In Situ Cross-Linked Porous Starch Microencapsulation Enhances the Colonization of Lactobacillus In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Porous Starch/Lactobacillus Microcapsules
2.3. Preparation of Novel Porous Starch/Lactobacillus Microcapsules
2.4. Morphology
2.5. Encapsulation Efficiency
2.6. Survival Rate of Lactobacillus in PS/LS-CL and PS/LS After Simulated Digestion
2.7. Long-Term Storage
2.8. In Vivo Colonization Efficacy of Novel Porous Starch/Lactobacillus Microcapsules
2.9. Statistical Analysis
3. Results and Discussion
3.1. Morphology
3.2. Encapsulation Efficiency
3.3. Storage Stability
3.4. Survival of Encapsulated Lactobacillus in Simulated Digestion
3.5. In Vivo Colonization Efficacy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Gao, H.; Zhao, J.; Ross, R.P.; Stanton, C.; Zhang, H.; Chen, W.; Yang, B. Exploiting lactic acid bacteria for inflammatory bowel disease: A recent update. Trends Food Sci. Technol. 2023, 138, 126–140. [Google Scholar] [CrossRef]
- Wang, T.; Shi, Z.; Ren, H.; Xu, M.; Lu, J.; Yang, F.; Ye, C.; Wu, K.; Chen, M.; Xu, X.; et al. Divergent age-associated and metabolism-associated gut microbiome signatures modulate cardiovascular disease risk. Nat. Med. 2024, 30, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Lei, G.; Khan, A.; Budryn, G.; Grzelczyk, J. Probiotic products from laboratory to commercialization. Trends Food Sci. Technol. 2025, 155, 104807. [Google Scholar] [CrossRef]
- Mansa, F.; Nii, A.; Simon, G. Assessing gastric viability of probiotics: Real testing in real human gastric fluid. Health Sci. Investig. J. 2024, 6, 808–813. [Google Scholar] [CrossRef]
- Yu, H.; Kong, Q.; Wang, M.; Han, Z.; Xu, J. Improved viability of probiotics by encapsulation in chickpea protein matrix during simulated gastrointestinal digestion by succinylated modification. Int. J. Biol. Macromol. 2024, 260, 129614. [Google Scholar] [CrossRef]
- Huang, W.C.; Wang, W.; Wang, W.; Hao, Y.; Xue, C.; Mao, X. A Double-Layer Polysaccharide Hydrogel (DPH) for the Enhanced Intestine-Targeted Oral Delivery of Probiotics. Engineering 2024, 34, 187–194. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.X.; Xiao, H.; Wu, F.G. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. Adv. Mater. 2024, 36, e2310174. [Google Scholar] [CrossRef]
- Bu, W.; McClements, D.J.; Zhang, Z.; Zhang, R.; Jin, Z.; Chen, L. Encapsulation method of probiotic embedded delivery system and its application in food. Food Hydrocoll. 2025, 159, 110625. [Google Scholar] [CrossRef]
- Falcão, L.d.S.; Coelho, D.B.; Veggi, P.C.; Campelo, P.H.; Albuquerque, P.M.; de Moraes, M.A. Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications. Polymers 2022, 14, 2361. [Google Scholar] [CrossRef]
- Zhu, F. Encapsulation and delivery of food ingredients using starch based systems. Food Chem. 2017, 229, 542–552. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Li, X.; Li, X.; Zhang, H.; Zhang, Z.; Xu, Y. Starch flocculation by the sweet potato sour liquid is mediated by the adhesion of lactic acid bacteria to starch. Front. Microbiol. 2017, 8, 1412. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.H.; Harry-O’Kuru, R.E. Adhesion of Lactobacillus amylovorus to Insoluble and Derivatized Cornstarch Granules. Appl. Environ. Microbiol. 1991, 57, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, K.; Muljadi, N.; Conway, P. Characterization of factors affecting attachment of Bifidobacterium species to amylomaize starch granules. J. Appl. Microbiol. 2001, 90, 749. [Google Scholar] [CrossRef] [PubMed]
- Crittenden, R.; Laitila, A.; Forssell, P.; Mättö, J.; Saarela, M.; Mattila-Sandholm, T.; Myllärinen, P. Adhesion of Bifidobacteria to Granular Starch and Its Implications in Probiotic Technologies. Appl. Environ. Microbiol. 2001, 67, 3469–3475. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Orviz, S.; Rendueles, M.; Díaz, M. Impact of adding prebiotics and probiotics on the characteristics of edible films and coatings—A review. Food Res. Int. 2023, 164, 112381. [Google Scholar] [CrossRef]
- Wiącek, A.E.; Sujka, M. Physicochemical Characteristics of Porous Starch Obtained by Combined Physical and Enzymatic Methods—Part 2: Potential Application as a Carrier of Gallic Acid. Molecules 2024, 29, 3570. [Google Scholar] [CrossRef]
- Niu, B.; Li, Z.; Luan, C.; Zhao, B. The dissolution and bioavailability of curcumin reinforced by loading into porous starch under solvent evaporation. Int. J. Biol. Macromol. 2025, 287, 138611. [Google Scholar] [CrossRef]
- Wang, Y.F.; Shao, J.J.; Wang, Z.L.; Lu, Z.X. Study of allicin microcapsules in β-cyclodextrin and porous starch mixture. Food Res. Int. 2012, 49, 641–647. [Google Scholar] [CrossRef]
- Piloni, R.V.; Bordón, M.G.; Barrera, G.N.; Martínez, M.L.; Ribotta, P.D. Porous Microparticles of Corn Starch as Bio-Carriers for Chia Oil. Foods 2022, 11, 4022. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, Q.; Ma, Y.; Che, Z.; Cai, Y.; Jiang, L. Effect of porous starch concentrations on the microbiological characteristics of microencapsulated Lactobacillus acidophilus. Food Funct. 2014, 5, 972–983. [Google Scholar] [CrossRef]
- Zhu, Q.; Tang, J.; Yao, S.; Feng, J.; Mi, B.; Zhu, W.; Chen, Q.; Liu, D.; Xu, E. Controllable structure of porous starch facilitates bioactive encapsulation by mild gelatinization. Food Hydrocoll. 2023, 145, 109135. [Google Scholar] [CrossRef]
- Li, H.; Ho, V.T.T.; Turner, M.S.; Dhital, S. Encapsulation of Lactobacillus plantarum in porous maize starch. LWT 2016, 74, 542–549. [Google Scholar] [CrossRef]
- Li, L.; He, S.; Lin, Y.; Zheng, B.; Zhang, Y.; Zeng, H. A novel lotus seed cross-linked resistant starch: Structural, physicochemical and digestive properties. Front. Nutr. 2022, 9, 989042. [Google Scholar] [CrossRef]
- Bodjrenou, D.M.; Huang, Z.; Liu, T.; Zheng, B.; Zeng, H. Effects of crosslinking with sodium trimetaphosphate on structural, physicochemical, rheological and in vitro digestibility properties of purple sweet potato starch. Food Res. Int. 2023, 173, 113427. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Maningat, C.C.; Seib, P.A.; Campbell, J.E.; Jenkins, A.L. Cross-linked phosphorylated RS4 wheat starch reduces glucose and insulin responses after 3 days of pre-feeding in healthy adults: An acute, double-blind, randomized controlled clinical trial. Int. J. Food Sci. Nutr. 2023, 74, 621–629. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, C.; Li, H.; Wu, J.; Zhang, D.; Li, Y.; Yang, L.; Zhang, N.; Wang, X. Structure properties of Canna edulis RS3 (double enzyme hydrolysis) and RS4 (OS-starch and cross-linked starch): Influence on fermentation products and human gut microbiota. Int. J. Biol. Macromol. 2024, 265, 130700. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Sunooj, K.V.; Navaf, M.; Phimolsiripol, Y.; Whiteside, W.S. Recent advancements in cross-linked starches for food applications- a review. Int. J. Food Prop. 2024, 27, 411–430. [Google Scholar] [CrossRef]
- Srikaeo, K.; Hao, P.T. Lerdluksamee, Effects of Heating Temperatures and Acid Concentrations on Physicochemical Properties and Starch Digestibility of Citric Acid Esterified Tapioca Starches. Starch 2018, 71, 1800065. [Google Scholar] [CrossRef]
- Woo, K.; Seib, P.A. Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr. Polym. 1997, 33, 263–271. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, C.; Geng, D.; Cheng, Y.; Tang, N. Characterization of dynamic of the structural changes of legume starches during gelatinization. Int. J. Biol. Macromol. 2025, 296, 139673. [Google Scholar] [CrossRef]
- Jia, D.J.C.; Wang, Q.W.; Hu, Y.Y.; He, J.M.; Ge, Q.W.; Qi, Y.D.; Chen, L.Y.; Zhang, Y.; Fan, L.N.; Lin, Y.F.; et al. Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206+ macrophagesIL-10 activation. Gut Microbes 2022, 14, 2145843. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Qu, F.; Cai, S.; Fang, Y.; Nishinari, K.; Phillips, G.O.; Jiang, F. Microencapsulation of Lactobacillus acidophilus CGMCC1.2686: Correlation Between Bacteria Survivability and Physical Properties of Microcapsules. Food Biophys. 2015, 10, 292–299. [Google Scholar] [CrossRef]
- Kim, J.U.; Kim, B.; Shahbaz, H.M.; Lee, S.H.; Park, D.; Park, J. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int. J. Food Sci. Technol. 2016, 52, 519–530. [Google Scholar] [CrossRef]
- Fan, Q.; Zeng, X.; Wu, Z.; Guo, Y.; Du, Q.; Tu, M.; Pan, D. Nanocoating of lactic acid bacteria: Properties, protection mechanisms, and future trends. Crit. Rev. Food Sci. Nutr. 2023, 64, 10148–10163. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Li, X.-Y.; Liu, B.-J.; Meng, X.-H. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. J. Funct. Foods 2017, 29, 248–255. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Zhang, W.; Lan, D.; Wang, Y. Co-encapsulation of probiotics with acylglycerols in gelatin-gum arabic complex coacervates: Stability evaluation under adverse conditions. Int. J. Biol. Macromol. 2023, 242, 124913. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Y.; Han, Q.; Yang, H.; Cai, L.; Zhang, Y. Thermo-kinetic studies of in vitro digestion and colonic fermentation of inulin/Lactobacillus rhamnosus GG co-encapsulated composite beads. Food Hydrocoll. 2024, 149, 109541. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C.; Zhang, H.; Hossen, M.A.; Sameen, D.E.; Dai, J.; Qin, W.; Liu, Y.; Li, S. In vitro digestion of sodium alginate/pectin co-encapsulated Lactobacillus bulgaricus and its application in yogurt bilayer beads. Int. J. Biol. Macromol. 2021, 193, 1050–1058. [Google Scholar] [CrossRef]
- Sun, C.; Wang, S.; Xu, Y.; Wang, S.; Zhou, D.; Liu, H. Enhancing Lactobacillus plantarum delivery: Impact of gluconolactone concentration on high-internal-phase emulsion gels and gastrointestinal viability. Food Chem. 2024, 455, 139928. [Google Scholar] [CrossRef]
- Jia, D.; Wang, Q.; Qi, Y.; Jiang, Y.; He, J.; Lin, Y.; Sun, Y.; Xu, J.; Chen, W.; Fan, L.; et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 2024, 187, 1651–1665.e21. [Google Scholar] [CrossRef]
- Niu, D.; Feng, N.; Xi, S.; Xu, J.; Su, Y. Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotic. Mol. Genet. Genom. 2024, 299, 24. [Google Scholar] [CrossRef] [PubMed]
- Aiba, Y.; Nakano, Y.; Koga, Y.; Takahashi, K.; Komatsu, Y. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice. Microbiologyopen 2015, 4, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jiang, X.; You, S.; Zheng, B.; Zhang, Y.; Zeng, H. Lactiplantibacillus plantarum ACCC 11095 microencapsulated by lotus seeds cross-linked resistant starch: Survival under simulated gastrointestinal conditions and its structural changes. Food Hydrocoll. 2024, 157, 110410. [Google Scholar] [CrossRef]
- Sohail, A.; Turner, M.S.; Coombes, A.; Bostrom, T.; Bhandari, B. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int. J. Food Microbiol. 2011, 145, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Gazalian, D.; Aliahmadi, A.; Rafati, H. Microencapsulation of Lactobacillus plantarum using cellulose-based polymers by spray-drying: A probiotic-delivery system for enhanced acid-resistance and storage stability. Int. J. Biol. Macromol. 2025, 311, 143634. [Google Scholar] [CrossRef]
- Zhang, W.; Sadeghi, A.; Karaca, A.C.; Zhang, J.; Jafari, S.M. Carbohydrate polymer-based carriers for colon targeted delivery of probiotics. Crit. Rev. Food Sci. Nutr. 2023, 64, 12759–12779. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, W.; Fan, Z.; Li, B.; Wei, Y.; Yu, R.; Pan, T.; Wang, N.; Lu, W.; Fang, Z. Gut microbes mediate prebiotic-like effects of resistant starch. Food Biosci. 2024, 61, 104627. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y. New definition of resistant starch types from the gut microbiota perspectives–A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 6412–6422. [Google Scholar] [CrossRef]
- Wang, M.; Chen, X.; Zhou, L.; Li, Y.; Yang, J.; Ji, N.; Xiong, L.; Sun, Q. Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. Plantarum. LWT 2022, 154, 112572. [Google Scholar] [CrossRef]
- Watson, D.; Sleator, R.D.; Hill, C.; Gahan, C.G.M. Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiol. 2008, 8, 176. [Google Scholar] [CrossRef]
Samples | Forward 5′-3′ | Reverse 5′-3′ |
---|---|---|
Universal Eubacteria 16s | CGGCAACGAGCGCAACCC | CCATTGTAGCACGTGTGTAGCC |
LJ | TCGAGCGAGCTTGCCTAGATGA | TCCGGACAACGCTTGCCACC |
LA | AAGAGGCTAAGGCTAAGGG | TGAATAACGAAGTCACCACC |
LGG | CACCGATTGTTCCAGCAGTTTAT | GCTTCATCAGTCAGCCTTCCTTTT |
Samples | The Total Amount of Lactobacillus (N0) (CFU/mL) | Free Cells (N; N1, N2) (CFU/mL) | The Amount of Embedded Lactobacillus (CFU/mL) | Encapsulation Efficiency (%) |
---|---|---|---|---|
PS/LJ | 1.96 ± 0.17 × 109 | 0.63 ± 0.01 × 109 a | 1.33 ± 0.16 × 109 a | 67.92 ± 8.16 |
PS/LJ-CL | 1.96 ± 0.17 × 109 | 0.40 ± 0.09 × 109 b | 1.56 ± 0.08 × 109 a | 79.56 ± 4.08 |
PS/LA | 8.83 ± 0.13 × 109 | 3.65 ± 0.03 × 109 a | 5.18 ± 0.15 × 109 b | 58.68 ± 1.70 |
PS/LA-CL | 8.83 ± 0.13 × 109 | 1.90 ± 0.06 × 109 b | 6.93 ± 0.20 × 109 a | 78.49 ± 2.27 |
PS/LGG | 3.63 ± 0.07 × 109 | 1.90 ± 0.06 × 109 a | 1.73 ± 0.01 × 109 b | 47.71 ± 0.28 |
PS/LGG-CL | 3.63 ± 0.07 × 109 | 1.60 ± 0.05 × 109 b | 2.03 ± 0.02 × 109 a | 55.96 ± 0.55 |
Samples | Initial Count (CFU/g) | The Count of Bacteria After Simulated Digestion (CFU/g) | Survival Rate (%) |
---|---|---|---|
PS/LJ | 1.80 ± 0.23 × 108 | 5.47 ± 0.17 × 106 b | 3.04 |
PS/LJ-CL | 1.07 ± 0.06 × 108 | 1.30 ± 0.07 × 107 a | 12.19 |
PS/LA | 2.55 ± 0.35 × 108 | <1 × 105 b | <0.1 |
PS/LA-CL | 8.00 ± 0.10 × 108 | 4.50 ± 0.03 × 107 a | 5.63 |
PS/LGG | 5.00 ± 0.20 × 106 | <1 × 104 b | <0.1 |
PS/LGG-CL | 3.65 ± 0.25 × 107 | 1.75 ± 0.25 × 106 a | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liang, Y.; Bai, H.; Huang, Q.; Liu, D.; Ma, G.; Liu, X. In Situ Cross-Linked Porous Starch Microencapsulation Enhances the Colonization of Lactobacillus In Vivo. Foods 2025, 14, 2031. https://doi.org/10.3390/foods14122031
Zhang X, Liang Y, Bai H, Huang Q, Liu D, Ma G, Liu X. In Situ Cross-Linked Porous Starch Microencapsulation Enhances the Colonization of Lactobacillus In Vivo. Foods. 2025; 14(12):2031. https://doi.org/10.3390/foods14122031
Chicago/Turabian StyleZhang, Xiaojun, Ying Liang, Hao Bai, Quanhua Huang, Dongming Liu, Guanglei Ma, and Xiangrui Liu. 2025. "In Situ Cross-Linked Porous Starch Microencapsulation Enhances the Colonization of Lactobacillus In Vivo" Foods 14, no. 12: 2031. https://doi.org/10.3390/foods14122031
APA StyleZhang, X., Liang, Y., Bai, H., Huang, Q., Liu, D., Ma, G., & Liu, X. (2025). In Situ Cross-Linked Porous Starch Microencapsulation Enhances the Colonization of Lactobacillus In Vivo. Foods, 14(12), 2031. https://doi.org/10.3390/foods14122031