Assessing the Potential of Brewer’s Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BSG
2.2. Cookies Preparation
2.3. Elemental Analysis
2.4. Moisture Content
2.5. Ash Content
2.6. Dietary Fibers
2.7. Total Lipidic Content
2.8. Protein Content
2.9. Energy Content
2.10. Total Phenolic Content
2.11. Physical Properties
2.12. Sensory Analysis
2.13. Statistical Analysis
3. Results and Discussion
3.1. Characterization of BSG and BSG-Rich Cookies
3.1.1. Elemental Analysis of BSG
3.1.2. Nutritional Composition
3.1.3. Phenolics Concentration
3.2. Physical Properties of BSG-Rich Cookies
3.2.1. Water Activity
3.2.2. Color and Hardness
3.2.3. Hardness
3.3. Sensory Evaluation of BSG-Rich Cookies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Bai, H.; Osman, A.I.; Eltohamy, K.M.; Chen, Z.; Younis, H.A.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.-S. Recycling Food and Agriculture By-Products to Mitigate Climate Change: A Review. Environ. Chem. Lett. 2023, 21, 3351–3375. [Google Scholar] [CrossRef]
- Rao, M.; Bast, A.; de Boer, A. Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability 2021, 13, 4428. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Voss, G.B.; Coelho, M.C.; Pintado, M.E. Food Waste and By-Product Valorization as an Integrated Approach with Zero Waste: Future Challenges. In Future Foods: Global Trends, Opportunities, and Sustainability Challenges, 1st ed.; Bhat, R., Ed.; Elsevier: Cambridge, MA, USA, 2022; pp. 569–596. ISBN 978-032-391-001-9. [Google Scholar]
- Tufford, A.R.; Brennan, L.; van Trijp, H.; D’Auria, S.; Feskens, E.; Finglas, P.; Kok, F.; Kolesárová, A.; Poppe, K.; Zimmermann, K.; et al. A Scientific Transition to Support the 21st Century Dietary Transition. Trends Food Sci. Technol. 2023, 131, 139–150. [Google Scholar] [CrossRef]
- Duarte, P.; Teixeira, M.; Costa e Silva, S. Healthy Eating as a Trend: Consumers’ Perceptions towards Products with Nutrition and Health Claims. Rev. Bus. Manag. 2021, 23, 405–421. [Google Scholar] [CrossRef]
- Hassoun, A.; Cropotova, J.; Trif, M.; Rusu, A.V.; Bobiş, O.; Nayik, G.A.; Jagdale, Y.D.; Saeed, F.; Afzaal, M.; Mostashari, P.; et al. Consumer Acceptance of New Food Trends Resulting from the Fourth Industrial Revolution Technologies: A Narrative Review of Literature and Future Perspectives. Front. Nutr. 2022, 9, 972154. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Moses, J.A.; Priyanka, S. Designing Foods with New Food Ingredients. In Food Digestion and Absorption; Anandharamakrishnan, C., Moses, J.A., Priyanka, S., Eds.; Royal Society of Chemistry: Cambridge, UK, 2023; pp. 335–360. ISBN 978-1-83916-242-8. [Google Scholar]
- Minervini, F.; Comitini, F.; De Boni, A.; Fiorino, G.M.; Rodrigues, F.; Tlais, A.Z.A.; Carafa, I.; De Angelis, M. Sustainable and Health-Protecting Food Ingredients from Bioprocessed Food by-Products and Wastes. Sustainability 2022, 14, 15283. [Google Scholar] [CrossRef]
- Van Raamsdonk, L.W.D.; Meijer, N.; Gerrits, E.W.J.; Appel, M.J. New Approaches for Safe Use of Food By-Products and Biowaste in the Feed Production Chain. J. Clean. Prod. 2023, 388, 135954. [Google Scholar] [CrossRef]
- Dalto, J.L.; da Silva, L.F.; Penha, R.; Bizarrias, F.S. Project Management and Circular Economy in Agribusiness: A Systematic Literature Review. WM&R 2023, 42, 1096–1108. [Google Scholar] [CrossRef]
- Sarker, A.; Ahmmed, R.; Ahsan, S.M.; Rana, J.; Ghosh, M.K.; Nandi, R. A Comprehensive Review of Food Waste Valorization for the Sustainable Management of Global Food Waste. Sustain. Food Technol. 2024, 2, 48–69. [Google Scholar] [CrossRef]
- Bhat, R.; Sharma, M.; Rätsep, R.; Malenica, D.; Jõgi, K. Challenges and Prospects of Tackling Food Loss and Wastes in the Circular Economy Context. In Sustainable Food Value Chain Development; Narula, S.A., Raj, S.P., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 15–36. ISBN 978-981-196-454-1. [Google Scholar]
- Alexandri, M.; Kachrimanidou, V.; Papapostolou, H.; Papadaki, A.; Kopsahelis, N. Sustainable Food Systems: The Case of Functional Compounds towards the Development of Clean Label Food Products. Foods 2022, 11, 2796. [Google Scholar] [CrossRef] [PubMed]
- Naibaho, J.; Korzeniowska, M. Brewers’ Spent Grain in Food Systems: Processing and Final Products Quality as a Function of Fiber Modification Treatment. J. Food Sci. 2021, 86, 1532–1551. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.C.; Socaci, S.A.; Chiș, M.S.; Pop, O.L.; Fogarasi, M.; Păucean, A.; Igual, M.; Michiu, D. Reintegration of Brewers Spent Grains in the Food Chain: Nutritional, Functional and Sensorial Aspects. Plants 2021, 10, 2504. [Google Scholar] [CrossRef] [PubMed]
- Chetrariu, A.; Dabija, A. Spent Grain: A Functional Ingredient for Food Applications. Foods 2023, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ Spent Grain: A Review with an Emphasis on Food and Health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of Brewery Wastes in Food Industry. Peer J. 2020, 8, e9427. [Google Scholar] [CrossRef]
- Bonifácio-Lopes, T.; Vilas-Boas, A.; Machado, M.; Costa, E.M.; Silva, S.; Pereira, R.N.; Campos, D.; Teixeira, J.A.; Pintado, M. Exploring the Bioactive Potential of Brewers Spent Grain Ohmic Extracts. Innov. Food Sci. Emerg. Technol. 2022, 76, 102943. [Google Scholar] [CrossRef]
- Baiano, A.; la Gatta, B.; Rutigliano, M.; Fiore, A. Functional Bread Produced in a Circular Economy Perspective: The Use of Brewers’ Spent Grain. Foods 2023, 12, 834. [Google Scholar] [CrossRef] [PubMed]
- Oyedeji, A.B.; Wu, J. Food-Based Uses of Brewers Spent Grains: Current Applications and Future Possibilities. Food Biosci. 2023, 54, 102774. [Google Scholar] [CrossRef]
- Nguyen, Q.C.; Castura, J.C.; Le Nguyen, D.D.; Varela, P. Identifying Temporal Sensory Drivers of Liking of Biscuit Supplemented with Brewer’s Spent Grain for Young Consumers. Food Res. Int. 2023, 170, 113049. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Teo, S.Q.; Heng, C.W.; Lee, D.P.S.; Gan, A.X.; Kim, J.E. Impact of Solid-State Fermented Brewer’s Spent Grains Incorporation in Biscuits on Nutritional, Physical and Sensorial Properties. LWT 2023, 182, 114840. [Google Scholar] [CrossRef]
- Petrovic, J.; Pajin, B.; Tanackov-Kocic, S.; Pejin, J.; Fistes, A.; Bojanic, N.; Loncarevic, I. Quality Properties of Cookies Supplemented with Fresh Brewer’s Spent Grain. Food Feed Res. 2017, 44, 57–63. [Google Scholar] [CrossRef]
- Combest, S.; Warren, C. The Effect of Upcycled Brewers’ Spent Grain on Consumer Acceptance and Predictors of Overall Liking in Muffins. J. Food Qual. 2022, 2022, 6641904. [Google Scholar] [CrossRef]
- Ramu Ganesan, A.; Hoellrigl, P.; Mayr, H.; Martini Loesch, D.; Tocci, N.; Venir, E.; Conterno, L. The Rheology and Textural Properties of Bakery Products Upcycling Brewers’ Spent Grain. Foods 2023, 12, 3524. [Google Scholar] [CrossRef] [PubMed]
- Ávila Gonçalves, S.; Quiroga, F.; Vilaça, A.C.; Lancetti, R.; Blanco Canallis, M.S.; Caño de Andrade, M.H.; Ribotta, P.D. Physical–Chemical Evaluation of Flours from Brewery and Macauba Residues and Their Uses in the Elaboration of Cookies. J. Food Process Preserv. 2021, 45, e15700. [Google Scholar] [CrossRef]
- Yitayew, T.; Moges, D.; Satheesh, N. Effect of Brewery Spent Grain Level and Fermentation Time on the Quality of Bread. Int. J. Food Sci. 2022, 2022, 8704684. [Google Scholar] [CrossRef]
- Otemuyiwa, I.O.; Ogunwale, S.L.; Adewusi, S.R.A.; Ilori, M.O. Incorporation of Spent Grains in Bread: Sensory and Organoleptic Properties. Ann. Food Sci. Technol. 2020, 21, 347–354. [Google Scholar]
- Sahin, A.W.; Atzler, J.J.; Valdeperez, D.; Münch, S.; Cattaneo, G.; O’Riordan, P.; Arendt, E.K. Rejuvenated Brewer’s Spent Grain: EverVita Ingredients as Game-Changers in Fibre-Enriched Bread. Foods 2021, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Ginindza, A.; Solomon, W.K.; Shelembe, J.S.; Nkambule, T.P. Valorisation of Brewer’s Spent Grain Flour (BSGF) through Wheat-Maize-BSGF Composite Flour Bread: Optimization Using D-Optimal Mixture Design. Heliyon 2022, 8, e09514. [Google Scholar] [CrossRef] [PubMed]
- Colpo, I.; de Lima, M.S.; Schrippe, P.; Rabenschlag, D.R.; Martins, M.E.S.; Sellitto, M.A. Evaluating the Feasibility of Reusing Brewer´s Spent Grain Waste in Specialty Bread and Biofertilizer Production. Sustain. Clim. Change 2022, 15, 436–445. [Google Scholar] [CrossRef]
- Czubaszek, A.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Kawa-Rygielska, J. Effect of Added Brewer’s Spent Grain on the Baking Value of Flour and the Quality of Wheat Bread. Molecules 2022, 27, 1624. [Google Scholar] [CrossRef] [PubMed]
- Lamas, D.L.; Gende, L.B. Valorisation of Brewers’ Spent Grain for the Development of Novel Beverage and Food Products. Appl. Food Res. 2023, 3, 100314. [Google Scholar] [CrossRef]
- Garrett, R.; Bellmer, D.; McGlynn, W.; Rayas-Duarte, P. Development of New Chip Products from Brewer’s Spent Grain. J. Food Qual. 2021, 2021, 5521746. [Google Scholar] [CrossRef]
- Mastanjević, K.; Perković, I.; Škrivanko, M.; Kovačević, D.; Biondić, H.; Habschied, K. Effect of the Addition of Brewers’ Spent Grain (BSG) on the Physicochemical and Consumer Liking Attributes of Croatian Indigenous Cooked Sausage “Bijela Krvavica”. Appl. Sci. 2023, 13, 13049. [Google Scholar] [CrossRef]
- Talens, C.; Llorente, R.; Simó-Boyle, L.; Odriozola-Serrano, I.; Tueros, I.; Ibargüen, M. Hybrid Sausages: Modelling the Effect of Partial Meat Replacement with Broccoli, Upcycled Brewer’s Spent Grain and Insect Flours. Foods 2022, 11, 3396. [Google Scholar] [CrossRef] [PubMed]
- Sahin, A.W.; Hardiman, K.; Atzler, J.J.; Vogelsang-O’Dwyer, M.; Valdeperez, D.; Münch, S.; Cattaneo, G.; O’Riordan, P.; Arendt, E.K. Rejuvenated Brewer’s Spent Grain: The Impact of Two BSG-Derived Ingredients on Techno-Functional and Nutritional Characteristics of Fibre-Enriched Pasta. Innov. Food Sci. Emerg. Technol. 2021, 68, 102633. [Google Scholar] [CrossRef]
- Neylon, E.; Arendt, E.K.; Zannini, E.; Sahin, A.W. Fundamental Study of the Application of Brewers Spent Grain and Fermented Brewers Spent Grain on the Quality of Pasta. Food Struct. 2021, 30, 100225. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Quality Characteristics of Spelt Pasta Enriched with Spent Grain. Agronomy 2021, 11, 1824. [Google Scholar] [CrossRef]
- Cuomo, F.; Trivisonno, M.C.; Iacovino, S.; Messia, M.C.; Marconi, E. Sustainable Re-Use of Brewer’s Spent Grain for the Production of High Protein and Fibre Pasta. Foods 2022, 11, 642. [Google Scholar] [CrossRef] [PubMed]
- Schettino, R.; Verni, M.; Acin-Albiac, M.; Vincentini, O.; Krona, A.; Knaapila, A.; Di Cagno, R.; Gobbetti, M.; Rizzello, C.G.; Coda, R. Bioprocessed Brewers’ Spent Grain Improves Nutritional and Antioxidant Properties of Pasta. Antioxidants 2021, 10, 742. [Google Scholar] [CrossRef]
- Nocente, F.; Natale, C.; Galassi, E.; Taddei, F.; Gazza, L. Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta. Foods 2021, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Tankem, T.; Ngwasiri, P.N.; Ambindei, W.A.; Wingang, M.C.; Ngwabie, N.M.; Ngassoum, M.B.; Aba, E.R. Production and Evaluation of the Nutritional and Functional Qualities of “Adakwa” Enriched with Waste Biomass of Traditional Brewer’s Spent Grain as a Functional Staple Food. Adv. Chem. Eng. Sci. 2023, 13, 265–288. [Google Scholar] [CrossRef]
- Ibourki, M.; Hallouch, O.; Devkota, K.; Guillaume, D.; Hirich, A.; Gharby, S. Elemental Analysis in Food: An Overview. J. Food Compos. Anal. 2023, 120, 105330. [Google Scholar] [CrossRef]
- Rossi, L.; Wechsler, L.; Peltzer, M.A.; Ciannamea, E.M.; Ruseckaite, R.A.; Stefani, P.M. Sustainable Particleboards Based on Brewer’s Spent Grains. Polymers 2023, 16, 59. [Google Scholar] [CrossRef]
- Pereira, P.; Palma, C.; Ferreira-Pêgo, C.; Amaral, O.; Amaral, A.; Rijo, P.; Gregório, J.; Palma, L.; Nicolai, M. Grape Pomace: A Potential Ingredient for the Human Diet. Foods 2020, 9, 1772. [Google Scholar] [CrossRef]
- Nicolai, M.; Pereira, P.; Rijo, P.; Amaral, O.; Amaral, A.; Palma, L. Vitis vinera L. Pomace: Chemical and Nutritional Characterization. Biomed. Biopharm. Res. 2018, 15, 156–166. [Google Scholar] [CrossRef]
- Monteiro, S.; Reboredo, F.H.; Lageiro, M.M.; Lourenço, V.M.; Dias, J.; Lidon, F.; Abreu, M.; Martins, A.P.L.; Alvarenga, N. Nutritional Properties of Baobab Pulp from Different Angolan Origins. Plants 2022, 11, 2272. [Google Scholar] [CrossRef]
- ISO Standard No.1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. ISO—International Organization for Standardization: Geneva, Switzerland, 2009.
- FAO. Food Energy—Methods of Analysis and Conversion Factors; Report of a Technical Workshop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- European Union. Regulation (EU) No 1169 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council; European Union: Brussels, Belgium, 2011. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Pereira, N.; Farrokhi, M.; Vida, M.; Lageiro, M.; Ramos, A.C.; Vieira, M.C.; Alegria, C.; Gonçalves, E.M.; Abreu, M. Valorisation of Wasted Immature Tomato to Innovative Fermented Functional Foods. Foods 2023, 12, 1532. [Google Scholar] [CrossRef] [PubMed]
- Cartas, J.; Alvarenga, N.; Partidário, A.; Lageiro, M.; Roseiro, C.; Gonçalves, H.; Leitão, A.E.; Ribeiro, C.M.; Dias, J. Influence of Geographical Origin in the Physical and Bioactive Parameters of Single Origin Dark Chocolate. Eur. Food Res. Technol. 2024, 250, 2569–2580. [Google Scholar] [CrossRef]
- Amorim, F.L.; de Cerqueira Silva, M.B.; Cirqueira, M.G.; Oliveira, R.S.; Machado, B.A.S.; Gomes, R.G.; de Souza, C.O.; Druzian, J.I.; de Souza Ferreira, E.; Umsza-Guez, M.A. Grape Peel (Syrah Var.) Jam as a Polyphenol-enriched Functional Food Ingredient. Food Sci. Nutr. 2019, 7, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Marcos, J.; Carriço, R.; Sousa, M.J.; Palma, M.L.; Pereira, P.; Nunes, M.C.; Nicolai, M. Effect of Grape Pomace Flour in Savory Crackers: Technological, Nutritional and Sensory Properties. Foods 2023, 12, 1392. [Google Scholar] [CrossRef]
- Liang, Z.; Sang, M.; Fan, P.; Wu, B.; Wang, L.; Yang, S.; Li, S. CIELAB Coordinates in Response to Berry Skin Anthocyanins and Their Composition in Vitis. J. Food Sci. 2011, 76, C490–C497. [Google Scholar] [CrossRef] [PubMed]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- European Union. The European Parliament and the Council of the Europen Union Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016; European Union: Brussels, Belgium, 2016. [Google Scholar]
- Banik, R.D.; Dutta, U.; Sahani, S.; Saha, S.; Paul, S.; Baksi, S.; Pal, P. Impact of Chronic Arsenic Toxicity on Human Health-A Review. J. Surv. Fish. Sci. 2023, 10, 6408–6413. [Google Scholar] [CrossRef]
- Tang, H.; Ke, Z.; Yan, M.; Wang, W.; Nie, H.; Li, B.; Zhang, J.; Xu, X.; Wang, J. Concentrations, Distribution, and Ecological Risk Assessment of Heavy Metals in Daya Bay, China. Water 2018, 10, 780. [Google Scholar] [CrossRef]
- Zahra, N. Perilous Effects of Heavy Metals Contamination on Human Health. Pak. J. Anal. Environ. Chem. 2017, 18, 1–17. [Google Scholar] [CrossRef]
- Fontcuberta, M.; Calderon, J.; Villalbí, J.R.; Centrich, F.; Portaña, S.; Espelt, A.; Duran, J.; Nebot, M. Total and Inorganic Arsenic in Marketed Food and Associated Health Risks for the Catalan (Spain) Population. J. Agric. Food Chem. 2011, 59, 10013–10022. [Google Scholar] [CrossRef]
- Kaur, S.; Kamli, M.R.; Ali, A. Role of Arsenic and Its Resistance in Nature. Can. J. Microbiol. 2011, 57, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Azeh Engwa, G.; Udoka Ferdinand, P.; Nweke Nwalo, F.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; IntechOpen: London, UK, 2019; ISBN 978-183-880-787-0. [Google Scholar]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhu, T.; Li, M.; He, J.; Huang, R. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China. J. Healthc. Eng. 2017, 2017, 4124302. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A Review of Toxicity and Mechanisms of Individual and Mixtures of Heavy Metals in the Environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef] [PubMed]
- Javdan, G.; Ghaffari, H.R.; Nahidi, M.; Zeraei, N.; Hoseinvandtabar, S.; Ahmadi, M.; Pourramezani, F.; Heidarinejad, Z. Health Risk Assessment of Heavy Metals (Arsenic and Cadmium) in Rice (Oryza sativa L.) Brands Imported to Iran: Using Monte Carlo Simulation. Hormozgan Med. J. 2021, 25, 104–110. [Google Scholar] [CrossRef]
- Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. [Google Scholar] [CrossRef]
- Foley, A.; Mohanty, S.K.; Sjoden, G.E. Developing a Basis for Heavy Metal In-Situ Detection Using CZT. J. Instrum. 2022, 17, P05026. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Ayissi, Z.M.; Nchare, B.; Hossain, N.; Mbog, S.; Kenfack, S.L.; Bitondo, D. Organoenergetic Investigation on the Potential of Industrial Brewers’ Spent Grain Valorization for Biogas Production. Adv. Energy Convers. Mater. 2024, 5, 246–258. [Google Scholar] [CrossRef]
- Aljerf, L.; Aljerf, N. Food Products Quality and Nutrition in Relation to Public. Balancing Health and Disease: Food Safety & Hygiene Promotion. Prog. Nutr. 2023, 25, e2023024. [Google Scholar]
- Adams, M.; Moss, M.O.; McClure, P. Food Microbiology; The Royal Society of Chemistry: Cambridge, UK, 2015; ISBN 978-1-84973-960-3. [Google Scholar]
- Rezaei, F.; VanderGheynst, J.S. Critical Moisture Content for Microbial Growth in Dried Food-Processing Residues. J. Sci. Food Agric. 2010, 90, 2000–2005. [Google Scholar] [CrossRef]
- Guo, M.; Du, J.; Zhang, Z.; Zhang, K.; Jin, Y. Optimization of Brewer’s Spent Grain-Enriched Biscuits Processing Formula. J. Food Process Eng. 2014, 37, 122–130. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Chaurin, V.; Reis, S.F.; Gallagher, E. Brewer’s Spent Grain as a Functional Ingredient for Breadsticks. Int. J. Food Sci. Technol. 2012, 47, 1765–1771. [Google Scholar] [CrossRef]
- Ajanaku, K.O.; Dawodu, F.A.; Ajanaku, C.O.; Nwinyi, O.C. Functional and Nutritional Properties of Spent Grain Enhanced Cookies. Am. J. Food Technol. 2011, 6, 763–771. [Google Scholar] [CrossRef]
- Essien, J.P.; Udotong, I.R.; Bassey, M.; Asamudo, N. Bioconversion of Brewers Spent Grains (BSG) for Possible Use as Poultry Feed. World J. Appl. Sci. Technol. 2010, 2, 197–203. [Google Scholar]
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Núñez, V.; García del Moral, L.F. Durum Wheat Quality in Mediterranean Environments. Field Crops Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Harris, G.K. Ash Analysis. In Nielsen’s Food Analysis. Food Science Text Series; Ismail, B.P., Nielsen, S.S., Eds.; Springer: Cham, Switzerland, 2024; pp. 261–271. ISBN 978-303-150-643-7. [Google Scholar]
- Suriya, M.; Rajput, R.; Reddy, C.K.; Haripriya, S.; Bashir, M. Functional and Physicochemical Characteristics of Cookies Prepared from Amorphophallus paeoniifolius Flour. J. Food Sci. Technol. 2017, 54, 2156–2165. [Google Scholar] [CrossRef] [PubMed]
- Morita, N.; Maeda, T.; Miyazaki, M.; Yamamori, M.; Miura, H.; Ohtsuka, I. Dough and Baking Properties of High-Amylose and Waxy Wheat Flours. Cereal Chem. 2002, 79, 491–495. [Google Scholar] [CrossRef]
- P., N.P.V.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Baky, M.H.; Salah, M.; Ezzelarab, N.; Shao, P.; Elshahed, M.S.; Farag, M.A. Insoluble Dietary Fibers: Structure, Metabolism, Interactions with Human Microbiome, and Role in Gut Homeostasis. Crit. Rev. Food Sci. Nutr. 2022, 64, 1954–1968. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, P.M.; Mattioni, B.; Barreto, P.L.M.; Montenegro, F.M.; Gomes-Ruffi, C.R.; Biondi, S.; Kilpp, M.; Francisco, A. de Effects of Fat Replacement on Properties of Whole Wheat Bread. Braz. J. Pharm. Sci. 2014, 50, 703–712. [Google Scholar] [CrossRef]
- Chen, B.; Ellefson, W.C. Fat Analysis. In Nielsen’s Food Analysis. Food Science Text Series; Ismail, B.P., Nielsen, S.S., Eds.; Springer: Cham, Switzerland, 2024; pp. 273–286. ISBN 978-303-150-643-7. [Google Scholar]
- Mussatto, S.I.; Roberto, I.C. Acid Hydrolysis and Fermentation of Brewer’s Spent Grain to Produce Xylitol. J. Sci. Food Agric. 2005, 85, 2453–2460. [Google Scholar] [CrossRef]
- Myrisis, G.; Aja, S.; Haros, C.M. Substitution of Critical Ingredients of Cookie Products to Increase Nutritional Value. In Proceedings of the IV Conference Ia ValSe-Food CYTED and VII Symposium Chia-Link, Basel, Switzerland, 28 October 2022; p. 15. [Google Scholar]
- Matsumura, Y.; Kitabatake, M.; Kayano, S.; Ito, T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants 2023, 12, 880. [Google Scholar] [CrossRef]
- Cauvain, S.P.; Young, L.S. Bakery Food Manufacture and Quality; Wiley: Chichester, UK, 2008; ISBN 9781405176132. [Google Scholar]
- Marković, I.; Ilic, J.; Markovic, D.; Simonovic, V.D.; Kosanic, N. Color Measurement of Food Products Using CIE L*a*b* and RGB Color Space. J. Hyg. Eng. Des. 2013, 4, 50–53. [Google Scholar]
- Bazsefidpar, N.; Ghandehari Yazdi, A.P.; Karimi, A.; Yahyavi, M.; Amini, M.; Ahmadi Gavlighi, H.; Simal-Gandara, J. Brewers Spent Grain Protein Hydrolysate as a Functional Ingredient for Muffins: Antioxidant, Antidiabetic, and Sensory Evaluation. Food Chem. 2024, 435, 137565. [Google Scholar] [CrossRef] [PubMed]
- Vriesekoop, F.; Haynes, A.; van der Heijden, N.; Liang, H.; Paximada, P.; Zuidberg, A. Incorporation of Fermented Brewers Spent Grain in the Production of Sourdough Bread. Fermentation 2021, 7, 96. [Google Scholar] [CrossRef]
- Bociaga, E.; Trzaskalska, M. Influence of Polymer Processing Parameters and Coloring Agents on Gloss and Color of Acrylonitrile-Butadiene-Styrene Terpolymer Moldings. Polimery 2016, 61, 544–550. [Google Scholar] [CrossRef]
- Pareyt, B.; Delcour, J.A. The Role of Wheat Flour Constituents, Sugar, and Fat in Low Moisture Cereal Based Products: A Review on Sugar-Snap Cookies. Crit. Rev. Food Sci. Nutr. 2008, 48, 824–839. [Google Scholar] [CrossRef] [PubMed]
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and Nutrient Value Proposition of Brewers Spent Grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Ikuomola, D.S.; Otutu, O.L.; Oluniran, D.D. Quality Assessment of Cookies Produced from Wheat Flour and Malted Barley (Hordeum vulgare) Bran Blends. Cogent Food Agric. 2017, 3, 1293471. [Google Scholar] [CrossRef]
- Heredia-Sandoval, N.G.; Granados-Nevárez, M.d.C.; Calderón de la Barca, A.M.; Vásquez-Lara, F.; Malunga, L.N.; Apea-Bah, F.B.; Beta, T.; Islas-Rubio, A.R. Phenolic Acids, Antioxidant Capacity, and Estimated Glycemic Index of Cookies Added with Brewer’s Spent Grain. Plant Foods Hum. Nutr. 2020, 75, 41–47. [Google Scholar] [CrossRef]
- Curutchet, A.; Serantes, M.; Pontet, C.; Prisco, F.; Arcia, P.; Barg, G.; Menendez, J.A.; Tárrega, A. Sensory Features Introduced by Brewery Spent Grain with Impact on Consumers’ Motivations and Emotions for Fibre-Enriched Products. Foods 2021, 11, 36. [Google Scholar] [CrossRef]
- Hobbs, D.A.; Ashouri, A.; George, T.W.; Lovegrove, J.A.; Methven, L. The Consumer Acceptance of Novel Vegetable-Enriched Bread Products as a Potential Vehicle to Increase Vegetable Consumption. Food Res. Int. 2014, 58, 15–22. [Google Scholar] [CrossRef]
Ingredients | CC | CSG50 | CSG75 |
---|---|---|---|
(g) | |||
Wheat flour (T65 without yeast, Nacional, Portugal) | 150.0 | 75.0 | 37.5 |
Table sugar (Pingo Doce, Portugal) | 50.0 | 50.0 | 50.0 |
BSG (Sintra, Portugal) | 0 | 75.0 | 112.5 |
Banana yogurt (Porsi Intermarché, Portugal) | 125 | 125 | 125 |
Fresh eggs (free-range chickens, Matinado, size M/L, Pingo Doce, Portugal) | 70 | 70 | 70 |
Extra virgin olive oil (Continente, Portugal) | 4.0 | 4.0 | 4.0 |
Butter (Mimosa, Portugal) | 25.0 | 25.0 | 25.0 |
Cinnamon powder (Margão, Portugal) | 2.0 | 2.0 | 2.0 |
Green lemon zest (Continente, Portugal) | 3.0 | 3.0 | 3.0 |
Metals | Concentration (mg/kg) |
---|---|
As | <0.05 |
Cd | <0.50 |
Cr | <5.0 |
Cu | 9.1 ± 1.4 |
Fe | 115 ± 17 |
Hg | <0.0083 |
Mn | 56.5 ± 5.1 |
Ni | <7.5 |
Pb | <10 |
Zn | 64.9 ± 9.6 |
Component | BSG | CC | CSG50 | CSG75 |
---|---|---|---|---|
Moisture (%) | 6.00 ± 0.20 b | 11.03 ± 1.03 a | 7.00 ± 0.36 b | 3.37 ± 0.63 c |
Ash (%) | 2.57 ± 0.23 a | 0.75 ± 0.00 c | 1.15 ± 0.05 b | 1.33 ± 0.03 b |
Total dietary fiber (%) | 41.29± 0.12 a | 6.37 ± 0.09 d | 8.76 ± 0.54 c | 15.54 ± 0.52 b |
Lipids (%) | 4.45 ± 0.03 d | 9.95 ± 0.04 c | 12.22 ± 0.01 b | 13.06 ± 0.01 a |
Protein (%) | 15.71 ± 0.28 a | 9.59 ± 0.01 d | 11.53 ± 0.03 c | 12.29 ± 0.02 b |
Carbohydrates (%) | 30.0 ± 0.8 d | 62.3 ± 1.1 a | 59.3 ± 0.9 b | 54.4 ± 1.0 c |
Energy (kJ/100 g) | 1272 ± 7 c | 1641 ± 17 b | 1727 ± 10 a | 1742 ± 14 a |
Cookies | Total Phenolic Content (mgGAE/gdry matter) |
---|---|
CC | 0.99 ± 0.03 b |
CSG50 | 1.47 ± 0.02 a |
CSG75 | 1.41 ± 0.15 a |
Cookies | Water Activity |
---|---|
CC | 0.742 ± 0.010 a |
CSG50 | 0.642 ± 0.005 b |
CSG75 | 0.506 ± 0.020 c |
Cookies | L* | a* | b* | C* | |||
---|---|---|---|---|---|---|---|
CC | 73.9 ± 1.9 a | 3.6 ± 1.8 c | 27.0 ± 2.1 a | 82.5 ± 3.1 a | 27.3 ± 2.3 a | - | _ |
CSG50 | 54.1 ± 2.9 b | 7.5 ± 1.3 a | 21.9 ± 1.4 b | 71.3 ±2.3 b | 23.2 ± 1.7 b | 20.79 | _ |
CSG75 | 53.0 ± 3.4 b | 6.3 ± 1.2 b | 17.1 ± 1.7 c | 69.7 ± 3.6 c | 18.3 ± 1.7 c | 23.07 | 4.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolai, M.; Palma, M.L.; Reis, R.; Amaro, R.; Fernandes, J.; Gonçalves, E.M.; Silva, M.; Lageiro, M.; Charmier, A.; Maurício, E.; et al. Assessing the Potential of Brewer’s Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles. Foods 2025, 14, 95. https://doi.org/10.3390/foods14010095
Nicolai M, Palma ML, Reis R, Amaro R, Fernandes J, Gonçalves EM, Silva M, Lageiro M, Charmier A, Maurício E, et al. Assessing the Potential of Brewer’s Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles. Foods. 2025; 14(1):95. https://doi.org/10.3390/foods14010095
Chicago/Turabian StyleNicolai, Marisa, Maria Lídia Palma, Ricardo Reis, Rúben Amaro, Jaime Fernandes, Elsa M. Gonçalves, Mafalda Silva, Manuela Lageiro, Adília Charmier, Elisabete Maurício, and et al. 2025. "Assessing the Potential of Brewer’s Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles" Foods 14, no. 1: 95. https://doi.org/10.3390/foods14010095
APA StyleNicolai, M., Palma, M. L., Reis, R., Amaro, R., Fernandes, J., Gonçalves, E. M., Silva, M., Lageiro, M., Charmier, A., Maurício, E., Branco, P., Palma, C., Silva, J., Nunes, M. C., Fernandes, P. C. B., & Pereira, P. (2025). Assessing the Potential of Brewer’s Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles. Foods, 14(1), 95. https://doi.org/10.3390/foods14010095