Total Culturable Microbial Diversity of Food Contact Surfaces in Poultry and Fish Processing Industries After the Pre-Operational Cleaning Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Procedures
2.2. Sample Processing
2.3. Identification of Microbial Diversity Through 16S rRNA Gene Sequencing
2.4. Statistical Analysis
3. Results
3.1. Description of Viable and Culturable Microbial Diversity in Poultry and Fish Slaughterhouses After Pre-Operational Sanitation Process
3.2. Alpha and Beta Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conter, M.; Rega, M.; Lamperti, L.; Andriani, L.; Bacci, C.; Bonardi, S. Comparing non-compliances and non-conformities: The different points of view of pig slaughterhouse operator, competent authority and customers. Food Control 2024, 160, 110366. [Google Scholar] [CrossRef]
- Reta, G.G.; Lopes, S.M.; Martins De Aquino, N.S.; Tondo, E.C. Quantification of Salmonella transfer in cross-contamination scenarios found in chicken slaughterhouses. Food Microbiol. 2023, 116, 104347. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.; Yi, Z.; Xiao, X.; Ma, J.; Huang, H.; Xu, C.; Wang, W.; Qu, X. Investigation of microbial communities across swine slaughter stages and disinfection efficacy assessment in a pig slaughterhouse. LWT 2023, 187, 115334. [Google Scholar] [CrossRef]
- Huss, H.H.; Ryder, J. Assessment and Management of Seafood Safety and Quality. Available online: https://www.fao.org/4/y4743e/y4743e0h.htm (accessed on 13 June 2025).
- Rincon-Ballesteros, L.; Lannelongue, G.; González-Benito, J. Cross-continental insights: Comparing food safety management systems in Europe and Latin America. Food Control 2024, 164, 110552. [Google Scholar] [CrossRef]
- Antoci, S.; Iannetti, L.; Centorotola, G.; Acciari, V.A.; Pomilio, F.; Daminelli, P.; Romanelli, C.; Ciorba, A.B.; Santini, N.; Torresi, M.; et al. Monitoring Italian establishments exporting food of animal origin to third countries: SSOP compliance and Listeria monocytogenes and Salmonella spp. contamination. Food Control 2021, 121, 107584. [Google Scholar] [CrossRef]
- Alves, V.F.; Tadielo, L.E.; Pires, A.C.M.S.; Pereira, M.G.; Bersot, L.S.; De Martinis, E.C.P. Hidden places for foodborne bacterial pathogens and novel approaches to control biofilms in the meat industry. Foods 2024, 13, 3994. [Google Scholar] [CrossRef]
- Bernardes, P.C.; Araújo, E.A.; Pires, A.C.D.S.; Fialho Júnior, J.F.Q.; Lelis, C.A.; Andrade, N.J.D. Work of adhesion of dairy products on stainless steel surface. Braz. J. Microbiol. 2012, 43, 1261–1268. [Google Scholar] [CrossRef]
- Tang, X.; Flint, S.H.; Brooks, J.D.; Bennett, R.J. Factors affecting the attachment of micro-organisms isolated from ultrafiltration and reverse osmosis membranes in dairy processing plants. J. Appl. Microbiol. 2009, 107, 443–451. [Google Scholar] [CrossRef]
- Moazzami, M.; Bergenkvist, E.; Boqvist, S.; Frosth, S.; Langsrud, S.; Møretrø, T.; Vågsholm, I.; Hansson, I. Assessment of ATP-bioluminescence and dipslide sampling to determine the efficacy of slaughterhouse cleaning and disinfection compared with total aerobic and Enterobacterales counts. J. Food Prot. 2023, 86, 100155. [Google Scholar] [CrossRef]
- Corbitt, A.J.; Bennion, N.; Forsythe, S.J. Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry. Lett. Appl. Microbiol. 2000, 30, 443–447. [Google Scholar] [CrossRef]
- Almeida, O.G.G.; De Martinis, E.C.P. Bioinformatics tools to assess metagenomic data for applied microbiology. Appl. Microbiol. Biotechnol. 2019, 103, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ban, G.-H.; Hong, Y.W.; Jeong, K.C.; Bae, D.; Kim, S.A. Bacterial profile of pork from production to retail based on high-throughput sequencing. Food Res. Int. 2024, 176, 113745. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.; Bae, D.; Kim, S.A. Microbial dynamics of South Korean beef and surroundings along the supply chain based on high-throughput sequencing. Meat Sci. 2024, 214, 109520. [Google Scholar] [CrossRef] [PubMed]
- Zagdoun, M.; Coeuret, G.; N’Dione, M.; Champomier-Vergès, M.-C.; Chaillou, S. Large microbiota survey reveals how the microbial ecology of cooked ham is shaped by different processing steps. Food Microbiol. 2020, 91, 103547. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, X.; Guan, R.; Zhu, C.; Xu, C.; Zhu, B.; Zhang, H.; Xiong, Z.; Xue, Y.; Tu, J.; et al. Evaluation of different 16S rRNA gene V regions for exploring bacterial diversity in a eutrophic freshwater lake. Sci. Total Environ. 2018, 618, 1254–1267. [Google Scholar] [CrossRef]
- De Filippis, F.; Parente, E.; Ercolini, D. Recent past, present, and future of the food microbiome. Annu. Rev. Food Sci. Technol. 2018, 9, 589–608. [Google Scholar] [CrossRef]
- Daly, A.J.; Baetens, J.M.; De Baets, B. Ecological diversity: Measuring the unmeasurable. Mathematics 2018, 6, 119. [Google Scholar] [CrossRef]
- De Filippis, F.; Valentino, V.; Alvarez-Ordóñez, A.; Cotter, P.D.; Ercolini, D. Environmental microbiome mapping as a strategy to improve quality and safety in the food industry. Curr. Opin. Food Sci. 2021, 38, 168–176. [Google Scholar] [CrossRef]
- Sequino, G.; Valentino, V.; Villani, F.; De Filippis, F. Omics-based monitoring of microbial dynamics across the food chain for the improvement of food safety and quality. Food Res. Int. 2022, 157, 111242. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S. Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1022–1041. [Google Scholar] [CrossRef]
- Tadielo, L.E.; Dos Santos, E.A.R.; Possebon, F.S.; Schmiedt, J.A.; Juliano, L.C.B.; Cerqueira-Cézar, C.K.; De Oliveira, J.P.; Sampaio, A.N.D.C.E.; Melo, P.R.L.; Caron, E.F.F.; et al. Characterization of microbial ecology, Listeria monocytogenes, and Salmonella sp. on equipment and utensil surfaces in Brazilian poultry, pork, and dairy industries. Food Res. Int. 2023, 173, 113422. [Google Scholar] [CrossRef] [PubMed]
- Soares, V.M.; Viana, C.; Pereira, J.G.; Destro, M.T.; Nero, L.A.; Bersot, L.D.S.; Paes De Almeida Nogueira Pinto, J. Absence of a continuous water spray system does not influence the microbiological contamination of the conveyor belts in chicken slaughterhouses. LWT 2018, 97, 414–418. [Google Scholar] [CrossRef]
- Beltrame, C.A.; Martelo, E.B.; Mesquita, R.A.; Barbosa, J.; Steffens, C.; Toniazzo, G.; Valduga, E.; Cansian, R.L. Adhesion of Listeria monocytogenes to cutting board surfaces and removal by different sanitizers. J. Verbr. Lebensm. 2015, 10, 41–47. [Google Scholar] [CrossRef]
- Ryser, E.T.; Schuman, J.D. 8. Mesophilic Aerobic Plate Count. In Compendium of Methods for the Microbiological Examination of Foods; APHA Press: Washington, DC, USA, 2013; pp. 95–101. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Amir, A.; McDonald, D.; Navas-Molina, J.A.; Kopylova, E.; Morton, J.T.; Xu, Z.Z.; Kightley, E.P.; Thompson, L.R.; Hyde, E.R.; Gonzalez, A.; et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2017, 2, e00191-16. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Van Treuren, W.; White, R.A.; Eggesbø, M.; Knight, R.; Peddada, S.D. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 2015, 26, 27663. [Google Scholar] [CrossRef]
- Maes, S.; Heyndrickx, M.; Vackier, T.; Steenackers, H.; Verplaetse, A.; Reu, K.D. Identification and spoilage potential of the remaining dominant microbiota on food contact surfaces after cleaning and disinfection in different food industries. J. Food Prot. 2019, 82, 262–275. [Google Scholar] [CrossRef]
- Wiedmann, M.; Belias, A.; Sullivan, G.; David, J. Food and Beverage Environmental Monitoring Handbook. Available online: https://www.neogen.com/en/usac/neocenter/resources/food-beverage-environmental-monitoring-handbook/?utm_medium=SocialShare (accessed on 25 May 2025).
- De Martinis, E.C.P.; Duvall, R.E.; Hitchins, A.D. Real-Time PCR detection of 16S rRNA genes speeds most-probable-number enumeration of foodborne Listeria monocytogenes. J. Food Prot. 2007, 70, 1650–1655. [Google Scholar] [CrossRef]
- Doyle, C.J.; O’Toole, P.W.; Cotter, P.D. Metagenome-based surveillance and diagnostic approaches to studying the microbial ecology of food production and processing environments. Environ. Microbiol. 2017, 19, 4382–4391. [Google Scholar] [CrossRef] [PubMed]
- Hascoët, A.-S.; Ripolles-Avila, C.; Guerrero-Navarro, A.E.; Rodríguez-Jerez, J.J. Microbial ecology evaluation of an Iberian pig processing plant through implementing SCH sensors and the influence of the resident microbiota on Listeria monocytogenes. Appl. Sci. 2019, 9, 4611. [Google Scholar] [CrossRef]
- Verran, J.; Redfern, J.; Smith, L.A.; Whitehead, K.A. A critical evaluation of sampling methods used for assessing microorganisms on surfaces. Food Bioprod. Process. 2010, 88, 335–340. [Google Scholar] [CrossRef]
- Tadielo, L.E.; Dos Santos, E.A.E.; Possebon, F.S.; Schmiedt, J.A.; Orisio, P.H.S.; Juliano, L.C.B.; Cerqueira-Cézar, C.K.; Pinto, J.P.A.N.; Pereira, J.G.; Bersot, L.D.S. Preoperational cleaning processes interfere with microbial ecology and presence of Listeria monocytogenes and Salmonella spp. on food conveyor belts of a poultry slaughterhouse in Brazil. LWT 2023, 184, 115037. [Google Scholar] [CrossRef]
- Sinlapapanya, P.; Pelyuntha, W.; Vongkamjan, K. Diversity of sanitizer-resistant bacteria on food contact surface and handling equipment in squid sushi production line. Food Res. Int. 2025, 203, 115837. [Google Scholar] [CrossRef]
- Ghaffoori Kanaan, M.H.; Al-Shadeedi, S.M.J.; Al-Massody, A.J.; Ghasemian, A. Drug resistance and virulence traits of Acinetobacter baumannii from turkey and chicken raw meat. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101451. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.M.; Pracser, N.; Thalguter, S.; Fischel, K.; Rammer, N.; Pospíšilová, L.; Alispahic, M.; Wagner, M.; Rychli, K. Identification of biofilm hotspots in a meat processing environment: Detection of spoilage bacteria in multi-species biofilms. Int. J. Food Microbiol. 2020, 328, 108668. [Google Scholar] [CrossRef]
- Cherifi, T.; Arsenault, J.; Quessy, S.; Fravalo, P. Co-occurrence of L. monocytogenes with other bacterial genera and bacterial diversity on cleaned conveyor surfaces in a swine slaughterhouse. Microorganisms 2022, 10, 613. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, Y.; Ko, E.A.; Park, Y.K.; Jheong, W.-H.; Ko, G.; Ko, K.S. Acinetobacter species isolates from a range of environments: Species survey and observations of antimicrobial resistance. Diagn. Microbiol. Infect. Dis. 2012, 74, 177–180. [Google Scholar] [CrossRef]
- Naim, W.; Manetsberger, J.; Lavilla Lerma, L.; Benomar, N.; Caballero Gómez, N.; Cuesta-Bertomeu, I.S.; Gata Díaz, J.Á.; Abriouel, H. Impact of disinfection methods used in the slaughterhouse environment on microbiome diversity throughout the meat production chain. Curr. Res. Microb. Sci. 2025, 8, 100336. [Google Scholar] [CrossRef]
- Fagerlund, A.; Møretrø, T.; Heir, E.; Briandet, R.; Langsrud, S. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Appl. Environ. Microbiol. 2017, 83, e01046-17. [Google Scholar] [CrossRef] [PubMed]
- Mahamat, A.; Bertrand, X.; Moreau, B.; Hommel, D.; Couppie, P.; Simonnet, C.; Kallel, H.; Demar, M.; Djossou, F.; Nacher, M. Clinical epidemiology and resistance mechanisms of carbapenem-resistant Acinetobacter baumannii, French Guiana, 2008–2014. Int. J. Antimicrob. Agents 2016, 48, 51–55. [Google Scholar] [CrossRef]
- Tsitsos, A.; Damianos, A.; Tsiouris, V.; Papapanagiotou, E.; Soultos, N.; Papa, A.; Tyrodimos, I.; Economou, V. Prevalence, seasonal variation, and proteomic relationship of β-lactamase-producing Escherichia coli, Klebsiella pneumoniae, and Acinetobacter spp. in poultry meat at the abattoir level in Greece. Food Microbiol. 2025, 128, 104709. [Google Scholar] [CrossRef]
- Malta, R.C.R.; Ramos, G.L.D.P.A.; Nascimento, J.D.S. From food to hospital: We need to talk about Acinetobacter spp. Germs 2020, 10, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Gula, G.; Dorotkiewicz-Jach, A.; Korzekwa, K.; Valvano, M.A.; Drulis-Kawa, Z. Complex signaling networks controlling dynamic molecular changes in Pseudomonas aeruginosa biofilm. Curr. Med. Chem. 2019, 26, 1979–1993. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.Y.; Yang, Y.S.; Yuk, H.G. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa. J. Appl. Microbiol. 2017, 123, 651–660. [Google Scholar] [CrossRef]
- Sterniša, M.; Gradišar Centa, U.; Drnovšek, A.; Remškar, M.; Smole Možina, S. Pseudomonas fragi biofilm on stainless steel (at low temperatures) affects the survival of Campylobacter jejuni and Listeria monocytogenes and their control by a polymer molybdenum oxide nanocomposite coating. Int. J. Food Microbiol. 2023, 394, 110159. [Google Scholar] [CrossRef]
- Voloshchuk, O.; Rolon, M.L.; Bartlett, K.V.; Mendez Acevedo, M.; LaBorde, L.F.; Kovac, J. Pseudomonadaceae increased the tolerance of Listeria monocytogenes to sanitizers in multi-species biofilms. Food Microbiol. 2025, 128, 104687. [Google Scholar] [CrossRef]
- Rychlik, I.; Karasova, D.; Crhanova, M. Microbiota of chickens and their environment in commercial production. Avian Dis. 2023, 67, 1–9. [Google Scholar] [CrossRef]
- Abril, A.G.; Calo-Mata, P.; Böhme, K.; Villa, T.G.; Barros-Velázquez, J.; Sánchez-Pérez, Á.; Pazos, M.; Carrera, M. Shotgun proteomic analyses of Pseudomonas species isolated from fish products. Food Chem. 2024, 450, 139342. [Google Scholar] [CrossRef]
- Barcenilla, C.; Cobo-Díaz, J.F.; Puente, A.; Valentino, V.; De Filippis, F.; Ercolini, D.; Carlino, N.; Pinto, F.; Segata, N.; Prieto, M.; et al. In-depth characterization of food and environmental microbiomes across different meat processing plants. Microbiome 2024, 12, 199. [Google Scholar] [CrossRef]
- Xu, X.; Rothrock, M.J.; Mishra, A.; Kumar, G.D.; Mishra, A. Relationship of the poultry microbiome to pathogen colonization, farm management, poultry production, and foodborne illness risk assessment. J. Food Prot. 2023, 86, 100169. [Google Scholar] [CrossRef] [PubMed]
- Besler, A.; Kılınç, B. An investigation of the efficacy of different disinfectants on Staphylococcus aureus and Pseudomonas fluorescens isolated from fish processing plant. Ege J. Fish. Aquat. Sci. 2023, 40, 228–234. [Google Scholar] [CrossRef]
- Da Silva Meira, Q.G.; De Medeiros Barbosa, I.; Alves Aguiar Athayde, A.J.; De Siqueira-Júnior, J.P.; De Souza, E.L. Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control 2012, 25, 469–475. [Google Scholar] [CrossRef]
- Igbinosa, I.H. Antibiogram profiling and pathogenic status of Aeromonas species recovered from chicken. Saudi J. Biol. Sci. 2014, 21, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Marmion, M.; Ferone, M.T.; Whyte, P.; Scannell, A.G.M. The changing microbiome of poultry meat; from farm to fridge. Food Microbiol. 2021, 99, 103823. [Google Scholar] [CrossRef]
- Rahman, M.A.; Akter, S.; Ashrafudoulla, M.; Rapak, M.T.; Lee, K.O.; Ha, S.D. Targeted insights into Aeromonas hydrophila biofilms: Surface preferences, resistance mechanisms, and gene expression. Poult. Sci. 2025, 104, 104851. [Google Scholar] [CrossRef]
- Reich, C.; Wenning, M.; Dettling, A.; Luma, K.E.; Scherer, S.; Hinrichs, J. Thermal resistance of vegetative thermophilic spore forming bacilli in skim milk isolated from dairy environments. Food Control 2017, 82, 114–120. [Google Scholar] [CrossRef]
- Mendoza, D.M.; Aquino, M.G.B.; Reyes, A.T. Assessment of Enterococcus in fish and its environment: A study in tilapia farms operating in the Budamasa areas of Minalin, Pampanga, Philippines. AACL Bioflux 2023, 16, 1007–1024. [Google Scholar]
- Frazilio, D.A.; De Almeida, O.G.G.; Niño-Arias, F.C.; De Martinis, E.C.P. Finding a common core microbiota in two Brazilian dairies through culture and DNA metabarcoding studies. J. Food Sci. Technol. 2019, 56, 5326–5335. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Peng, Q.; Shen, T.; Yao, J.; Wei, Y.; Duan, H.; Liu, W. Culturomics: A promising approach for exploring bacterial diversity in natural fermented milk. Food Biosci. 2024, 62, 105383. [Google Scholar] [CrossRef]
- Hong, J.H.; Jin, Y.H.; Pawluk, A.M.; Mah, J.-H. Metagenomic and culturomic analyses of bacterial species contributing to tyramine formation in Cheonggukjang. LWT 2024, 201, 116265. [Google Scholar] [CrossRef]
- Cheema, S.K.; Li, R.; Cameron, S.J.S. Culturomics as a tool to better understand the human milk microbiota and host–microbiota interactions. Microbiota Host 2023, 1, e230001. [Google Scholar] [CrossRef]
- Gong, L.; Li, X.; Ji, L.; Chen, G.; Han, Z.; Su, L.; Wu, D. Characterization and comparison of gut microbiota in patients with acute pancreatitis by metagenomics and culturomics. Heliyon 2025, 11, e42243. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Li, J.; Tan, Y.; An, T.; Zhuo, M.; Pan, Z.; Ma, M.; Jia, B.; Zhang, H.; et al. Characterization of lung and oral microbiomes in lung cancer patients using culturomics and 16s rRNA gene sequencing. Microbiol. Spectr. 2023, 11, e00314-23. [Google Scholar] [CrossRef]
- Moote, P.E.; Zaytsoff, S.J.M.; Ortega Polo, R.; Abbott, D.W.; Uwiera, R.R.E.; Inglis, G.D. Application of culturomics to characterize diverse anaerobic bacteria from the gastrointestinal tract of broiler chickens in relation to environmental reservoirs. Can. J. Microbiol. 2020, 66, 288–302. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Wang, Y.; Zeng, J.; Ye, C.; Li, X.; Guo, L.; Zhang, S.; Yu, X. Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. Water Res. 2018, 142, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Pacheappan, G.D.; Samsudin, N.I.P.; Hasan, H. The effects of different disinfectants and application conditions on microbial contaminants at dairy processing line. Food Process. Preserv. 2022, 46, e16172. [Google Scholar] [CrossRef]
- György, É.; Unguran, K.A.; Laslo, É. Biocide tolerance and impact of sanitizer concentrations on the antibiotic resistance of bacteria originating from cheese. Foods 2023, 12, 3937. [Google Scholar] [CrossRef]
- Beltrame, C.A.; Kubiak, G.B.; Lerin, L.A.; Rottava, I.; Mossi, A.J.; Oliveira, D.D.; Cansian, R.L.; Treichel, H.; Toniazzo, G. Influence of different sanitizers on food contaminant bacteria: Effect of exposure temperature, contact time, and product concentration. Food Sci. Technol. 2012, 32, 228–232. [Google Scholar] [CrossRef]
- Akinbobola, A.B.; Sherry, L.; Mckay, W.G.; Ramage, G.; Williams, C. Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection. J. Hosp. Infect. 2017, 97, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.A.R.; Tadielo, L.E.; Schmiedt, J.A.; Orisio, P.H.S.; Brugeff, E.C.L.; Possebon, F.S.; Pereira, M.O.; Pereira, J.G.; Bersot, L.S. Inhibitory effects of piperine and black pepper essential oil on multispecies biofilm formation by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa. LWT 2023, 182, 114851. [Google Scholar] [CrossRef]
- Tadielo, L.E.; Bellé, T.H.; Dos Santos, E.A.R.; Schmiedt, J.A.; Cerqueira-Cézar, C.K.; Nero, L.A.; Yamatogi, R.S.; Pereira, J.G.; Bersot, L.D.S. Pure and mixed biofilms formation of Listeria monocytogenes and Salmonella Typhimurium on polypropylene surfaces. LWT 2022, 162, 113469. [Google Scholar] [CrossRef]
Collection Points | N | % |
---|---|---|
Poultry slaughterhouse (n = 50) | ||
Modular polypropylene conveyor belt | 10 | 20 |
Modular polypropylene conveyor belt | 10 | 20 |
Stainless steel table | 10 | 20 |
Smooth polyurethane conveyor belt | 10 | 20 |
Modular polypropylene conveyor belt | 10 | 20 |
Fish slaughterhouse (n = 50) | ||
Modular polypropylene conveyor belt | 10 | 20 |
Smooth polypropylene cutting board | 10 | 20 |
Skin machine (stainless steel) | 10 | 20 |
Modular polypropylene conveyor belt | 10 | 20 |
Modular polypropylene conveyor belt | 10 | 20 |
Collection Points | N + | % | N − | % |
---|---|---|---|---|
Poultry slaughterhouse (n = 50) | ||||
Modular polypropylene conveyor belt | 4 | 8 | 6 | 12 |
Modular polypropylene conveyor belt | 7 | 14 | 3 | 6 |
Stainless steel table | 6 | 12 | 4 | 8 |
Smooth polyurethane conveyor belt | 7 | 14 | 3 | 6 |
Modular polypropylene conveyor belt | 6 | 12 | 4 | 8 |
Fish slaughterhouse (n = 50) | ||||
Modular polypropylene conveyor belt | 6 | 12 | 4 | 8 |
Smooth polypropylene cutting board | 5 | 10 | 5 | 10 |
Skin machine (stainless steel) | 4 | 8 | 6 | 12 |
Modular polypropylene conveyor belt | 5 | 10 | 5 | 10 |
Modular polypropylene conveyor belt | 8 | 16 | 2 | 4 |
Categories | Alpha Diversity * | Beta Diversity ** | ||||||
---|---|---|---|---|---|---|---|---|
Shannon’s Diversity Index | Observed Features | Faith’s Phylogenetic Diversity | Evenness | Jaccard Distance | Bray–Curtis distance | Unweighted UniFrac Distance | Weighted UniFrac Distance | |
Type of food | 0.283 | 0.311 | 0.194 | 0.732 | 0.067 | 0.109 | 0.122 | 0.621 |
Sampling point | 0.304 | 0.369 | 0.610 | 0.504 | – | – | – | – |
Type of surface | 0.026 | 0.036 | 0.110 | 0.145 | 0.025 | 0.082 | 0.227 | 0.215 |
Type of material | 0.364 | 0.584 | 0.455 | 0.204 | 0.759 | 0.721 | 0.760 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bach, L.G.; Braga, G.Z.A.; Bedutti, M.C.; Dias, L.M.P.; dos Santos, E.A.R.; Tadielo, L.E.; Silva, E.C.d.; Schmiedt, J.A.; Alves, V.F.; De Martinis, E.C.P.; et al. Total Culturable Microbial Diversity of Food Contact Surfaces in Poultry and Fish Processing Industries After the Pre-Operational Cleaning Process. Foods 2025, 14, 2387. https://doi.org/10.3390/foods14132387
Bach LG, Braga GZA, Bedutti MC, Dias LMP, dos Santos EAR, Tadielo LE, Silva ECd, Schmiedt JA, Alves VF, De Martinis ECP, et al. Total Culturable Microbial Diversity of Food Contact Surfaces in Poultry and Fish Processing Industries After the Pre-Operational Cleaning Process. Foods. 2025; 14(13):2387. https://doi.org/10.3390/foods14132387
Chicago/Turabian StyleBach, Luiz Gustavo, Gabriela Zarpelon Anhalt Braga, Márcia Cristina Bedutti, Layza Mylena Pardinho Dias, Emanoelli Aparecida Rodrigues dos Santos, Leonardo Ereno Tadielo, Evelyn Cristine da Silva, Jhennifer Arruda Schmiedt, Virgínia Farias Alves, Elaine Cristina Pereira De Martinis, and et al. 2025. "Total Culturable Microbial Diversity of Food Contact Surfaces in Poultry and Fish Processing Industries After the Pre-Operational Cleaning Process" Foods 14, no. 13: 2387. https://doi.org/10.3390/foods14132387
APA StyleBach, L. G., Braga, G. Z. A., Bedutti, M. C., Dias, L. M. P., dos Santos, E. A. R., Tadielo, L. E., Silva, E. C. d., Schmiedt, J. A., Alves, V. F., De Martinis, E. C. P., Possebon, F. S., Barcellos, V. C., & Bersot, L. d. S. (2025). Total Culturable Microbial Diversity of Food Contact Surfaces in Poultry and Fish Processing Industries After the Pre-Operational Cleaning Process. Foods, 14(13), 2387. https://doi.org/10.3390/foods14132387