Comparison of Nutritional Flavor Substances in Meat Between Shanghai Local Pig Breeds and Commercial DLY Breed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pork Samples
2.2. Major Reagents and Instrumentation
2.3. Measurement of Meat Quality Traits
2.4. Measurement of Amino Acids
2.5. Measurement of Fatty Acids
2.6. Measurement of Inosine Monophosphate
2.7. Measurement of Thiamine
2.8. Statistical Analysis
3. Results
3.1. Meat Quality Traits
3.2. Amino Acid
3.3. Fatty Acid
3.4. VB1 and IMP
4. Discussion
4.1. Meat Quality Traits
4.2. Amino Acids
4.3. Fatty Acid
4.4. VB1 and IMP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weronika, Z.; Tkacz, K.; Pietrzak-Fiećko, R.; Bottari, B.; Modzelewska-Kapituła, M. Pork as a source of nutrients in a human diet-comparison of meat obtained from conventional and organic systems offered in the Polish market. NFS J. 2024, 37, 100199. [Google Scholar]
- Hawthorne, L.M.; Beganović, A.; Schwarz, M.; Noordanus, A.W.; Prem, M.; Zapf, L.; Scheibel, S.; Margreiter, G.; Huck, C.W.; Bach, K. Suitability of biodegradable materials in comparison with conventional packaging materials for the storage of fresh pork products over extended shelf-life periods. Foods 2020, 9, 1802. [Google Scholar] [CrossRef] [PubMed]
- Miller, R. Drivers of consumer liking for beef, pork, and lamb: A review. Foods 2020, 9, 428. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Dunshea, F.R.; Lisle, A.; Roura, E. Feeding a high oleic acid (C18: 1) diet improves pleasing flavor attributes in pork. Food Chem. 2021, 357, 129770. [Google Scholar] [CrossRef]
- Alfaia, C.; Lopes, P.; Madeira, M.; Pestana, J.; Coelho, D.; Toldrá, F.; Prates, J. Current feeding strategies to improve pork intramuscular fat content and its nutritional quality. Adv. Food Nutr. Res. 2019, 89, 53–94. [Google Scholar] [PubMed]
- Pereira, P.M.d.C.C.; Vicente, A.F.d.R.B. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef]
- Faucitano, L.; Ielo, M.C.; Ster, C.; Fiego, D.L.; Methot, S.; Saucier, L. Shelf life of pork from five different quality classes. Meat Sci. 2010, 84, 466–469. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, L.; Zhang, J.; Liu, X.; Zhang, Y.; Cai, L.; Zhang, W.; Cui, L.; Yang, J.; Ji, J. A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds. Meat Sci. 2020, 168, 108182. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, R.; Yang, M.; Niu, N.; Wu, J.; Shu, Z.; Zhang, P.; Shi, L.; Zhao, F.; Wang, L. Metabolomics and lipidomics profiles related to intramuscular fat content and flavor precursors between Laiwu and Yorkshire pigs. Food Chem. 2023, 404, 134699. [Google Scholar] [CrossRef]
- Gao, J.; Sun, L.; Pan, H.; Zhang, S.; Xu, J.; He, M.; Zhang, K.; Zhou, J.; Zhang, D.; Wu, C. Genomic Dissection through Whole-Genome Resequencing of Five Local Pig Breeds from Shanghai, China. Animals 2023, 13, 3727. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yu, M.; Liu, Z.; Deng, D.; Cui, Y.; Tian, Z.; Wang, G. Effect of amino acids and their derivatives on meat quality of finishing pigs. J. Food Sci. Technol. 2020, 57, 404–412. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Q.; Qu, C.; Gong, X.; Zhang, Y.; Zhang, X.; Wang, S. Elucidation of potential relationship between endogenous proteases and key flavor substances in dry-cured pork coppa. Food Sci. Hum. Wellness 2024, 13, 2152–2160. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarska, K.; Taylor, M.; Piyasiri, U.; Frank, D. Flavor and metabolite profiles of meat, meat substitutes, and traditional plant-based high-protein food products available in Australia. Foods 2021, 10, 801. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, J.R.; Kim, M.K.; Jo, C.; Lee, K.H.; You, I.; Jung, S. Quality improvement of pork loin by dry aging. Korean J. Food Sci. Anim. Resour. 2016, 36, 369. [Google Scholar] [CrossRef]
- Wu, W.; Zhan, J.; Tang, X.; Li, T.; Duan, S. Characterization and identification of pork flavor compounds and their precursors in Chinese indigenous pig breeds by volatile profiling and multivariate analysis. Food Chem. 2022, 385, 132543. [Google Scholar] [CrossRef]
- Benet, I.; Guàrdia, M.D.; Ibañez, C.; Solà, J.; Arnau, J.; Roura, E. Low intramuscular fat (but high in PUFA) content in cooked cured pork ham decreased Maillard reaction volatiles and pleasing aroma attributes. Food Chem. 2016, 196, 76–82. [Google Scholar] [CrossRef]
- Resconi, V.C.; Bueno, M.; Escudero, A.; Magalhaes, D.; Ferreira, V.; Campo, M.M. Ageing and retail display time in raw beef odour according to the degree of lipid oxidation. Food Chem. 2018, 242, 288–300. [Google Scholar] [CrossRef]
- Wu, N.; Wang, X.-C. Identification of important odorants derived from phosphatidylethanolamine species in steamed male Eriocheir sinensis hepatopancreas in model systems. Food Chem. 2019, 286, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Aaslyng, M.D.; Meinert, L. Meat flavour in pork and beef–From animal to meal. Meat Sci. 2017, 132, 112–117. [Google Scholar] [CrossRef]
- Neethling, J.; Hoffman, L.; Muller, M. Factors influencing the flavour of game meat: A review. Meat Sci. 2016, 113, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Huang, Q.; Wang, Y.; Shan, T. Lipo-nutritional quality of pork: The lipid composition, regulation, and molecular mechanisms of fatty acid deposition. Anim. Nutr. 2023, 13, 373–385. [Google Scholar] [CrossRef]
- Yiyan, C.; Xianyong, M. Recent advances in the research on pork flavor compounds. Meat Res. 2017, 31, 55–60. [Google Scholar]
- Tikk, M.; Tikk, K.; Tørngren, M.A.; Meinert, L.; Aaslyng, M.D.; Karlsson, A.H.; Andersen, H.J. Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat. J. Agric. Food Chem. 2006, 54, 7769–7777. [Google Scholar] [CrossRef]
- Tu, T.; Wu, W.; Tang, X.; Ge, Q.; Zhan, J. Screening out important substances for distinguishing Chinese indigenous pork and hybrid pork and identifying different pork muscles by analyzing the fatty acid and nucleotide contents. Food Chem. 2021, 350, 129219. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Li, D.; Yin, J.; Zhang, L.; Wang, Z. Flavour differences of cooked longissimus muscle from Chinese indigenous pig breeds and hybrid pig breed (Duroc × Landrace × Large White). Food Chem. 2008, 107, 1529–1537. [Google Scholar] [CrossRef]
- Wang, H.; Lu, H.; Lei, Y.-s.; Gong, C.-y.; Chen, Z.; Luan, Y.-q.; Li, Q.; Jian, Y.-z.; Wang, H.-z.; Wu, F.-l. Development of a self-restricting CRISPR-Cas9 system to reduce off-target effects. Mol. Ther. Methods Clin. Dev. 2020, 18, 390–401. [Google Scholar] [CrossRef]
- Zhang, K.; Li, D.; Zang, M.; Zhang, Z.; Li, X.; Wang, S.; Zhang, S.; Zhao, B. Comparative characterization of fatty acids, reheating volatile compounds, and warmed-over flavor (WOF) of Chinese indigenous pork and hybrid pork. LWT 2022, 155, 112981. [Google Scholar] [CrossRef]
- Zhao, L.; Erasmus, S.; Yang, P.; Huang, F.; Zhang, C.; van Ruth, S. Establishing the relations of characteristic aroma precursors and volatile compounds for authenticating Tibetan pork. Food Chem. 2023, 427, 136717. [Google Scholar] [CrossRef] [PubMed]
- Bala, J. Contribution of SPSS in Social Sciences Research. Int. J. Adv. Res. Comput. Sci. 2016, 7, 250–254. [Google Scholar]
- Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Liu, S.; Liu, Q.; Wen, R.; Sun, C. Meat exudate metabolomics reveals the impact of freeze-thaw cycles on meat quality in pork loins. Food Chem. X 2024, 24, 101804. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shu, Z.; Wang, L.; Zhang, T.; Zhang, L.; Hou, X.; Yan, H.; Wang, L. Copy number variations contribute to intramuscular fat content differences by affecting the expression of PELP1 alternative splices in Pigs. Animals 2022, 12, 1382. [Google Scholar] [CrossRef]
- Fortin, A.; Robertson, W.; Tong, A. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci. 2005, 69, 297–305. [Google Scholar] [CrossRef]
- Wood, J.; Enser, M.; Fisher, A.; Nute, G.; Sheard, P.; Richardson, R.; Hughes, S.; Whittington, F. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Razmaitė, V.; Juška, R.; Leikus, R.; Jatkauskienė, V. Pork quality of two Lithuanian breeds: Effects of breed, gender and feeding regimen. Animals 2021, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.; Shen, L.; Chen, L.; Jiang, D.; Jiang, Y.; Li, Q.; Chen, Y.; Ge, G.; Liu, Y.; Xu, X. Meat quality, amino acid, and fatty acid composition of liangshan pigs at different weights. Animals 2020, 10, 822. [Google Scholar] [CrossRef]
- Poklukar, K.; Čandek-Potokar, M.; Batorek Lukač, N.; Tomažin, U.; Škrlep, M. Lipid deposition and metabolism in local and modern pig breeds: A review. Animals 2020, 10, 424. [Google Scholar] [CrossRef]
- Malgwi, I.H.; Halas, V.; Grünvald, P.; Schiavon, S.; Jócsák, I. Genes related to fat metabolism in pigs and intramuscular fat content of pork: A focus on nutrigenetics and nutrigenomics. Animals 2022, 12, 150. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Yang, Y.; Zhu, J.; He, W.; Zhao, Q.; Tang, C.; Qin, Y.; Zhang, J. Comparative characterization of lipids and volatile compounds of Beijing Heiliu and Laiwu Chinese black pork as markers. Food Res. Int. 2021, 146, 110433. [Google Scholar] [CrossRef]
- Yang, C.; Wang, W.; Tang, X.; Huang, R.; Li, F.; Su, W.; Yin, Y.; Wen, C.; Liu, J. Comparison of the meat quality and fatty acid profile of muscles in finishing Xiangcun Black pigs fed varied dietary energy levels. Anim. Nutr. 2022, 11, 15–24. [Google Scholar] [CrossRef]
- Liu, Q.; Long, Y.; Zhang, Y.F.; Zhang, Z.Y.; Yang, B.; Chen, C.Y.; Huang, L.S.; Su, Y. Phenotypic and genetic correlations of pork myoglobin content with meat colour and other traits in an eight breed-crossed heterogeneous population. Animal 2021, 15, 100364. [Google Scholar] [CrossRef] [PubMed]
- Stanisz, M.; Ludwiczak, A.; Składanowska-Baryza, J.; Bykowska-Maciejewska, M. The effect of age and ultimate pH value on selected quality traits of meat from wild boar. Can. J. Anim. Sci. 2018, 99, 336–342. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H.B.; Wei, Q.Y.; Wang, X.M. Protein content evaluation of processed pork meats based on a novel single shot (snapshot) hyperspectral imaging sensor. J. Food Eng. 2019, 240, 207–213. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Jennen, D.G.J.; Brings, A.D.; Liu, G.; Jüngst, H.; Tholen, E.; Jonas, E.; Tesfaye, D.; Schellander, K.; Phatsara, C. Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J. Anim. Breed. Genet. 2007, 124, 2–11. [Google Scholar] [CrossRef]
- Ma, F.; Li, Y.; Zhang, Y.; Zhang, Q.; Li, X.; Cao, Q.; Ma, H.; Xie, D.; Zhang, B.; Yu, J. Effects of umami substances as taste enhancers on salt reduction in meat products: A review. Food Res. Int. 2024, 185, 114248. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Liu, H.; Xu, K.; Yu, R.; Oso, A.O.; Deng, J.; Yin, Y. Effects of coated cysteamine hydrochloride on muscle fiber characteristics and amino acid composition of finishing pigs. Asian-Australas. J. Anim. Sci. 2018, 32, 1430. [Google Scholar] [CrossRef]
- Hu, C.; Jiang, Q.; Zhang, T.; Yin, Y.; Li, F.; Deng, J.; Wu, G.; Kong, X. Dietary supplementation with arginine and glutamic acid modifies growth performance, carcass traits, and meat quality in growing-finishing pigs. J. Anim. Sci. 2017, 95, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, Y.; Zheng, C.; Wang, L.; Zhou, Y.; Chen, W.; Duan, Y.; Shan, T. Leucine improves the growth performance, carcass traits, and lipid nutritional quality of pork in Shaziling pigs. Meat Sci. 2024, 210, 109435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chu, L.; Qiao, S.; Mao, X.; Zeng, X. Effects of dietary leucine supplementation in low crude protein diets on performance, nitrogen balance, whole-body protein turnover, carcass characteristics and meat quality of finishing pigs. Anim. Sci. J. 2016, 87, 911–920. [Google Scholar] [CrossRef]
- Zhang, L.; Li, F.; Guo, Q.; Duan, Y.; Wang, W.; Zhong, Y.; Yang, Y.; Yin, Y. Leucine supplementation: A novel strategy for modulating lipid metabolism and energy homeostasis. Nutrients 2020, 12, 1299. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hou, L.; Cao, C.; Liang, J.; Zheng, F.; Sun, B. Characterization of the aroma compounds in stewed pork broth. Food Sci. 2015, 36, 105–111. (In Chinese) [Google Scholar]
- Jiang, Y.; Zhu, L.; Li, X.; Si, T. Evaluation of the Chinese indigenous pig breed Dahe and crossbred Dawu for growth and carcass characteristics, organ weight, meat quality and intramuscular fatty acid and amino acid composition. Animal 2011, 5, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, W.; Cai, J.; Ni, Y.; Xiao, L.; Zhang, J. Transcriptome analysis in comparing carcass and meat quality traits of Jiaxing Black Pig and Duroc × Duroc × Berkshire × Jiaxing Black Pig crosses. Gene 2022, 808, 145978. [Google Scholar] [CrossRef] [PubMed]
- Ghomsi, S.O.M.; Pechangou, S.N.; Maafo, R.S.; Mouafo, H.T.; Etchu, A.K.; Bilong, F.C.B.; Moundipa, P.F. Assessment of the digestibility, growth performance, hematological and serum biochemical profile of Bandjock Local Pigs (BLP) and Duroc X Large White pigs (DLW). Vet. Anim. Sci. 2024, 25, 100370. [Google Scholar] [CrossRef]
- Wei, G.; Li, X.; Wang, D.; Huang, W.; Shi, Y.; Huang, A. Insights into free fatty acid profiles and oxidation on the development of characteristic volatile compounds in dry-cured ham from Dahe black and hybrid pigs. LWT 2023, 184, 115063. [Google Scholar] [CrossRef]
- Aiello, A.; Medoro, A.; Accardi, G.; Calabrò, A.; Carru, C.; Cannavo, A.; Caruso, C.; Candore, G.; Scapagnini, G.; Corbi, G. Polyunsaturated fatty acid status and markers of oxidative stress and inflammation across the lifespan: A cross-sectional study in a cohort with long-lived individuals. Exp. Gerontol. 2024, 195, 112531. [Google Scholar] [CrossRef]
- Davinelli, S.; Medoro, A.; Intrieri, M.; Saso, L.; Scapagnini, G.; Kang, J.X. Targeting NRF2–KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic. Biol. Med. 2022, 193, 736–750. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y.Q.; Chen, W. Review of the roles of conjugated linoleic acid in health and disease. J. Funct. Foods 2015, 15, 314–325. [Google Scholar] [CrossRef]
- Burns, J.L.; Nakamura, M.T.; Ma, D.W. Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot. Essent. Fat. Acids 2018, 135, 1–4. [Google Scholar] [CrossRef]
- Tsikas, D. Measurement of nitro-oleic acid and nitro-linoleic acid in plasma by GC-MS/MS and LC-MS/MS in health and disease: The significance of the internal standard. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2023, 1221, 123684. [Google Scholar] [CrossRef] [PubMed]
- Anton, S.D.; Heekin, K.; Simkins, C.; Acosta, A. Differential effects of adulterated versus unadulterated forms of linoleic acid on cardiovascular health. J. Integr. Med. 2013, 11, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Linoleic acid intake and reduction in mortality: The icing on the cake of health benefits from n–6 PUFAs? Am. J. Clin. Nutr. 2020, 112, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.B.; Park, Y. Conjugated linoleic acid in human health: Effects on weight control. In Nutrition in the Prevention and Treatment of Abdominal Obesity; Elsevier: Amsterdam, The Netherlands, 2019; pp. 355–382. [Google Scholar]
- Mrowicka, M.; Mrowicki, J.; Dragan, G.; Majsterek, I. The importance of thiamine (vitamin B1) in humans. Biosci. Rep. 2023, 43, BSR20230374. [Google Scholar] [CrossRef] [PubMed]
- Muroya, S.; Oe, M.; Ojima, K. Thiamine accumulation and thiamine triphosphate decline occur in parallel with ATP exhaustion during postmortem aging of pork muscles. Meat Sci. 2018, 137, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Abyar, F.; Novak, I. Investigation on the electronic structures of thiamine and related compounds: Free base or salt? J. Photochem. Photobiol. A Chem. 2022, 430, 113988. [Google Scholar] [CrossRef]
- Kosowska, M.; Majcher, M.A.; Fortuna, T. Volatile compounds in meat and meat products. Food Sci. Technol. 2017, 37, 1–7. [Google Scholar] [CrossRef]
- Chaudhari, N.; Yang, H.; Lamp, C.; Delay, E.; Cartford, C.; Than, T.; Roper, S. The taste of monosodium glutamate: Membrane receptors in taste buds. J. Neurosci. 1996, 16, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, N.; Pereira, E.; Roper, S.D. Taste receptors for umami: The case for multiple receptors. Am. J. Clin. Nutr. 2009, 90, 738S–742S. [Google Scholar] [CrossRef]
- Hoon, M.A.; Adler, E.; Lindemeier, J.; Battey, J.F.; Ryba, N.J.; Zuker, C.S. Putative mammalian taste receptors: A class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999, 96, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Montmayeur, J.-P.; Liberles, S.D.; Matsunami, H.; Buck, L.B. A candidate taste receptor gene near a sweet taste locus. Nat. Neurosci. 2001, 4, 492–498. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Erlenbach, I.; Ryba, N.J.; Zuker, C.S. The receptors for mammalian sweet and umami taste. Cell 2003, 115, 255–266. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Ouyang, K.-H.; Wang, W.-J. Effects of polysaccharides from Yingshan Yunwu tea on free amino acids, flavor nucleotides and antioxidant abilities in chickens. Res. Vet. Sci. 2022, 149, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Kim, J.-M.; Byun, M.-J.; Kang, K.-S.; Kim, T.-H.; Hong, K.-C.; Lee, K.-T. Structure and polymorphisms of the 5′ regulatory region of porcine adenylate kinase 3-like 1 gene and effect on trait of meat quality. Genes Genom. 2011, 33, 147–153. [Google Scholar] [CrossRef]
- Joo, S.; Kim, G.; Hwang, Y.; Ryu, Y. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef]
- Jung, S.; Bae, Y.S.; Kim, H.J.; Jayasena, D.D.; Lee, J.H.; Park, H.B.; Heo, K.N.; Jo, C. Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci. 2013, 92, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Kim, S.H.; Lee, H.J.; Jung, S.; Lee, J.H.; Park, H.B.; Jo, C. Comparison of the amounts of taste-related compounds in raw and cooked meats from broilers and Korean native chickens. Poult. Sci. 2014, 93, 3163–3170. [Google Scholar] [CrossRef] [PubMed]
Traits | DLY | MMS | SW | SHW | PD | p-Value |
---|---|---|---|---|---|---|
IMF (%) | 3.10 ± 0.82 | 5.55 ± 0.53 | 5.11 ± 1.13 | 4.03 ± 2.53 | 5.82 ± 0.74 | ** |
Drip loss (%) | 5.62 ± 0.94 | 3.55 ± 1.18 | 5.83 ± 0.17 | 5.57 ± 1.52 | 3.78 ± 1.21 | ** |
pH24h | 5.84 ± 0.38 | 5.71 ± 0.06 | 5.49 ± 0.28 | 5.70 ± 0.32 | 5.44 ± 0.11 | ns |
Lightness (L*) | 41.80 ± 3.69 | 44.66 ± 1.74 | 49.91 ± 5.21 | 47.57 ± 7.75 | 42.57 ± 3.75 | * |
Redness (a*) | 10.67 ± 1.58 | 3.46 ± 3.04 | 9.03 ± 3.09 | 5.77 ± 3.35 | 2.87 ± 1.70 | **** |
Yellowness (b*) | 6.28 ± 1.93 | 8.91 ± 1.49 | 9.86 ± 2.86 | 10.45 ± 1.13 | 8.67 ± 1.20 | ** |
WC (%) | 68.78 ± 1.72 | 68.57 ± 3.01 | 66.70 ± 7.43 | 67.93 ± 1.13 | 68.17 ± 1.96 | ns |
EC (ms/cm) | 1.31 ± 0.01 | 3.40 ± 1.65 | 1.25 ± 0.29 | 2.25 ± 2.54 | 3.40 ± 1.29 | * |
YP (%) | 84.50 ± 5.18 | 94.61 ± 3.14 | 88.01 ± 6.55 | 90.10 ± 5.67 | 91.34 ± 2.56 | * |
FC (%) | 19.62 ± 0.37 | 13.56 ± 2.32 | 14.70 ± 6.32 | 19.47 ± 0.26 | 12.30 ± 2.43 | *** |
PC (%) | 11.53 ± 2.10 | 17.89 ± 3.81 | 18.60 ± 2.46 | 12.58 ± 1.40 | 19.55 ± 0.46 | **** |
Shear force (N) | 3.66 ± 0.66 | 2.45 ± 0.32 | 4.28 ± 2.07 | 3.69 ± 0.53 | 2.52 ± 0.54 | * |
Amino Acid | DLY | MMS | SW | SHW | PD | p-Value |
---|---|---|---|---|---|---|
Asp | 1.95 ± 0.09 | 1.87 ± 0.04 | 1.92 ± 0.06 | 1.89 ± 0.04 | 1.91 ± 0.05 | ns |
Glu | 3.01 ± 0.13 | 2.90 ± 0.04 | 2.99 ± 0.10 | 2.90 ± 0.07 | 2.92 ± 0.06 | ns |
Ser | 0.70 ± 0.04 | 0.68 ± 0.02 | 0.69 ± 0.02 | 0.68 ± 0.02 | 0.69 ± 0.02 | ns |
Gly | 0.68 ± 0.02 | 0.66 ± 0.03 | 0.67 ± 0.02 | 0.68 ± 0.05 | 0.69 ± 0.03 | ns |
His | 0.76 ± 0.05 | 0.76 ± 0.03 | 0.63 ± 0.12 | 0.74 ± 0.07 | 0.76 ± 0.03 | * |
Arg | 1.19 ± 0.06 | 1.13 ± 0.02 | 1.16 ± 0.04 | 1.14 ± 0.03 | 1.14 ± 0.03 | ns |
Thr | 0.77 ± 0.05 | 0.74 ± 0.01 | 0.74 ± 0.03 | 0.72 ± 0.02 | 0.72 ± 0.02 | * |
Ala | 0.99 ± 0.05 | 0.95 ± 0.02 | 0.96 ± 0.03 | 0.95 ± 0.03 | 0.95 ± 0.03 | ns |
Pro | 0.58 ± 0.02 | 0.56 ± 0.02 | 0.58 ± 0.01 | 0.60 ± 0.03 | 0.61 ± 0.02 | * |
Tyr | 0.54 ± 0.04 | 0.51 ± 0.01 | 0.52 ± 0.02 | 0.51 ± 0.02 | 0.51 ± 0.02 | ns |
Val | 0.77 ± 0.05 | 0.70 ± 0.02 | 0.72 ± 0.03 | 0.69 ± 0.03 | 0.68 ± 0.03 | ** |
Met | 0.43 ± 0.04 | 0.38 ± 0.03 | 0.40 ± 0.03 | 0.40 ± 0.03 | 0.37 ± 0.02 | * |
Cys | 0.09 ± 0.01 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.02 ± 0.01 | **** |
Ile | 0.74 ± 0.05 | 0.67 ± 0.02 | 0.68 ± 0.03 | 0.65 ± 0.03 | 0.63 ± 0.02 | **** |
Leu | 1.26 ± 0.09 | 1.24 ± 0.03 | 1.24 ± 0.05 | 1.23 ± 0.05 | 1.22 ± 0.04 | ns |
Phe | 0.60 ± 0.04 | 0.57 ± 0.01 | 0.58 ± 0.03 | 0.56 ± 0.02 | 0.56 ± 0.02 | ns |
Lys | 1.63 ± 0.10 | 1.54 ± 0.03 | 1.57 ± 0.07 | 1.53 ± 0.06 | 1.52 ± 0.05 | * |
TAA | 16.73 ± 0.91 | 15.91 ± 0.30 | 16.09 ± 0.65 | 15.92 ± 0.50 | 15.90 ± 0.44 | ns |
EAA | 6.25 ± 0.42 | 5.83 ± 0.12 | 5.93 ± 0.27 | 5.80 ± 0.22 | 5.70 ± 0.19 | * |
FAA | 7.77 ± 0.36 | 7.45 ± 0.14 | 7.63 ± 0.25 | 7.49 ± 0.18 | 7.54 ± 0.18 | ns |
EAA/TAA (%) | 37.34 ± 0.50 | 36.66 ± 0.25 | 36.85 ± 0.28 | 36.42 ± 0.50 | 35.82 ± 0.33 | **** |
FAA/TAA (%) | 46.47 ± 0.38 | 46.84 ± 0.23 | 47.46 ± 0.49 | 47.09 ± 0.47 | 47.45 ± 0.23 | *** |
Amino Acid | DLY | MMS | SW | SHW | PD | p-Value |
---|---|---|---|---|---|---|
Asp | 1.84 ± 0.10 | 2.00 ± 0.07 | 2.02 ± 0.07 | 2.15 ± 0.04 | 2.02 ± 0.07 | *** |
Glu | 2.83 ± 0.17 | 3.12 ± 0.09 | 3.08 ± 0.15 | 3.22 ± 0.07 | 3.11 ± 0.09 | *** |
Ser | 0.65 ± 0.04 | 0.69 ± 0.03 | 0.70 ± 0.03 | 0.76 ± 0.01 | 0.72 ± 0.03 | **** |
Gly | 0.71 ± 0.04 | 0.74 ± 0.07 | 0.75 ± 0.05 | 0.82 ± 0.04 | 0.78 ± 0.05 | * |
His | 0.66 ± 0.06 | 0.67 ± 0.13 | 0.62 ± 0.13 | 0.84 ± 0.08 | 0.69 ± 0.13 | * |
Arg | 1.12 ± 0.07 | 1.21 ± 0.05 | 1.20 ± 0.06 | 1.28 ± 0.02 | 1.21 ± 0.04 | *** |
Thr | 0.68 ± 0.05 | 0.74 ± 0.04 | 0.73 ± 0.04 | 0.79 ± 0.01 | 0.73 ± 0.04 | ** |
Ala | 0.92 ± 0.05 | 1.00 ± 0.04 | 0.99 ± 0.05 | 0.60 ± 0.03 | 1.01 ± 0.04 | **** |
Pro | 0.62 ± 0.05 | 0.66 ± 0.05 | 0.65 ± 0.04 | 0.71 ± 0.03 | 0.71 ± 0.03 | ** |
Tyr | 0.48 ± 0.03 | 0.52 ± 0.03 | 0.52 ± 0.03 | 0.56 ± 0.02 | 0.53 ± 0.03 | ** |
Val | 0.68 ± 0.04 | 0.76 ± 0.04 | 0.74 ± 0.07 | 0.74 ± 0.05 | 0.66 ± 0.08 | * |
Met | 0.34 ± 0.04 | 0.35 ± 0.04 | 0.37 ± 0.02 | 0.43 ± 0.02 | 0.38 ± 0.03 | *** |
Cys | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.02 | 0.01 ± 0.05 | ns |
Ile | 0.64 ± 0.05 | 0.71 ± 0.05 | 0.67 ± 0.05 | 0.68 ± 0.04 | 0.61 ± 0.07 | * |
Leu | 1.17 ± 0.08 | 1.28 ± 0.07 | 1.26 ± 0.08 | 1.34 ± 0.04 | 1.27 ± 0.06 | ** |
Phe | 0.54 ± 0.04 | 0.60 ± 0.03 | 0.59 ± 0.04 | 0.63 ± 0.02 | 0.59 ± 0.03 | ** |
Lys | 1.45 ± 0.10 | 1.62 ± 0.09 | 1.59 ± 0.09 | 1.70 ± 0.04 | 1.59 ± 0.08 | *** |
TAA | 15.35 ± 0.97 | 16.69 ± 0.76 | 16.52 ± 0.86 | 17.74 ± 0.31 | 16.61 ± 0.76 | *** |
EAA | 5.50 ± 0.40 | 6.05 ± 0.36 | 5.95 ± 0.35 | 6.30 ± 0.16 | 5.82 ± 0.36 | ** |
FAA | 7.32 ± 0.42 | 7.98 ± 0.27 | 7.96 ± 0.37 | 8.45 ± 0.16 | 8.03 ± 0.26 | **** |
EAA/TAA (%) | 35.85 ± 0.41 | 36.22 ± 0.67 | 36.07 ± 0.04 | 35.53 ± 0.47 | 35.03 ± 0.82 | * |
FAA/TAA (%) | 47.71 ± 0.40 | 47.84 ± 0.97 | 48.22 ± 0.64 | 47.67 ± 0.70 | 48.40 ± 0.69 | ns |
Sort of Fatty Acid | DLY | MMS | SW | SHW | PD | p-Value |
---|---|---|---|---|---|---|
Capric acid | 0.17 ± 0.09 | 0.10 ± 0.01 | 0.07 ± 0.02 | 0.10 ± 0.01 | 0.11 ± 0.01 | ns |
Lauric acid | 0.09 ± 0.03 | 0.09 ± 0.01 | 0.08 ± 0.02 | 0.08 ± 0.01 | 0.09 ± 0.01 | ns |
Myristic acid | 1.38 ± 0.11 | 1.64 ± 0.26 | 1.36 ± 0.25 | 1.22 ± 0.15 | 1.53 ± 0.15 | ns |
Myristoleic acid | 0.04 ± 0.02 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.01 | * |
Pentadecanoic acid | 0.08 ± 0.04 | 0.06 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | ns |
Palmitic acid | 29.89 ± 1.64 | 28.59 ± 1.30 | 28.39 ± 1.50 | 26.93 ± 1.32 | 29.70 ± 1.20 | ns |
Cis-7-Hexadecenoic acid | 0.56 ± 0.45 | 0.29 ± 0.07 | 0.22 ± 0.02 | 0.25 ± 0.06 | 0.33 ± 0.07 | ns |
Palmitoleic acid | 3.19 ± 0.43 | 2.58 ± 0.55 | 2.28 ± 0.56 | 1.82 ± 0.53 | 3.11 ± 0.51 | ns |
14-Methylhexadecanoic acid | 0.05 ± 0.02 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.02 | 0.04 ± 0.01 | ns |
Margaric acid | 0.19 ± 0.03 | 0.30 ± 0.08 | 0.15 ± 0.03 | 0.21 ± 0.07 | 0.25 ± 0.05 | ns |
Cis-10-Heptadecenoic acid | 0.14 ± 0.03 | 0.23 ± 0.06 | 0.10 ± 0.02 | 0.16 ± 0.06 | 0.23 ± 0.06 | ns |
Stearic acid | 15.19 ± 3.13 | 22.15 ± 6.10 | 28.84 ± 3.10 | 31.55 ± 10.34 | 25.58 ± 3.98 | ns |
Oleic acid | 34.89 ± 1.45 | 25.18 ± 5.15 | 24.70 ± 3.43 | 25.52 ± 7.22 | 25.81 ± 6.22 | ns |
Elaidic acid | 3.09 ± 0.46 | 2.07 ± 0.70 | 1.76 ± 0.35 | 1.59 ± 0.87 | 2.45 ± 0.57 | ns |
Cis-11-Octadecenoic acid | 0.09 ± 0.02 | 0.09 ± 0.02 | 0.07 ± 0.02 | 0.06 ± 0.02 | 0.11 ± 0.02 | ns |
Linoleic acid | 6.94 ± 1.29 | 13.13 ± 1.88 | 8.78 ± 1.63 | 7.25 ± 2.39 | 7.49 ± 1.19 | * |
Linolenic acid | 0.50 ± 0.33 | 0.70 ± 0.09 | 0.59 ± 0.09 | 0.40 ± 0.22 | 0.40 ± 0.07 | * |
Nonadecanoic acid | 0.87 ± 0.57 | 0.30 ± 0.11 | 0.21 ± 0.04 | 0.28 ± 0.15 | 0.30 ± 0.18 | ns |
Cis-10-Nonadecenoic acid | 0.10 ± 0.02 | 0.10 ± 0.04 | 0.08 ± 0.01 | 0.10 ± 0.03 | 0.10 ± 0.03 | ns |
Arachidic acid | 0.41 ± 0.10 | 0.37 ± 0.08 | 0.47 ± 0.05 | 0.40 ± 0.08 | 0.49 ± 0.11 | ns |
Cis-11-Eicosenoic acid | 1.05 ± 0.56 | 0.96 ± 0.12 | 1.00 ± 0.26 | 1.22 ± 0.24 | 1.18 ± 0.11 | ns |
11,14-Eicosadienoic acid | 0.46 ± 0.60 | 0.57 ± 0.14 | 0.45 ± 0.10 | 0.44 ± 0.09 | 0.39 ± 0.07 | ns |
8,11,14-Eicosatrienoic acid | 0.14 ± 0.03 | 0.14 ± 0.03 | 0.10 ± 0.01 | 0.10 ± 0.03 | 0.11 ± 0.03 | ns |
Arachidonic acid | 0.66 ± 0.41 | 0.33 ± 0.06 | 0.19 ± 0.08 | 0.27 ± 0.09 | 0.26 ± 0.07 | ns |
SFA | 48.24 ± 1.44 | 53.62 ± 5.30 | 59.66 ± 2.21 | 60.81 ± 8.84 | 58.12 ± 7.20 | ** |
UFA | 51.76 ± 1.44 | 46.38 ± 5.30 | 40.34 ± 2.21 | 39.19 ± 8.84 | 41.88 ± 7.20 | ** |
MUFA | 49.30 ± 1.97 | 31.52 ± 5.81 | 30.22 ± 3.69 | 30.72 ± 8.28 | 33.23 ± 6.85 | ** |
PUFA | 8.68 ± 1.41 | 14.86 ± 2.06 | 10.12 ± 1.76 | 8.47 ± 2.72 | 8.65 ± 1.31 | **** |
Sort of Fatty Acid | DLY | MMS | SW | SHW | PD | p-Value |
---|---|---|---|---|---|---|
Capric acid | 0.02 ± 0.03 | 0.16 ± 0.02 | 0.14 ± 0.03 | 0.11 ± 0.02 | 0.13 ± 0.03 | ** |
Lauric acid | 0.14 ± 0.02 | 0.14 ± 0.02 | 0.12 ± 0.02 | 0.08 ± 0.01 | 0.10 ± 0.02 | * |
Myristic acid | 1.50 ± 0.09 | 1.68 ± 0.15 | 1.40 ± 0.26 | 1.18 ± 0.08 | 1.76 ± 0.49 | ** |
Myristoleic acid | 0.03 ± 0.01 | 0.25 ± 0.53 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.01 | ns |
Pentadecanoic acid | 0.15 ± 0.08 | 0.08 ± 0.09 | 0.06 ± 0.07 | 0.06 ± 0.09 | 0.10 ± 0.12 | ** |
Palmitic acid | 27.49 ± 1.06 | 28.50 ± 1.03 | 27.85 ± 1.45 | 25.64 ± 0.60 | 30.08 ± 3.55 | ** |
Cis-7-Hexadecenoic acid | 0.70 ± 0.18 | 0.63 ± 0.23 | 0.50 ± 0.14 | 0.32 ± 0.14 | 0.29 ± 0.16 | * |
Palmitoleic acid | 3.44 ± 0.47 | 3.03 ± 0.56 | 2.94 ± 0.55 | 2.13 ± 0.44 | 3.58 ± 0.51 | ** |
14-Methylhexadecanoic acid | 0.10 ± 0.03 | 0.06 ± 0.03 | 0.08 ± 0.02 | 0.02 ± 0.01 | 0.04 ± 0.01 | *** |
Margaric acid | 0.23 ± 0.03 | 0.35 ± 0.10 | 0.19 ± 0.01 | 0.24 ± 0.07 | 0.32 ± 0.10 | ** |
Cis-10-Heptadecenoic acid | 0.19 ± 0.06 | 0.34 ± 0.13 | 0.15 ± 0.02 | 0.17 ± 0.06 | 0.28 ± 0.11 | ** |
Stearic acid | 14.51 ± 1.89 | 13.53 ± 2.61 | 15.36 ± 3.33 | 30.54 ± 9.55 | 21.21 ± 8.76 | * |
Oleic acid | 34.88 ± 1.05 | 29.90 ± 0.76 | 32.84 ± 3.41 | 27.25 ± 8.59 | 26.93 ± 6.71 | **** |
Elaidic acid | 3.43 ± 0.42 | 3.04 ± 0.36 | 2.99 ± 0.42 | 2.10 ± 0.55 | 2.91 ± 1.03 | *** |
Cis-11-Octadecenoic acid | 0.11 ± 0.01 | 0.10 ± 0.03 | 0.09 ± 0.01 | 0.08 ± 0.02 | 0.14 ± 0.03 | ** |
Linoleic acid | 7.28 ± 0.84 | 12.6 ± 12.50 | 10.05 ± 1.37 | 6.99 ± 0.89 | 8.27 ± 1.34 | * |
Linolenic acid | 0.76 ± 0.53 | 0.83 ± 0.18 | 0.79 ± 0.05 | 0.37 ± 0.09 | 0.51 ± 0.10 | ns |
Nonadecanoic acid | 1.53 ± 0.64 | 1.26 ± 0.68 | 1.35 ± 0.56 | 0.35 ± 0.25 | 0.59 ± 0.47 | ns |
Cis-10-Nonadecenoic acid | 0.38 ± 0.17 | 0.25 ± 0.09 | 0.00 ± 0.00 | 0.09 ± 0.04 | 0.11 ± 0.06 | * |
Arachidic acid | 1.10 ± 0.41 | 0.94 ± 0.49 | 0.85 ± 0.27 | 0.41 ± 0.14 | 0.53 ± 0.25 | ** |
Cis-11-Eicosenoic acid | 1.14 ± 0.22 | 1.21 ± 0.29 | 1.16 ± 0.25 | 1.17 ± 0.07 | 1.16 ± 0.12 | ** |
11,14-Eicosadienoic acid | 0.19 ± 0.07 | 0.37 ± 0.15 | 0.33 ± 0.14 | 0.41 ± 0.10 | 0.39 ± 0.15 | * |
8,11,14-Eicosatrienoic acid | 0.25 ± 0.07 | 0.28 ± 0.10 | 0.23 ± 0.10 | 0.12 ± 0.06 | 0.16 ± 0.08 | * |
Arachidonic acid | 0.89 ± 0.25 | 0.82 ± 0.34 | 0.65 ± 0.18 | 0.36 ± 0.18 | 0.44 ± 0.23 | ** |
SFA | 46.69 ± 1.97 | 46.66 ± 2.78 | 47.38 ± 3.28 | 58.63 ± 8.95 | 54.84 ± 7.65 | ** |
UFA | 53.31 ± 1.97 | 53.34 ± 2.78 | 52.62 ± 3.28 | 41.37 ± 8.95 | 45.16 ± 7.65 | ** |
MUFA | 44.06 ± 1.75 | 38.71 ± 1.75 | 40.68 ± 4.13 | 33.18 ± 9.32 | 35.38 ± 7.97 | * |
PUFA | 9.26 ± 1.24 | 14.64 ± 2.83 | 11.94 ± 1.36 | 8.19 ± 1.18 | 9.78 ± 1.33 | **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Tu, W.; Cao, M.; Sun, L.; Zhang, S.; Xu, J.; He, M.; Wu, C.; Zhang, D.; Dai, J.; et al. Comparison of Nutritional Flavor Substances in Meat Between Shanghai Local Pig Breeds and Commercial DLY Breed. Foods 2025, 14, 63. https://doi.org/10.3390/foods14010063
Shi Y, Tu W, Cao M, Sun L, Zhang S, Xu J, He M, Wu C, Zhang D, Dai J, et al. Comparison of Nutritional Flavor Substances in Meat Between Shanghai Local Pig Breeds and Commercial DLY Breed. Foods. 2025; 14(1):63. https://doi.org/10.3390/foods14010063
Chicago/Turabian StyleShi, Yan, Weilong Tu, Mengqian Cao, Lingwei Sun, Shushan Zhang, Jiehuan Xu, Mengqian He, Caifeng Wu, Defu Zhang, Jianjun Dai, and et al. 2025. "Comparison of Nutritional Flavor Substances in Meat Between Shanghai Local Pig Breeds and Commercial DLY Breed" Foods 14, no. 1: 63. https://doi.org/10.3390/foods14010063
APA StyleShi, Y., Tu, W., Cao, M., Sun, L., Zhang, S., Xu, J., He, M., Wu, C., Zhang, D., Dai, J., Zhou, X., & Gao, J. (2025). Comparison of Nutritional Flavor Substances in Meat Between Shanghai Local Pig Breeds and Commercial DLY Breed. Foods, 14(1), 63. https://doi.org/10.3390/foods14010063