114. [Google Scholar] [CrossRef] [PubMed]
- Dreier, J.; Störmer, M.; Kleesiek, K. Use of Bacteriophage MS2 as an Internal Control in Viral Reverse Transcription-PCR Assays. J. Clin. Microbiol. 2005, 43, 4551–4557. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, J.; Zhang, S.; Yang, S.; Wang, X.; Han, Y.; Shen, Z.; Xu, X. Simultaneous quantification of hepatitis A virus and norovirus genogroup I and II by triplex droplet digital PCR. Food Microbiol. 2022, 103, 103933. [Google Scholar] [CrossRef]
- SN/T5325.2-2020; Digital PCR Method for Quantitative Detection of Foodborne Viruses in Export Foods Part 2: Hepatitis A Virus. Standards Press of China: Beijing, China, 2020.
- European Network of GMO Laboratories (ENGL). Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. 2015. Available online: https://gmo-crl.jrc.ec.europa.eu/doc/Min_Perf_Requirements_Analytical_methods.pdf (accessed on 8 August 2024).
- Shu, J.X. Establishment and Application of a Multiplex RT-cdPCR Detection Method for Foodborne Viruses in Shellfish. Master's Thesis, Sichuan Agricultural University, Ya’an, China, 2023. [Google Scholar] [CrossRef]
- Halliday, M.L.; Kang, L.Y.; Zhou, T.K.; Hu, M.D.; Pan, Q.C.; Fu, T.Y.; Huang, Y.S.; Hu, S.L. An epidemic of hepatitis A attributable to the ingestion of raw clams in Shanghai, China. J. Infect. Dis. 1991, 164, 852–859. [Google Scholar] [CrossRef]
- Said, B.; Ijaz, S.; Kafatos, G.; Booth, L.; Thomas, H.L.; Walsh, A.; Ramsay, M.; Morgan, D. Hepatitis E Outbreak on Cruise Ship. Emerg. Infect. Dis. 2009, 15, 1738–1744. [Google Scholar] [CrossRef]
- Whale, A.S.; Huggett, J.F.; Tzonev, S. Fundamentals of multiplexing with digital PCR. Biomol. Detect. Quantif. 2016, 10, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Le Guyader, F.S.; Parnaudeau, S.; Schaeffer, J.; Bosch, A.; Loisy, F.; Pommepuy, M.; Atmar, R.L. Detection and Quantification of Noroviruses in Shellfish. Appl. Environ. Microbiol. 2009, 75, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Butot, S.; Zuber, S.; Baert, L. Sample preparation prior to molecular amplification: Complexities and opportunities. Curr. Opin. Virol. 2014, 4, 66–70. [Google Scholar] [CrossRef]
- Rolfe, K.J.; Parmar, S.; Mururi, D.; Wreghitt, T.G.; Jalal, H.; Zhang, H.; Curran, M.D. An internally controlled, one-step, real-time RT-PCR assay for norovirus detection and genogrouping. J. Clin. Virol. 2007, 39, 318–321. [Google Scholar] [CrossRef]
- Blaise-Boisseau, S.; Hennechart-Collette, C.; Guillier, L.; Perelle, S. Duplex real-time qRT-PCR for the detection of hepatitis A virus in water and raspberries using the MS2 bacteriophage as a process control. J. Virol. Methods 2010, 166, 48–53. [Google Scholar] [CrossRef]
- Witte, A.K.; Mester, P.; Fister, S.; Witte, M.; Schoder, D.; Rossmanith, P. A Systematic Investigation of Parameters Influencing Droplet Rain in the Listeria monocytogenes prfA Assay—Reduction of Ambiguous Results in ddPCR. PLoS ONE 2016, 11, e0168179. [Google Scholar] [CrossRef] [PubMed]
- Demeke, T.; Dobnik, D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 2018, 410, 4039–4050. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Li, Z.; Duan, Q.; Cheng, K.; He, Y.; Huang, S.; Zhang, H.; Jiang, Y.; Jia, Y.; Sun, H. Two quenching groups are better than one: A robust strategy for constructing HOCl fluorescent probe with minimized background fluorescence and ultra-high sensitivity and its application of HOCl imaging in living cells and tissues. Sens. Actuators B Chem. 2020, 310, 127890. [Google Scholar] [CrossRef]
- Kikuchi, A.; Naruse, A.; Takagi, K. Analysis of microRNAs by the Stem-Loop Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction Using A Double Quencher Probe. Am. J. Clin. Pathol. 2022, 158, S142–S143. [Google Scholar] [CrossRef]
- La Bella, G.; Basanisi, M.G.; Nobili, G.; D’Antuono, A.M.; Suffredini, E.; La Salandra, G. Duplex Droplet Digital PCR Assay for Quantification of Hepatitis E Virus in Food. Viruses 2024, 16, 413. [Google Scholar] [CrossRef]
- Gao, S.; Wang, J.; Li, D.; Li, Y.; Lou, C.; Zha, E.; Yue, X.; Zhou, T. Development and evaluation of a time-saving RT-qRPA method for the detection of genotype 4 HEV presence in raw pork liver. Int. J. Food Microbiol. 2020, 322, 108587. [Google Scholar] [CrossRef]
- Filipa-Silva, A.; Nunes, M.; Parreira, R.; Barreto Crespo, M.T. Development of a tetraplex qPCR for the molecular identification and quantification of human enteric viruses, NoV and HAV, in Fish Samples. Microorganisms 2021, 9, 1149. [Google Scholar] [CrossRef]
- Wang, D.; Cao, J.; Tian, Z.; Fang, B.; Qi, X.; Lei, Z.; Liu, L.; Zhu, J.; Ma, L. Development of a new concentration method for Hepatitis A virus detection (ISO 15216-2:2019) in Manila clams (Ruditapes philippinarum). Lwt 2022, 172, 114172. [Google Scholar] [CrossRef]
- Quang Le, H.; Suffredini, E.; Tien Pham, D.; Kim To, A.; De Medici, D. Development of a method for direct extraction of viral RNA from bivalve molluscs. Lett. Appl. Microbiol. 2018, 67, 426–434. [Google Scholar] [CrossRef]
- O’Hara, Z.; Crossan, C.; Craft, J.; Scobie, L. First Report of the Presence of Hepatitis E Virus in Scottish-Harvested Shellfish Purchased at Retail Level. Food Environ. Virol. 2018, 10, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xu, Z.; Chen, J.; Chen, L.; Liao, N.; Zhang, R.; Cheng, D. Quantitative Risk Assessment of Five Foodborne Viruses in Shellfish Based on Multiplex qPCR. Foods 2023, 12, 3462. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence, 5′→3′ | Amplicon Size/bp | GenBank | Sources |
---|---|---|---|---|
HAV-F | TCACCGCCGTTTGCCTAG | 174 | M14707 | [33] |
HAV-R | GGAGAGCCCTGGAAGAAAG | |||
HAV-P | VIC-CCTGAACCTGCAGGAATTAA-MGB | |||
HEV-F | ACHCTRTTTAAYCTTGCTGAYAC | 160 | AY594199 | [34] |
HEV-R | CCTTRTCCTGCTGAGCRTTCTC | |||
HEV-P | FAM-CCGACAGAATTGATTTCGTCGGC-BHQ1 | |||
MS2-F | GGCTGCTCGCGGATACCC | 202 | JF719743.1 | [35] |
MS2-R | TGAGGGAATGTGGGAACCG | |||
MS2-P1 | FAM-ACCTCGGGTTTCCGTCTTGCTCGT-DUQ-TQ a | |||
MS2-P2 | VIC-ACCTCGGGTTTCCGTCTTGCTCGT-DUQ-TQ |
20 μL RT-ddPCR Reaction | Volume/μL |
---|---|
Supermix (one-step RT-ddPCR) | 5 |
Reverse transcriptase | 2 |
300 mM DTT | 1 |
HAV/HEV/MS2 forward primers (900 nmol/L) | 0.6/0.6/0.6 |
HAV/HEV/MS2 reverse Primers (900 nmol/L) | 0.6/0.6/0.6 |
HAV/HEV probes (350 nmol/L) | 0.33/0.33 |
MS2 probes (FAM/VIC) (250/250 nmol/L) b | 0.17/0.17 |
RNase-free water | 4.4 |
RNA | 3 |
HAV | HEV | MS2 | |||
---|---|---|---|---|---|
Concentration (Copies/Reaction) | Positive Counts | Concentration (Copies/Reaction) | Positive Counts | Concentration (Copies/Reaction) | Positive Counts |
350 | 10 | 290 | 10 | 140 | 10 |
35 | 10 | 29 | 10 | 14 | 10 |
17.5 | 10 | 14.5 | 10 | 7 | 9 |
8.75 | 9 | 7.25 | 8 | 3.5 | 7 |
4.38 | 3 | 3.63 | 1 | 1.75 | 1 |
3.5 | 2 | 2.90 | 0 | 1.4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.; Wang, J.; Wang, Y.; Liu, L.; Xu, X.; Wang, J. Development and Application of a Multiplex Reverse Transcription–Droplet Digital PCR Assay for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus in Bivalve Shellfish. Foods 2025, 14, 2. https://doi.org/10.3390/foods14010002
Wei M, Wang J, Wang Y, Liu L, Xu X, Wang J. Development and Application of a Multiplex Reverse Transcription–Droplet Digital PCR Assay for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus in Bivalve Shellfish. Foods. 2025; 14(1):2. https://doi.org/10.3390/foods14010002
Chicago/Turabian StyleWei, Maolin, Jinfeng Wang, Yan Wang, Libing Liu, Xiangdong Xu, and Jianchang Wang. 2025. "Development and Application of a Multiplex Reverse Transcription–Droplet Digital PCR Assay for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus in Bivalve Shellfish" Foods 14, no. 1: 2. https://doi.org/10.3390/foods14010002
APA StyleWei, M., Wang, J., Wang, Y., Liu, L., Xu, X., & Wang, J. (2025). Development and Application of a Multiplex Reverse Transcription–Droplet Digital PCR Assay for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus in Bivalve Shellfish. Foods, 14(1), 2. https://doi.org/10.3390/foods14010002