Analysis of Flavor Differences Between Undaria pinnatifida Produced Using Different Processing Methods and from Different Origins Based on GC-IMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of U. pinnatifida Samples
2.3. Analysis Conditions for the GC-IMS
2.4. The Calculation of Relative Odor Activity Values (ROAVs)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Spectral Analysis of Volatile Organic Compounds in U. pinnatifida Processed Using Different Methods
3.2. Analysis of Volatile Components in Undaria pinnatifida Samples
3.3. Fingerprint Analysis of Volatile Components in Different Algal Samples
3.4. Cluster Analysis of U. pinnatifida Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shan, T.; Li, Y.; Pang, S. Genetic diversity of Undaria pinnatifida populations from China and their genetic relationship with those from Japan and Korea as revealed by mitochondrial and nuclear DNA sequences. Bot. Mar. 2022, 65, 185–195. [Google Scholar] [CrossRef]
- Li, Y.; Shan, T.; Pang, S. High genetic diversity revealed in the native populations of Undaria pinnatifida from China by mitochondrial sequences and nuclear microsatellites. Front. Mar. Sci. 2023, 10, 1122058. [Google Scholar] [CrossRef]
- Wang, L.; Park, Y.J.; Jeon, Y.J.; Ryu, B. Bioactivities of the edible brown seaweed, Undaria pinnatifida: A review. Aquaculture 2018, 495, 873–888. [Google Scholar] [CrossRef]
- Salido, M.; Soto, M.; Seoane, S. Seaweed: Nutritional and gastronomic perspective. A review. Algal Res. 2024, 77, 103357. [Google Scholar] [CrossRef]
- Jiang, S.; Yu, M.; Wang, Y.; Yin, W.; Jiang, P.; Qiu, B.; Qi, H. Traditional Cooking Methods Affect Color, Texture and Bioactive Nutrients of Undaria pinnatifida. Foods 2022, 11, 107. [Google Scholar] [CrossRef]
- Rasyid, A.; Ardiansyah, A.; Pangestuti, R. Nutrient Composition of Dried Seaweed Gracilaria gracilis. ILMU Kelaut. Indones. J. Mar. Sci. 2019, 24, 1–6. [Google Scholar] [CrossRef]
- Lee, Z.J.; Xie, C.; Ng, K.; Suleria, H.A. Unraveling the bioactive interplay: Seaweed polysaccharide, polyphenol and their gut modulation effect. Crit. Rev. Food Sci. Nutr. 2025, 65, 382–405. [Google Scholar] [CrossRef]
- Saeed, M.; Arain, M.A.; Ali Fazlani, S.; Marghazani, I.B.; Umar, M.; Soomro, J.; Bhutto, Z.A.; Soomro, F.; Noreldin, A.E.; Abd El-Hack, M.E.; et al. A comprehensive review on the health benefits and nutritional significance of fucoidan polysaccharide derived from brown seaweeds in human, animals and aquatic organisms. Aquac. Nutr. 2021, 27, 633–665. [Google Scholar] [CrossRef]
- Boulom, S.; Robertson, J.; Hamid, N.; Ma, Q.; Lu, J. Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough Sounds, New Zealand. Food Chem. 2014, 161, 261–269. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.S. Proteins and bioactive peptides from algae: Insights into antioxidant, anti-hypertensive, anti-diabetic and anti-cancer activities. Trends Food Sci. Technol. 2024, 145, 104352. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Kezuka, M.; Chan, H.T.; Wong, S.K. The Health-Promoting Properties of Seaweeds: Clinical Evidence based on Wakame and Kombu. J. Nat. Remedies 2023, 687–698. [Google Scholar] [CrossRef]
- Shepeleva, O.A.; Degteva, G.N.; Novikova, I.I.; Shevkun, I.G.; Romanenko, S.P.; Semenikhina, M.V.; Popova, O.N.; Gudkov, A.B. Seaweed as an Important Functional Ingredient and Alimentary Raw Material for Enriching the Diet of the Population in the Arctic Zone of the Russian Federation (Review). J. Med. Biol. Res. 2024, 12, 99–113. [Google Scholar] [CrossRef]
- Li, M.; Xiu, L.; Liao, W.; Ren, Y.; Huo, M.; Liu, H.; Chen, S.; Li, N.; Gao, Y.; Yu, X.; et al. Exploring the effect and mechanism of Haizao Yuhu decoction containing three variants of glycyrrhiza on goiter using an integrated strategy of network pharmacology and RNA sequencing. J. Ethnopharmacol. 2023, 316, 116750. [Google Scholar] [CrossRef]
- Wang, S.K.; Li, Y.; White, W.L.; Lu, J. Extracts from New Zealand Undaria pinnatifida Containing Fucoxanthin as Potential Functional Biomaterials against Cancer in Vitro. J. Funct. Biomater. 2014, 5, 29–42. [Google Scholar] [CrossRef]
- Elbarbary, A.; Jin, J.; Li, K.; Golshany, H.; Seddiek, A.S.; Bakry, I.A.; Wang, X. Understanding the flavor dynamics of high-fat dairy products: Insights into mechanisms, aroma profiles, and sensory evaluation. Food Res. Int. 2025, 212, 116504. [Google Scholar] [CrossRef]
- Ray, S. Sensory properties of foods and their measurement methods. Tech. Meas. Food Saf. Qual. Microb. Chem. Sens. 2021, 345–381. [Google Scholar] [CrossRef]
- Kebede, B.; Ting, V.; Eyres, G.; Oey, I. Volatile changes during storage of shelf stable apple juice: Integrating GC-MS fingerprinting and chemometrics. Foods 2020, 9, 165. [Google Scholar] [CrossRef]
- Romani, S.; Rodriguez-Estrada, M.T. Bakery products and electronic nose. In Electronic Noses and Tongues in Food Science; Academic Press: Cambridge, MA, USA, 2016; pp. 39–47. [Google Scholar]
- Zhou, L.M.; Sun, Y.; Zhang, H.H.; Yang, G.P. Distribution and characteristics of inorganic nutrients in the surface microlayer and subsurface water of the Bohai and Yellow Seas. Cont. Shelf Res. 2018, 168, 1–10. [Google Scholar] [CrossRef]
- Skriptsova, A.; Khomenko, V.; Isakov, V. Seasonal changes in growth rate, morphology and alginate content in Undaria pinnatifida at the northern limit in the Sea of Japan (Russia). J. Appl. Phycol. 2004, 16, 17–21. [Google Scholar] [CrossRef]
- Mahmood, T.; Fang, J.; Jiang, Z.; Zhang, J. Seasonal nutrient chemistry in an integrated multi-trophic aquaculture region: Case study of Sanggou Bay from North China. Chem. Ecol. 2015, 32, 149–168. [Google Scholar] [CrossRef]
- Yeh, S.L.; Dahms, H.U.; Chiu, Y.J.; Chang, S.J.; Wang, Y.K. Increased Production and Water Remediation by Land-Based Farm-Scale Sequentially Integrated Multi-Trophic Aquaculture Systems—An Example from Southern Taiwan. Sustainability 2017, 9, 2173. [Google Scholar] [CrossRef]
- Lu, S.J.; Yosemoto, S.; Takayama, S.; Satomi, D.; Akakabe, Y. Characteristic Aroma Components from Dried “Wakame” Undaria pinnatifida. J. Oleo Sci. 2018, 67, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Xu, Z.; Li, Y.B.; Ji, X.L.; Dong, X.F.; Yu, C.X. Seafood flavourings characterization as prepared from the enzymatic hydrolysis of Undaria pinnatifida sporophyll by-product. Int. J. Food Prop. 2017, 20, 2867–2876. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Tong, Y.; Xia, Z.; Tong, Y.; Sun, Y.; Cao, J.; Zhang, J.; Liu, J.; Zhao, S.; et al. A review of volatile compounds in edible macroalgae. Food Res. Int. 2023, 165, 112559. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, C.; Xu, R.; Yang, J.; Kong, Y.; Liu, L.; Tao, S.; Wu, Y.; Liao, H.; Mao, C.; et al. E-Nose and HS-SPME-GC-MS unveiling the scent signature of Ligusticum chuanxiong and its medicinal relatives. Front. Plant Sci. 2025, 16, 1476810. [Google Scholar] [CrossRef]
- He, W.; Ren, F.; Wang, Y.; Gao, X.; Wang, X.; Dai, X.; Song, J. Application of GC-IMS in detection of food flavor substances. IOP Conf. Ser. Earth Environ. Sci. 2020, 545, 012030. [Google Scholar] [CrossRef]
- Wardencki, W.; Chmiel, T.; Dymerski, T. Gas chromatography-olfactometry (GC-O), electronic noses (e-noses) and electronic tongues (e-tongues) for in vivo food flavour measurement. Instrum. Assess. Food Sens. Qual. 2013, 195–229. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Jia, S.; Jia, Z.; An, J.; Ding, Y.; Chang, J.; Wang, Y.; Zhou, X. Rapid and Visual Favor Analysis Using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) in Meat Products: Research Progress and Future Trends. J. Food Biochem. 2024, 2024, 6711621. [Google Scholar] [CrossRef]
- Tan, C.; Tian, Y.; Tao, L.; Xie, J.; Wang, M.; Zhang, F.; Yu, Z.; Sheng, J.; Zhao, C. Exploring the Effect of Milk Fat on Fermented Milk Flavor Based on Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) and Multivariate Statistical Analysis. Molecules 2024, 29, 1099. [Google Scholar] [CrossRef]
- SC/T 3213-2019: Dried Cut Wakame; Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Standards Press of China: Beijing, China, 2019.
- Zhang, Z.; Ji, H.; Zhang, D.; Liu, S.; Zheng, X. The Role of Amino Acids in the Formation of Aroma-Active Compounds during Shrimp Hot Air Drying by GC-MS and GC-IMS. Foods 2022, 11, 3264. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Z.; Song, Z.; Wang, F.; Lin, L.; Tao, N. Effect of short-term depuration on the flavor of crucian carp (Carassius auratus) and exploration of prediction model for fishy odor. J. Food Compos. Anal. 2025, 142, 107454. [Google Scholar] [CrossRef]
- Guo, X.; Ho, C.-T.; Wan, X.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Martín-Gómez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace–gas chromatography–ion mobility spectrometry. Food Chem. 2018, 246, 65–73. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, T.; Xiao, N.; Yin, M.; Li, S.; Jiang, X.; Zhang, Y.; Ma, J.; Liu, Z.; Shi, W. Unraveling the generation mechanism of volatile compounds in intermittent microwave-dried anchovies via HS-GC-IMS and MMSE-GC-MS. J. Food Sci. 2025, 90, e70091. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Guo, F.; Gao, Y.; Bao, Z.; Lin, S. The revelation of characteristic volatile compounds in egg powder and analysis of their adsorption rules based on HS-GC-IMS technology. Food Chem. 2024, 460, 140650. [Google Scholar] [CrossRef] [PubMed]
- Lafeuille, B.; Francezon, N.; Goulet, C.; Perreault, V.; Turgeon, S.L.; Beaulieu, L. Impact of temperature and cooking time on the physicochemical properties and sensory potential of seaweed water extracts of Palmaria palmata and Saccharina longicruris. J. Appl. Phycol. 2022, 34, 1731–1747. [Google Scholar] [CrossRef]
- Peng, B.; Gu, Z.; Zhou, Y.; Ning, Y.; Xu, H.; Li, G.; Ni, Y.; Sun, P.; Xie, Z.; Shi, S.; et al. Potential role of fatty acid desaturase 2 in regulating peach aroma formation. Postharvest Biol. Technol. 2023, 204, 112473. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, H.; Chen, W.; Hu, D.; Xia, H.; Ma, C.; Qiao, X. Changes in volatile compounds in withering tea leaves after infestation with tea green leafhopper (Empoasca onukii Matsuda). Eur. J. Agron. 2024, 156, 127163. [Google Scholar] [CrossRef]
- Dai, W.; He, S.; Huang, L.; Lin, S.; Zhang, M.; Chi, C.; Chen, H. Strategies to reduce fishy odor in aquatic products: Focusing on formation mechanism and mitigation means. Food Chem. 2024, 444, 138625. [Google Scholar] [CrossRef]
- Honold, P.J.; Jacobsen, C.; Jónsdóttir, R.; Kristinsson, H.G.; Hermund, D.B. Potential seaweed-based food ingredients to inhibit lipid oxidation in fish-oil-enriched mayonnaise. Eur. Food Res. Technol. 2015, 242, 571–584. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, D.; Zhou, G.; Wang, Y.; Dang, Y.; He, J.; Li, G.; Cao, J. The Changes of the Volatile Compounds Derived from Lipid Oxidation of Boneless Dry-Cured Hams During Processing. Eur. J. Lipid Sci. Technol. 2019, 121, 1900135. [Google Scholar] [CrossRef]
- Auñon-Lopez, A.; Strauss, M.; Hinterreiter-Kern, E.; Klein, A.; Varga, E.; Pignitter, M. Influence of processing of seitan, tempeh, and firm regular tofu on protein and lipid oxidation and Maillard reaction products formation. Food Chem. 2025, 467, 142273. [Google Scholar] [CrossRef]
- Kiralan, M.; Ulaş, M.; Özaydin, A.; Özdemır, N.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Blends of Cold Pressed Black Cumin Oil and Sunflower Oil with Improved Stability: A Study Based on Changes in the Levels of Volatiles, Tocopherols and Thymoquinone during Accelerated Oxidation Conditions. J. Food Biochem. 2016, 41, e12272. [Google Scholar] [CrossRef]
- Podéus, H.; Simonsson, C.; Nasr, P.; Ekstedt, M.; Kechagias, S.; Lundberg, P.; Lövfors, W.; Cedersund, G. A physiologically-based digital twin for alcohol consumption—Predicting real-life drinking responses and long-term plasma PEth. npj Digit. Med. 2024, 7, 112. [Google Scholar] [CrossRef]
- Van Hecke, T.; Van Pee, J.; De Smet, S. Alcoholic beverages reduce oxidation during in vitro gastrointestinal digestion of meat and fish, but induce fatty acid ethyl ester formation. LWT 2024, 196, 115854. [Google Scholar] [CrossRef]
- Chen, X.; Gong, Y.; Li, Z.; Guo, Y.; Zhang, H.; Hu, B.; Yang, W.; Cao, Y.; Mu, R. Key function of Kouleothrix in stable formation of filamentous aerobic granular sludge at low superficial gas velocity with polymeric substrates. Bioresour. Technol. 2024, 397, 130466. [Google Scholar] [CrossRef]
- Han, G.; Zhang, L.; Li, Q.; Wang, Y.; Chen, Q.; Kong, B. Impacts of different altitudes and natural drying times on lipolysis, lipid oxidation and flavour profile of traditional Tibetan yak jerky. Meat Sci. 2020, 162, 108030. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, L.; Niu, Y.; Zhang, J.; Wang, D.; Zhou, C. Mushroom alcohol(1-octen-3-ol)and other 7 aroma compounds selected from Chinese dry-cured hams can enhance saltiness perception. Meat Sci. 2024, 208, 10939. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; García-Barreda, S.; Sánchez, S.; Sanz, M.Á.; Marco, P. Black Truffle Aroma Evaluation: SPME-GC-MS vs. Sensory Experts. Foods 2024, 13, 837. [Google Scholar] [CrossRef]
- Zhao, D.; Li, H.; Huang, M.; Wang, T.; Hu, Y.; Wang, L.; Xu, D.; Mao, S.; Li, C.; Zhou, G. Influence of proteolytic enzyme treatment on the changes in volatile compounds and odors of beef longissimus dorsi. Food Chem. 2020, 333, 127549. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cui, Z.; Zhang, M.; Sun, L.; Zhao, L.; Su, L.; Jin, Y. Analysis of the effects of hydroxyl radicals on the volatile flavor composition and lipid profile of sheep meat based on HS-SPME–GC–MS and UPLC–MS/MS studies. Food Chem. 2025, 484, 144161. [Google Scholar] [CrossRef]
- Luo, K.K.; Chapman, D.M.; Lerno, L.A.; Huang, G.; Mitchell, A.E. Influence of post-harvest moisture on roasted almond shelf life and consumer acceptance. J. Sci. Food Agric. 2020, 101, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, H.; Zhang, S.; Yamashita, H.; He, S.; Liang, S.; Wang, Y.; Ding, Z.; Fan, K.; Ikka, T.; et al. Alkaline Invertase 2 positively modulates cold adaptive of Camellia sinensis and enhances freezing and salt tolerance in transgenic Arabidopsis thaliana. Ind. Crops Prod. 2024, 209, 118042. [Google Scholar] [CrossRef]
- Wu, R.; Jia, C.; Rong, J.; Xiong, S.; Liu, R. Effect of Pretreatment Methods on the Formation of Advanced Glycation End Products in Fried Shrimp. Foods 2023, 12, 4362. [Google Scholar] [CrossRef]
- Melling, B.; Mielke, T.; Whitwood, A.C.; O’Riordan, T.J.; Mulholland, N.; Cartwright, J.; Unsworth, W.P.; Grogan, G. Complementary specificity of unspecific peroxygenases enables access to diverse products from terpene oxygenation. Chem Catal. 2024, 4, 100889. [Google Scholar] [CrossRef]
- Fang, S.; Xia, Y.; Chen, M.; Zhong, F. The availability of ethanol: A decisive factor in the biosynthesis of ethyl esters in enzyme-modified cheese flavor. Food Chem. 2025, 483, 144245. [Google Scholar] [CrossRef]
- Hamid, S.S.; Wakayama, M.; Ashino, Y.; Kadowaki, R.; Soga, T.; Tomita, M. Effect of blanching on the concentration of metabolites in two parts of Undaria pinnatifida, Wakame (leaf) and Mekabu (sporophyll). Algal Res. 2020, 47, 101829. [Google Scholar] [CrossRef]
- Kim, H.; Ra, C.H.; Kim, S.K. Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars. Biotechnol. Bioprocess Eng. 2013, 18, 533–537. [Google Scholar] [CrossRef]
- Murphy, J.T.; Johnson, M.P.; Viard, F. A modelling approach to explore the critical environmental parameters influencing the growth and establishment of the invasive seaweed Undaria pinnatifida in Europe. J. Theor. Biol. 2016, 396, 105–115. [Google Scholar] [CrossRef]
- Ouyang, H.; Xu, W.; Peng, W.; Zhang, R.; Yu, X.; Jin, L.; Xu, F.; Li, S. The potential formation mechanism of key volatile compounds in pumpkin seeds performed with different heat processing methods based on Maillard reaction and lipid oxidation. J. Food Meas. Charact. 2024, 18, 4764–4778. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, M.C.; Deng, Y.; Yuan, H.; Jiang, Y. Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining GC-E-Nose, GC-IMS, and GC × GC-TOFMS. Food Chem. 2022, 387, 132813. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; Oliemans Punter Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Fu, B.; Zheng, M.; Yang, H.; Zhang, J.; Li, Y.; Wang, G.; Tian, J.; Zhang, K.; Xia, Y.; Li, Z.; et al. The effect of broad bean diet on structure, flavor and taste of fresh grass carp: A comprehensive study using E-nose, E-tongue, TPA, HS-SPME-GC-MS and LC-MS. Food Chem. 2024, 436, 137690. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Li, B.; Chen, Z.; Yang, Z.; Ping, C.; Gao, Y.; Zhang, Y.; Zhang, L. Comparative study of volatile flavor compounds in green onion (Allium fistulosum L.) processed with different cooking methods. Int. J. Gastron. Food Sci. 2024, 35, 100878. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Chen, X.; Chen, D.; Deng, S. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: Application to fresh and dried eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Gong, J.; Wang, X.; Ni, H.; Wang, Y. The Volatile Compounds Change during Fermentation of Saccharina japonica Seedling. Foods 2024, 13, 1992. [Google Scholar] [CrossRef]
- Xie, L.; Guo, S.; Rao, H.; Lan, B.; Zheng, B.; Zhang, N. Characterization of Volatile Flavor Compounds and Aroma Active Components in Button Mushroom (Agaricus bisporus) across Various Cooking Methods. Foods 2024, 13, 685. [Google Scholar] [CrossRef]
- Tian, H.; Xiong, J.; Yu, H.; Chen, C.; Lou, X. Flavor optimization in dairy fermentation: From strain screening and metabolic diversity to aroma regulation. Trends Food Sci. Technol. 2023, 141, 104194. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zeng, Z.; Wei, X.; Brunton, N.P.; Yang, Y.; Gao, P.; Xing, J.; Li, P.; Liu, F.; et al. Exploring the freshness biomarker and volatiles formation in stored pork by means of lipidomics and volatilomics. Food Res. Int. 2025, 200, 115476. [Google Scholar] [CrossRef]
- Huo, J.; Peng, W.; Ouyang, H.; Liu, X.; Wang, P.; Yu, X.; Xie, T.; Li, S. Exploration of markers in oxidized rancidity walnut kernels based on lipidomics and volatolomics. Food Res. Int. 2024, 182, 114141. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Zhang, D.; Hamid, N.; Liu, D.; Hua, W.; Du, C.; Ma, Q.; Gong, H. The effect of thermal times of circulating non-fried roast technique on the formation of (non)volatile compounds in roasted mutton by multi-chromatography techniques and heat transfer analysis. Food Res. Int. 2023, 174, 113567. [Google Scholar] [CrossRef]
- Zamora, R.; Alcón, E.; Hidalgo, F.J. Effect of lipid oxidation products on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in model systems. Food Chem. 2012, 135, 2569–2574. [Google Scholar] [CrossRef] [PubMed]
- Noe, F.; Polster, J.; Geithe, C.; Kotthoff, M.; Schieberle, P.; Krautwurst, D. OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol. Chem. Senses 2016, 42, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Mokh, S.; Lacalle-Bergeron, L.; Izquierdo-Sandoval, D.; Corell, M.C.; Beltran, J.; Sancho, J.V.; Portolés, T. Identification and quantification of flavor compounds in smoked tuna fish based on GC-Orbitrap volatolomics approach. Food Chem. 2024, 449, 139312. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Ye, L.; He, Y.; Lu, X.; Chen, L.; Dong, S.; Xiang, X. Study on the formation pathways of characteristic volatiles in preserved egg yolk caused by lipid species during pickling. Food Chem. 2023, 424, 136310. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, J.; Wang, L.; Jiang, Y.; Deng, Y.; Zhu, J.; Yuan, H.; Yang, Y. Comprehensive investigation on the dynamic changes of volatile metabolites in fresh scent green tea during processing by GC-E-Nose, GC–MS, and GC × GC-TOFMS. Food Res. Int. 2024, 187, 114330. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Sun, Y.; Guo, C.; Zhu, J.; Niu, X.; Gao, M. Comparative analysis of physicochemical properties, sensory characteristics, and volatile flavor compounds in five types of potato chips. Front. Nutr. 2025, 12, 1525480. [Google Scholar] [CrossRef]
- Lee, M.H.; Do Kim, H.; Jang, Y.J. Delivery systems designed to enhance stability and suitability of lipophilic bioactive compounds in food processing: A review. Food Chem. 2024, 437, 137910. [Google Scholar] [CrossRef]
- Tietel, Z.; Masaphy, S. Aroma-volatile profile of black morel (Morchella importun) grown in Israel. J. Sci. Food Agric. 2017, 98, 346–353. [Google Scholar] [CrossRef]
- Huang, D.; Li, M.; Wang, H.; Fu, M.; Hu, S.; Wan, X.; Wang, Z.; Chen, Q. Combining gas chromatography-ion mobility spectrometry and olfactory analysis to reveal the effect of filled-N2 anaerobic treatment duration on variation in the volatile profiles of gabaron green tea. LWT 2023, 179, 114630. [Google Scholar] [CrossRef]
- Ambrozova, J.V.; Misurcova, L.; Vicha, R.; Machu, L.; Samek, D.; Baron, M.; Mlcek, J.; Sochor, J.; Jurikova, T. Influence of Extractive Solvents on Lipid and Fatty Acids Content of Edible Freshwater Algal and Seaweed Products, the Green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis. Molecules 2014, 19, 2344–2360. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, T.; Wang, X.; Wu, M.; Li, X.; Guo, X.; Fang, Y.; Chen, S. Relationship between CsLOX gene expression and C6 and C9 aldehydes during cucumber fruit storage. Postharvest Biol. Technol. 2020, 161, 111085. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, S.; Ma, D.; Liu, Z.; Qi, P.; Wang, Z.; Di, S.; Wang, X. Review of fruits flavor deterioration in postharvest storage: Odorants, formation mechanism and quality control. Food Res. Int. 2024, 182, 114077. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, W.; Li, Z.; Xu, L.; Lan, D.; Wang, Y. Lipidomics analysis unveils the dynamic alterations of lipid degradation in rice bran during storage. Food Res. Int. 2024, 184, 114243. [Google Scholar] [CrossRef]
- Hammer, M.; Schieberle, P. Model Studies on the Key Aroma Compounds Formed by an Oxidative Degradation of ω-3 Fatty Acids Initiated by either Copper(II) Ions or Lipoxygenase. J. Agric. Food Chem. 2013, 61, 10891–10900. [Google Scholar] [CrossRef]
- Rodríguez, M.; G Rebollar, P.; Mattioli, S.; Castellini, C. n-3 PUFA Sources (Precursor/Products): A Review of Current Knowledge on Rabbit. Animals 2019, 9, 806. [Google Scholar] [CrossRef]
- Zeng, J.; Fan, X.; Meng, N.; Liu, Y.; Song, Y.; Cong, P.; Jiang, X.; Xu, J.; Xue, C. Salting-induced lipid hydrolysis and oxidation in dried squid fillets: A mechanistic link to formaldehyde formation, color browning, and flavor alteration. Food Chem. 2025, 485, 144473. [Google Scholar] [CrossRef]
- Li, M.; Lin, H.; Wang, C.; Chen, Y.; Lin, M.; Hung, Y.C.; Lin, Y.; Fan, Z.; Wang, H.; Chen, Y. Acidic electrolyzed-oxidizing water treatment mitigated the disease progression in Phomopsis longanae Chi-infected longans by modulating ROS and membrane lipid metabolism. Food Chem. 2024, 449, 139175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhan, S.; Bao, Y.; You, J.; Yin, T.; Hong, H.; Gao, R. Effects of chopping and salting on the properties of pre-rigor silver carp muscle: Metabolic process, protein functionality, and ultrastructure. Food Chem. 2025, 464, 141685. [Google Scholar] [CrossRef]
- Sghaier, L.; Cordella, C.B.; Rutledge, D.N.; Watiez, M.; Breton, S.; Kopczuk, A.; Sassiat, P.; Thiebaut, D.; Vial, J. Comprehensive Two-dimensional Gas Chromatography for Analysis of the Volatile Compounds and Fishy Odor Off-flavors from Heated Rapeseed Oil. Chromatographia 2015, 78, 805–817. [Google Scholar] [CrossRef]
- Buttery, R.G.; Takeoka, G.R. Cooked Carrot Volatiles. AEDA and Odor Activity Comparisons. Identification of Linden Ether as an Important Aroma Component. J. Agric. Food Chem. 2013, 61, 9063–9066. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Ma, Z.; Chen, S. Quantitative trait locus mapping of fruit aroma compounds in cucumber (Cucumber sativus L.) based on a recombinant inbred line population. Hortic. Res. 2022, 9, uhac151. [Google Scholar] [CrossRef]
- Nie, R.; Wang, Z.; Liu, H.; Wei, X.; Zhang, C.; Zhang, D. Investigating the impact of lipid molecules and heat transfer on aroma compound formation and binding in roasted chicken skin: A UHPLC-HRMS and GC-O-MS study. Food Chem. 2024, 447, 138877. [Google Scholar] [CrossRef]
- Sivaranjani, S.; Joshi, T.J.; Singh, S.M.; Rao, P.S. A comprehensive review of the mechanism, changes, and effect of deep fat frying on the characteristics of restructured foods. Food Chem. 2024, 450, 139393. [Google Scholar]
- Yao, F.; Hongwei, C.; Hongdong, S.; Kai, H.; Yu, Z.; Ying, Z.; Sen, L.; Yingjie, L.; Jun, L.; Xiao, G. The formation mechanism, analysis strategies and regulation measures of cereal aroma: A review. Trends Food Sci. Amp; Technol. 2024, 147, 104452. [Google Scholar]
- Chen, L.; Liu, R.; Wu, M.; Ge, Q.; Yu, H. A review on aroma-active compounds derived from branched-chain amino acid in fermented meat products: Flavor contribution, formation pathways, and enhancement strategies. Trends Food Sci. Amp; Technol. 2024, 145, 104371. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Pan, M.; Tian, A.; Chen, K.; Qu, W.; Zhou, W.; Zhou, Y.; Fan, L.; Zhao, C.; et al. Effect of cooking methods on volatile compounds and texture properties in millet porridge. Food Chem. X 2024, 23, 101652. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, X.H.; Wang, X.; Tian, H.; Wang, L.; Zhou, D.Y.; Qin, L. Compensatory effect of lipase on the flavor of lightly-salted large yellow croaker: Integration of flavoromics and lipidomics. Food Biosci. 2024, 59, 103907. [Google Scholar] [CrossRef]
- Zhao, B.; Zhou, H.; Zhang, S.; Pan, X.; Li, S.; Zhu, N.; Wu, Q.; Wang, S.; Qiao, X.; Chen, W. Changes of protein oxidation, lipid oxidation and lipolysis in Chinese dry sausage with different sodium chloride curing salt content. Food Sci. Hum. Wellness 2020, 9, 328–337. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.-T.; Cao, J.-X.; Chen, Y.-J.; Sun, Y.-Y.; Zeng, X.-Q.; Pan, D.-D.; Ou, C.-R.; Gan, N. Study on lipolysis-oxidation and volatile flavour compounds of dry-cured goose with different curing salt content during production. Food Chem. 2016, 190, 33–40. [Google Scholar]
- Dong, X.P.; Li, D.Y.; Huang, Y.; Wu, Q.; Liu, W.T.; Qin, L.; Zhou, D.Y.; Prakash, S.; Yu, C.X. Nutritional value and flavor of turbot (Scophthalmus maximus) muscle as affected by cooking methods. Int. J. Food Prop. 2018, 21, 1972–1985. [Google Scholar] [CrossRef]
- Balbas, J.; Hamid, N.; Liu, T.; Kantono, K.; Robertson, J.; White, W.L.; Ma, Q.; Lu, J. Comparison of physicochemical characteristics, sensory properties and volatile composition between commercial and New Zealand made wakame from Undaria pinnatifida. Food Chem. 2015, 186, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Selli, S.; Guclu, G.; Sevindik, O.; Kelebek, H. Variations in the key aroma and phenolic compounds of champignon (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms after two cooking treatments as elucidated by GC–MS-O and LC-DAD-ESI-MS/MS. Food Chem. 2021, 354, 129576. [Google Scholar] [CrossRef]
- Ding, K.; Ji, J.; Xie, G.; Liu, S.; Liao, C.; Song, K.; Wang, Y.Z. Lipid biosynthesis mediated by the cyclic adenosine monophosphate (cAMP) signaling pathway in Chlorella pyrenoidosa under salt-induced osmotic stress. Renew. Energy 2021, 180, 222–231. [Google Scholar] [CrossRef]
- Wang, T.; Ge, H.; Liu, T.; Tian, X.; Wang, Z.; Guo, M.; Chu, J.; Zhuang, Y. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. J. Biotechnol. 2016, 228, 18–27. [Google Scholar] [CrossRef]
- Ling, A.L.M.; Yasir, S.; Matanjun, P.; Abu Bakar, M.F. Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. J. Appl. Phycol. 2014, 27, 1717–1723. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, M.; Zhu, K.; Liu, Y.; Wen, H.; Kong, J.; Chen, M.; Cao, L.; Ye, J.; Zhang, H.; et al. Multiomics integrated with sensory evaluations to identify characteristic aromas and key genes in a novel brown navel orange (Citrus sinensis). Food Chem. 2024, 444, 138613. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Jiang, X.; Zhu, Q.; Yuan, Y.; Chen, R.; Wang, W.; Liu, A.; Wu, C.; Ma, C.; Li, J.; et al. Metabonomics analysis of the flavor characteristics of Wuyi Rock Tea (Rougui) with “rock flavor” and microbial contributions to the flavor. Food Chem. 2024, 450, 139376. [Google Scholar] [CrossRef]
- Pott, D.M.; Durán-Soria, S.; Allwood, J.W.; Pont, S.; Gordon, S.L.; Jennings, N.; Austin, C.; Stewart, D.; Brennan, R.M.; Masny, A.; et al. Dissecting the impact of environment, season and genotype on blackcurrant fruit quality traits. Food Chem. 2023, 402, 134360. [Google Scholar] [CrossRef]
- Ki, H.; Kim, E.S.; An, S.M.; Kang, N.S.; Bae, S.S.; Choi, G.; Pan, C.H.; Kim, K.Y.; Patil, J.G.; Cho, K. Enhanced carotenoid production, biodiesel quality, and harvesting efficiency in microalga Graesiella emersonii via heterotrophic cultivation strategy. Algal Res. 2024, 78, 103437. [Google Scholar] [CrossRef]
- Xu, H.; Sutar, P.P.; Ren, W.; Wu, M. Revealing the mechanism of post-harvest processing on rose quality based on dynamic changes in water content, enzyme activity, volatile and non-volatile metabolites. Food Chem. 2024, 448, 139202. [Google Scholar] [CrossRef] [PubMed]
- Durgut Malçok, S.; Tunçkal, C.; Özkan Karabacak, A.; Coşgun, G.; Torun, M.; Tamer, C.E. Effects of Debittering Treatments on Some Secondary Metabolites’ Bioaccessibility, Fatty Acid, and Aroma Profiles of Semidried Gemlik Variety Black Olives. J. Food Qual. 2025, 2025, 3738986. [Google Scholar] [CrossRef]
- Urango, A.C.M.; Meireles, M.A.A.; Silva, E.K. Maillard conjugates produced from proteins and prebiotic dietary fibers: Technological properties, health benefits and challenges. Trends Food Sci. Technol. 2024, 147, 104438. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Mei, J.; Luo, S.; Leng, T.; Chen, Y.; Nie, S.; Xie, M. Comparison of Furans Formation and Volatile Aldehydes Profiles of Four Different Vegetable Oils During Thermal Oxidation. J. Food Sci. 2019, 84, 1966–1978. [Google Scholar] [CrossRef]
- Batool, Z.; Xu, D.; Weng, L.; Zhang, X.; Li, B.; Li, L. Comparison of trapping efficiency of dicarbonyl trapping agents and reducing agents on reduction of furanoic compounds in commercially available soy sauce varieties. J. Food Sci. Technol. 2020, 58, 2538–2546. [Google Scholar] [CrossRef]
- Shi, B.; Guo, X.; Liu, H.; Jiang, K.; Liu, L.; Yan, N.; Farag, M.A.; Liu, L. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation. Food Chem. 2024, 438, 137994. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, L.; Xu, A.; Zhao, Y.; Wang, Y.; Liu, Z.; Xu, P. Thermochemical reactions in tea drying shape the flavor of tea: A review. Food Res. Int. 2024, 197, 115188. [Google Scholar] [CrossRef]
- Xu, C.C.; Li, Z.J.; Li, R.; Liu, D.K.; Guo, C.X. Static magnetic field exposure improved the volatile composition and aroma attribute of fresh-cut flower mushrooms (Lentinus edodes (Berk) sing). LWT 2023, 188, 115453. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, K.; Xu, C.; Lai, C.; Liu, Y.; Cao, Y.; Zhao, L. Contribution of lipid to the formation of characteristic volatile flavor of peanut oil. Food Chem. 2024, 442, 138496. [Google Scholar] [CrossRef]
- Huang, D.; Zheng, D.; Sun, C.; Fu, M.; Wu, Y.; Wang, H.; Yu, J.; Yang, Y.; Li, Y.; Wan, X.; et al. Combined multi-omics approach to analyze the flavor characteristics and formation mechanism of gabaron green tea. Food Chem. 2024, 445, 138620. [Google Scholar] [CrossRef]
- Raghavan, S.; Kristinsson, H.G. Influence of processing on lipids and lipid oxidation in aquatic foods. Antioxid. Funct. Compon. Aquat. Foods 2014, 43–94. [Google Scholar] [CrossRef]
- Li, R.; Yang, J.; Yin, X.; Li, Y.; Liu, P.; Zhao, M. Thermal pyrolysis of two synthesized Amadori derivatives prepared by protecting the active groups. J. Anal. Appl. Pyrolysis 2024, 177, 106351. [Google Scholar] [CrossRef]
- Chen, C.; Fan, X.; Hu, Y.; Zhou, C.; Sun, Y.; Du, L.; Pan, D. Effect of different salt substitutions on the decomposition of lipids and volatile flavor compounds in restructured duck ham. LWT 2023, 176, 114541. [Google Scholar] [CrossRef]
- Li, X.M.; Nie, W.; Wu, Y.; Li, P.; Li, C.; Xu, B.C. Insight into the dynamic change of flavor profiles and their correlation with microbial community succession and lipid oxidation during the processing of dry-cured duck. LWT 2024, 198, 115966. [Google Scholar] [CrossRef]
- Liu, N.; Shen, S.; Huang, L.; Deng, G.; Wei, Y.; Ning, J.; Wang, Y. Revelation of volatile contributions in green teas with different aroma types by GC–MS and GC–IMS. Food Res. Int. 2023, 169, 112845. [Google Scholar] [CrossRef]
- Xia, A.; Tang, X.; Dong, G.; Lei, S.; Liu, Y.; Tian, X. Quality assessment of fermented rose jams based on physicochemical properties, HS-GC-MS HS-GC-IMS. LWT 2021, 151, 112153. [Google Scholar] [CrossRef]
- Hernández, F.; Noguera-Artiaga, L.; Burló, F.; Wojdyło, A.; Carbonell-Barrachina, Á.A.; Legua, P. Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J. Sci. Food Agric. 2016, 96, 2682–2691. [Google Scholar] [CrossRef]
- Song, J.; Chen, Q.; Bi, J.; Meng, X.; Wu, X.; Qiao, Y.; Lyu, Y. GC/MS coupled with MOS e-nose and flash GC e-nose for volatile characterization of Chinese jujubes as affected by different drying methods. Food Chem. 2020, 331, 127201. [Google Scholar] [CrossRef]
Classification | Odor Description | Threshold μg/kg | ROAV | |||
---|---|---|---|---|---|---|
WD | WY | WG | WS | |||
Aldehydes | ||||||
(E)-2-Nonenal(M) | fatty, green, waxy, cucumber, melon | 0.08 | 3.94 | 5.89 | 8.98 | 4.27 |
(E)-2-Nonenal(D) | fatty, green, waxy, cucumber, melon | 0.08 | 1.77 | 1.68 | 5.95 | 1.93 |
n-Nonanal(M) | rose, citrus, strong oily | 1 | 0.13 | 0.42 | 0.89 | 0.43 |
n-Nonanal(D) | rose, citrus, strong oily | 1 | 0.03 | 0.07 | 0.15 | 0.06 |
(E)-2-Octenal(M) | fresh cucumber, fatty, green herbal, banana, green leaf | 3 | 0.12 | 0.34 | 0.44 | 0.18 |
(E)-2-Octenal(D) | fresh cucumber, fatty, green herbal, banana, green leaf | 3 | 0.12 | 0.14 | 0.12 | 0.04 |
(E,E)-2,4-Heptadienal(M) | fatty, oily, aldehyde, vegetable, cinnamon | 0.01 | 24.65 | 93.65 | 99.86 | 35.21 |
(E,E)-2,4-Heptadienal(D) | fatty, oily, aldehyde, vegetable, cinnamon | 0.01 | 37.93 | 50.72 | 19.51 | 10.81 |
Benzaldehyde(M) | bitter almond, cherry, nutty | 350 | 0.00 | 0.00 | 0.00 | 0.00 |
Benzaldehyde(D) | bitter almond, cherry, nutty | 350 | 0.00 | 0.00 | 0.00 | 0.00 |
(E)-2-Heptenal(M) | spicy, green vegetables, fresh, fatty | 13 | 0.02 | 0.08 | 0.09 | 0.04 |
(E)-2-Heptenal(D) | spicy, green vegetables, fresh, fatty | 13 | 0.04 | 0.06 | 0.03 | 0.02 |
(E,E)-2,4-Hexadienal(M) | green grassy, fatty, fruity | 0.008 | 7.69 | 18.69 | 34.15 | 15.85 |
(E,E)-2,4-Hexadienal(D) | green grassy, fatty, fruity | 0.008 | 5.86 | 4.35 | 14.42 | 5.07 |
(E)-2-Hexenal | green, banana, fat | 17 | 0.15 | 0.23 | 0.14 | 0.59 |
Hexanal | fresh, green, fat, fruity | 4500 | 0.00 | 0.00 | 0.00 | 0.00 |
(E)-2-Pentenal(M) | potato, peas | 46 | 0.00 | 0.02 | 0.05 | 0.02 |
(E)-2-Pentenal(D) | potato, peas | 46 | 0.03 | 0.07 | 0.04 | 0.05 |
Aldehydes | ||||||
3-Methylbutanal | chocolate, fat | 0.4 | 0.04 | 0.05 | 0.08 | 0.57 |
Octanal | aldehyde, waxy, citrus, orange, fruity, fatty | 0.7 | 0.05 | 0.30 | 0.80 | 0.25 |
2,4-Heptadienal | nut, fat | 15.4 | 0.01 | 0.02 | 0.01 | 0.00 |
Pentanal | green grassy, faint banana, pungent | 20 | 0.00 | 0.01 | 0.06 | 0.01 |
Heptanal(M) | fresh, aldehyde, fatty, green herbs, wine, fruity | 3 | 0.02 | 0.15 | 0.35 | 0.16 |
Heptanal(D) | fresh, aldehyde, fatty, green herbs, wine, fruity | 3 | 0.02 | 0.17 | 0.09 | 0.07 |
(E,E)-2,4-Nonadienal | fatty, green grassy, cucumber, fishy | 0.09 | 0.90 | 2.84 | 2.66 | 2.59 |
Total content | 53.85% | 41.12% | 52.62% | 45.28% | ||
Alcohols | ||||||
Ethanol(M) | aromaticity | 100,000 | 0.00 | 0.00 | 0.00 | 0.00 |
Ethanol(D) | aromaticity | 100,000 | 0.00 | 0.00 | 0.00 | 0.00 |
1-Octen-3-ol(M) | mushroom, lavender, rose, hay | 0.018 | 10.88 | 100.00 | 100.00 | 69.52 |
1-Octen-3-ol(D) | mushroom, lavender, rose, hay | 0.018 | 8.87 | 72.72 | 15.75 | 15.65 |
1-Octen-3-ol(T) | mushroom, lavender, rose, hay | 0.018 | 2.10 | 9.62 | 4.56 | 3.92 |
1-Hexanol(M) | fresh, fruity, wine, sweet, green | 250 | 0.00 | 0.00 | 0.00 | 0.00 |
1-Hexanol(D) | fresh, fruity, wine, sweet, green | 250 | 0.00 | 0.00 | 0.00 | 0.01 |
1-Pentanol(M) | balsamic | 4000 | 0.00 | 0.00 | 0.00 | 0.00 |
1-Pentanol(D) | balsamic | 4000 | 0.00 | 0.00 | 0.00 | 0.00 |
1-Butanol(M) | wine | 500 | 0.00 | 0.00 | 0.00 | 0.00 |
1-Butanol(D) | wine | 500 | 0.00 | 0.00 | 0.00 | 0.00 |
1-Propanol | alcohol, pungent | 53,952.63 | 0.00 | 0.00 | 0.00 | 0.00 |
Total content | 8.24% | 19.86% | 11.28% | 18.40% | ||
Ketones | ||||||
1-Octen-3-one(M) | strong earthy, mushroom, vegetable, fishy, chicken | 0.005 | 27.43 | 39.95 | 59.84 | 100.00 |
1-Octen-3-one(D) | strong earthy, mushroom, vegetable, fishy, chicken | 0.005 | 100.00 | 76.85 | 36.19 | 96.44 |
2-Butanone(M) | fruity, camphor | 1.1 | 0.07 | 0.32 | 0.95 | 0.41 |
2-Butanone(D) | fruity, camphor | 1.1 | 0.09 | 0.53 | 0.19 | 0.12 |
Acetone | fresh, apple, pear | 14,500 | 0.00 | 0.00 | 0.00 | 0.00 |
Total content | 7.88% | 5.61% | 3.67% | 6.64% | ||
Esters | ||||||
Ethyl hexanoate | fruity, creamy | 5 | 0.01 | 0.03 | 0.03 | 0.07 |
Ethyl pentanoate | apple, green grassy | 1.5 | 0.02 | 0.22 | 0.27 | 0.06 |
Total content | 0.41% | 0.91% | 1.02% | 0.89% | ||
Furans | ||||||
2-Pentylfuran | bean, fruity, earthy, green, vegetable | 6 | 0.04 | 0.03 | 0.30 | 0.09 |
Total content | 1.61% | 0.41% | 3.38% | 1.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, X.; Cao, F.; Yan, T.; Liu, X.; Cai, Q.; Liu, S.; Ma, Y.; Ren, D.; Zhou, H.; Wang, Q.; et al. Analysis of Flavor Differences Between Undaria pinnatifida Produced Using Different Processing Methods and from Different Origins Based on GC-IMS. Foods 2025, 14, 2107. https://doi.org/10.3390/foods14122107
Che X, Cao F, Yan T, Liu X, Cai Q, Liu S, Ma Y, Ren D, Zhou H, Wang Q, et al. Analysis of Flavor Differences Between Undaria pinnatifida Produced Using Different Processing Methods and from Different Origins Based on GC-IMS. Foods. 2025; 14(12):2107. https://doi.org/10.3390/foods14122107
Chicago/Turabian StyleChe, Xinyi, Fangjie Cao, Tingmei Yan, Xingyu Liu, Qiming Cai, Shu Liu, Yichao Ma, Dandan Ren, Hui Zhou, Qiukuan Wang, and et al. 2025. "Analysis of Flavor Differences Between Undaria pinnatifida Produced Using Different Processing Methods and from Different Origins Based on GC-IMS" Foods 14, no. 12: 2107. https://doi.org/10.3390/foods14122107
APA StyleChe, X., Cao, F., Yan, T., Liu, X., Cai, Q., Liu, S., Ma, Y., Ren, D., Zhou, H., Wang, Q., He, Y., & Zhang, H. (2025). Analysis of Flavor Differences Between Undaria pinnatifida Produced Using Different Processing Methods and from Different Origins Based on GC-IMS. Foods, 14(12), 2107. https://doi.org/10.3390/foods14122107