Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour
Abstract
1. Introduction
2. Materials and Methods
2.1. Flour Preparation
2.2. NIRS Device Calibration and Spectral Acquisition
2.3. Measurement of DGC, WGC, and GI
2.4. Predictive Model Construction and Performance Evaluation
2.5. Optimal Wavelength Selection and Model Optimization
2.6. External Independent Validation
2.7. Two-Sample Test
2.8. Statistical Analysis
3. Results and Discussions
3.1. Statistical Values of DGC, WGC, and GI
3.2. NIR Characteristics of Wheat Flour
3.3. Model Performance for Quantifying DGC, WGC, and GI Using Full Wavelengths
3.4. Selection of Optimal Wavelengths by PCA, SPA, CARS, RFE, and iWOA
3.5. Model Performance for Quantifying DGC, WGC, and GI Using Optimal Wavelengths
3.6. Optimized SVR Models Validation Using Independent Samples
3.7. Two-Sample Test Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO/FAOSTAT. Statistics Division of Food and Agriculture Organization of the United Nations. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 10 January 2024).
- Wieser, H.; Koehler, P.; Scherf, K.A. Cultivation and milling of wheat. In Wheat—An Exceptional Crop; Wieser, H., Koehler, P., Scherf, K.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 47–60. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Shen, L.; Chen, S.; He, L.; Liu, A. Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review. Curr. Res. Food Sci. 2022, 5, 1305–1312. [Google Scholar] [CrossRef]
- Islam, M.A.; Kulathunga, J.; Ray, A.; Ohm, J.B.; Islam, S. Particle size reduction influences starch and protein functionality, and nutritional quality of stone milled whole wheat flour from hard red spring wheat. Food Biosci. 2024, 61, 104612. [Google Scholar] [CrossRef]
- Meenu, M.; Kaur, S.; Yadav, M.; Sharma, A.; Tiwari, V.; Ali, U.; Giri, L.; Badwal, A.K.; Garg, M. Impact of inherent chemical composition of wheat and various processing technologies on whole wheat flour and its final products. Cereal Res. Commun. 2025, 53, 409–424. [Google Scholar] [CrossRef]
- Day, L. Wheat gluten: Production, properties and application. In Handbook of Food Proteins; Phillips, G.O., Williams, P.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 267–288. [Google Scholar] [CrossRef]
- Zaidel, D.N.A.; Chin, N.L.; Yusof, Y.A.; Rahman, R.A. Analysis and correlation studies on gluten quantity and quality during production. J. Appl. Sci. 2009, 9, 1686–1694. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, W.; Bian, N.; Wu, Z.; Zhao, S. The interaction between starch and gluten and related wheat-based noodles quality, a review. Int. J. Biol. Macromol. 2025, 307, 142001. [Google Scholar] [CrossRef]
- Munch, M.; Baudrit, C.; Chiron, H.; Méléard, B.; Saulnier, L.; Kansou, K. Diagnosis based on sensory data: Application to wheat grading quality. Innov. Food Sci. Emerg. 2024, 96, 13771. [Google Scholar] [CrossRef]
- Xie, L.; Liu, M.; Zeng, H.; Zhang, Z.; Ye, Y.; Liu, F. Effects of purple cabbage anthocyanin extract on the gluten characteristics and the gluten network evolution of high-gluten dough. J. Sci. Food Agric. 2024, 104, 7629–7638. [Google Scholar] [CrossRef]
- Xie, D.; Li, X.; Li, X.; Ren, S. Effect of gluten protein levels on physicochemical and fermentation properties of corn dough. Int. J. Food Sci. Technol. 2024, 59, 189–196. [Google Scholar] [CrossRef]
- Evlice, K.A. The effect of durum wheat genotypes on cooking quality of pasta. Eur. Food Res. Technol. 2022, 248, 815–824. [Google Scholar] [CrossRef]
- Chen, Y.; Obadi, M.; Liu, S.; Qi, Y.; Xu, B. Evaluation of the processing quality of noodle dough containing a high Tartary buckwheat flour content through texture analysis. J. Texture Stud. 2020, 51, 688–697. [Google Scholar] [CrossRef]
- Ionescu, V.; Stoenescu, G.; Vasilean, I.; Aprodu, I.; Banu, I. Comparative evaluation of wet gluten quantity and quality through different methods. AUDJG Food Technol. 2010, 34, 44–48. [Google Scholar]
- Cho, S.W.; Kang, C.S.; Kang, T.G.; Cho, K.M.; Park, C.S. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J. Integr. Agric. 2018, 17, 982–993. [Google Scholar] [CrossRef]
- Miralbés, C. Prediction chemical composition and alveograph parameters on wheat by near-infrared transmittance spectroscopy. J. Agric. Food Chem. 2003, 51, 6335–6339. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, M.; Adhikari, C.L.J. Indirect prediction of the 3D printability of polysaccharide gels using multiple machine learning (ML) models. Int. J. Biol. Macromol. 2024, 280, 135769. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Yi, L.; Fan, X.; Zhang, J.; Gu, Y.; Wang, S. Near-infrared spectroscopy assisted by random forest for predicting the physicochemical indicators of yak milk powder. Food Chem. 2025, 478, 143555. [Google Scholar] [CrossRef]
- Basile, T.; Amendolagine, A.M.; Tarricone, L. Rootstock’s and Cover-Crops’ Influence on Grape: A NIR-Based ANN Classification Model. Agriculture 2023, 13, 5. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, N.; Kang, X.; Zhao, Y.; Cao, R.; Ning, J.; Ding, H.; Sheng, X.; Zhou, D. Rapid identification of geographical origin of sea cucumbers Apostichopus japonicus using FT-NIR coupled with light gradient boosting machine. Food Control 2021, 124, 107883. [Google Scholar] [CrossRef]
- Rabasco-Vílchez, L.; Jiménez-Jiménez, F.; Possas, A.; Brunner, M.; Fleck, C.; Perez-Rodriguez, F. Evaluating the shelf life of strawberries using a portable Vis-NIR spectrophotometer and a Reflectance Quality Index (RQI). Postharvest Biol. Technol. 2024, 218, 113189. [Google Scholar] [CrossRef]
- Yu, B.; Yan, C.; Yuan, J.; Ding, N.; Chen, Z. Prediction of soil properties based on characteristic wavelengths with optimal spectral resolution by using Vis-NIR spectroscopy. Spectrochim Acta A 2023, 293, 122452. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Application of NIR hyperspectral imaging for discrimination of lamb muscles. J. Food Eng. 2011, 104, 332–340. [Google Scholar] [CrossRef]
- Phanomsophon, T.; Jaisue, N.; Worphet, A.; Tawinteung, N.; Khurnpoon, L.; Lapcharoensuk, R.; Krusong, W.; Pornchaloempong, P.; Sirisomboon, P.; Inagaki, T. Primary assessment of macronutrients in durian (CV Monthong) leaves using near infrared spectroscopy with wavelength selection. Spectrochim. Acta A 2024, 304, 123398. [Google Scholar] [CrossRef]
- He, H.J.; Wang, Y.; Wang, Y.; Ou, X.; Liu, H.; Zhang, M. Towards achieving online prediction of starch in postharvest sweet potato [Ipomoea batatas (l.) Lam] by NIR combined with linear algorithm. J. Food Compos. Anal. 2023, 118, 105220. [Google Scholar] [CrossRef]
- Navrozidis, I.; Pantazi, X.E.; Lagopodi, A.; Bochtis, D.; Alexandridis, T.K. Application of machine learning for disease detection tasks in olive trees using hyperspectral data. Remote Sens. 2023, 15, 5683. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M. Selection of near infrared spectral wavelength variables based on improved whale optimization algorithm and its application. J. Instrum. Anal. 2023, 42, 37–44. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Over-Fitting and Model Tuning. In Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–92. [Google Scholar]
- Jiang, W.; Sarsenbayeva, Z.; Berkel, N.V.; Wang, C.; Yu, D.; Wei, J.; Goncalves, J.; Kostakos, V. User Trust in Assisted Decision-Making Using Miniaturized Near-Infrared Spectroscopy. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; p. 153. [Google Scholar] [CrossRef]
- Xiao, Y.; Cui, H.; Khurma, R.A.; Castillo, P.A. Artificial lemming algorithm: A novel bionic meta-heuristic technique for solving real-world engineering optimization problem. Artif. Intell. Rev. 2025, 58, 84. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Li, X.; Xing, L.; Lv, M.; He, H.; Pan, L.; Ou, X. Machine-Learning-Algorithm-Assisted Portable Miniaturized NIR Spectrometer for Rapid Evaluation of Wheat Flour Processing Applicability. Foods 2025, 14, 1799. [Google Scholar] [CrossRef]
- Kasarda, D.D. Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J. Agric. Food Chem. 2013, 61, 1155–1159. [Google Scholar] [CrossRef]
- Schuster, C.M.; Huen, J.; Scherf, K. Prediction of wheat gluten composition via near-infrared spectroscopy. Curr. Res. Food Sci. 2023, 6, 100471. [Google Scholar] [CrossRef]
- Özdoğan, G.; Gowen, A. Unveiling the potential: Harnessing spectral technologies for enhanced protein and gluten content prediction in wheat grains and flour. Curr. Res. Food Sci. 2025, 10, 101054. [Google Scholar] [CrossRef]
- Chen, X.; Siesler, H.W.; Yan, H. Rapid analysis of wheat flour by different handheld near-infrared spectrometers: A discussion of calibration model maintenance and performance comparison. Spectrochim. Acta A 2021, 252, 119504. [Google Scholar] [CrossRef]
- Golea, C.M.; Codină, G.G.; Oroian, M. Prediction of wheat flours composition using fourier transform infrared spectrometry (FT-IR). Food Control 2023, 143, 109318. [Google Scholar] [CrossRef]
- Zhou, W.; Lei, Y.; Zhou, Q.; Xu, J.; Xun, H.; Xu, C. A rapid determination of wheat flours components based on near infrared spectroscopy and chemometrics. Vib. Spectrosc. 2024, 130, 103650. [Google Scholar] [CrossRef]
- Yang, H.; Xing, J.; Lei, H.; Meng, M.; Luo, X.; Sang, S. Rapid quality evaluation of wheat flour containing moderate level of gluten using near-infrared spectroscopy and chemometrics. J. Sci. Food Agric. 2025, 105, 4317–4325. [Google Scholar] [CrossRef] [PubMed]
- Huan, K.; Chen, X.; Song, X.; Dong, W. Variable selection in near-infrared spectra: Application to quantitative non-destructive determination of protein content in wheat. Infrared Phys. Technol. 2021, 119, 103937. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.; Ren, Z.; Wang, S.; Yue, M.; Zhang, S.; Yin, X.; Gong, K.; Ma, C. Rapid determination of protein, starch and moisture content in wheat flour by near-infrared hyperspectral imaging. J. Food Compos. Anal. 2023, 117, 105134. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Appl. Spectrosc. Rev. 2018, 53, 667–687. [Google Scholar] [CrossRef]
Year | Wheat Variety | Location |
---|---|---|
2023 & 2024 | Bainong 207 Bainong 307 Bainong 607 Bainong 697 Xinmai 26 Xinmai 45 Xinmai 58 Zhengmai 366 Zhoumai 36 | Xinxiang City, Henan Province (113°56′ E, 35°18′ N) |
Bainong 627 | Xinxiang City, Henan Province (113°56′ E, 35°18′ N) Anyang City, Henan Province (114°23′ E, 36°6′ N) Hebi City, Henan Province (114°18′ E, 35°44′ N) Luoyang City, Henan Province (112°27′ E, 34°37′ N) Xihua City, Henan Province (114°31′ E, 33°46′ N) Xuchang City, Henan Province (113°50′ E, 34°3′ N) Zhengzhou City, Henan Province (113°37′ E, 34°45′ N) Weinan City, Shaanxi Province (109°30′ E, 34°33′ N) Yangling City, Shaanxi Province (108°1′ E, 34°15′ N) Hefei City, Anhui Province (117°8′ E, 31°46′ N) Huainan City, Anhui Province (116°58′ E, 32°42′ N) Suzhou City, Jiangsu Province (120°35′ E, 31°19′ N) Huai′an City, Jiangsu Province (119°7′ E, 33°33′ N) Lianyungang City, Jiangsu Province (119°14′ E, 34°38′ N) |
Index | Sample Set | Number of Sample | Range | Mean | Standard Deviation |
---|---|---|---|---|---|
DGC | Training | 400 | 4.6–12.2 | 9.0 | 1.2 |
Prediction | 100 | 6.8–11.8 | 8.9 | 1.2 | |
WGC | Training | 400 | 13.7–34.5 | 25.6 | 3.8 |
Prediction | 100 | 19.2–33.7 | 25.3 | 3.5 | |
GI | Training | 400 | 72.9–102.6 | 93.5 | 5.4 |
Prediction | 100 | 82.5–101.4 | 93.2 | 5.0 |
Index | Number of Wavelengths | Model | Cross-Validation | Prediction | |||
---|---|---|---|---|---|---|---|
RCV | RMSECV | RP | RMSEP | RPD | |||
DGC | 360 | SVR | 0.9503 | 0.3276 | 0.9421 | 0.3768 | 3.2124 |
RF | 0.8468 | 0.5741 | 0.8174 | 0.7171 | 1.6880 | ||
ANN | 0.9156 | 0.4045 | 0.9087 | 0.4866 | 2.4877 | ||
LightGBM | 0.8556 | 0.6321 | 0.8528 | 0.5123 | 1.9150 | ||
PLS | 0.9377 | 0.3868 | 0.9172 | 0.4204 | 2.8792 | ||
WGC | 360 | SVR | 0.9583 | 0.3853 | 0.9436 | 0.3450 | 3.4998 |
RF | 0.8159 | 0.6095 | 0.7815 | 0.6981 | 0.4874 | ||
ANN | 0.9163 | 0.4492 | 0.8864 | 0.4835 | 0.2337 | ||
LightGBM | 0.8921 | 0.5290 | 0.8402 | 0.5455 | 2.2135 | ||
PLS | 0.9436 | 0.4202 | 0.9006 | 0.3999 | 3.0192 | ||
GI | 360 | SVR | 0.9387 | 0.4094 | 0.9370 | 0.4043 | 3.1348 |
RF | 0.7251 | 0.7116 | 0.6914 | 0.8077 | 1.4522 | ||
ANN | 0.8421 | 0.5317 | 0.8374 | 0.6325 | 1.8545 | ||
LightGBM | 0.7781 | 0.7354 | 0.7767 | 0.7368 | 1.5920 | ||
PLS | 0.8812 | 0.4784 | 0.8714 | 0.5545 | 2.1153 |
Index | Method | Optimal Wavelengths | Wavelength Reduction |
---|---|---|---|
DGC | PCA | 929, 931, 954, 984, 987, 990, 993, 999, 1009, 1011, 1014, 1016, 1027, 1032, 1035, 1599, 1609, 1613, 1615, 1621, 1625, 1633, 1635, 1637, and 1641 nm | 93% |
SPA | 929, 956, 972, 977, 990, 993, 1009, 1011, 1014, 1021, 1032, 1056, 1099, 1474, 1495, 1588, 1613, 1619, 1621, 1623, 1625, 1633, 1641, 1655, and 1693 nm | 93% | |
CARS | 1421, 1432, 1434, 1436, 1438, 1441, 1443, 1457, 1545, 1446, 1453, 1461, 1466, 1472, 1474, 1479, 1495, 1647, 1649, 1651, 1653, 1655, 1657, 1659, and 1660 nm | 93% | |
RFE | 900, 905, 913, 926, 951, 977, 1046, 1119, 1123, 1227, 1306, 1325, 1340, 1344, 1347, 1358, 1368, 1370, 1407, 1497, 1625, 1647, 1651, 1655, and 1670 nm | 93% | |
iWOA | 911, 916, 921, 924, 966, 1040, 1249, 1358, 1370, 1397, 1430, 1453, 1459, 1479, 1565, 1649, 1655, 1659, 1672, 1676, 1689, 1691, 1694, 1698, and 1700 nm | 93% | |
WGC | PCA | 929, 931, 934, 977, 990, 991, 1004, 1009, 1014, 1019, 1021, 1024, 1035, 1079, 1284, 1318, 1477, 1584, 1603, 1613, 1615, 1619, 1621, 1625, 1627, 1633, 1635, 1637, 1639, and 1641 nm | 92% |
SPA | 929, 966, 972, 977, 990, 993, 999, 1006, 1009, 1014, 1021, 1032, 1035, 1038, 1056, 1077, 1290, 1453, 1565, 1613, 1619, 1621, 1623, 1625, 1633, 1637, 1641, 1643, 1662, and 1689 nm | 92% | |
CARS | 1446, 1647, 1649, 1651, 1653, 1655, 1657, 1659, 1660, 1662, 1664, 1666, 1668, 1670, 1672, 1674, 1676, 1678, 1680, 1682, 1683, 1685, 1687, 1689, 1691, 1693, 1694, 1696, 1698, and 1700 nm | 92% | |
RFE | 905, 916, 921, 924, 929, 974, 991, 996, 1061, 1135, 1155, 1163, 1212, 1277, 1323, 1333, 1335, 1370, 1397, 1407, 1421, 1453, 1495, 1547, 1611, 1649, 1655, 1670, 1687, and 1698 nm | 92% | |
iWOA | 929, 931, 951, 1001, 1040, 1073, 1306, 1368, 1402, 1405, 1443, 1446, 1459, 1581, 1594, 1635, 1655, 1657, 1666, 1668, 1670, 1674, 1676, 1680, 1575, 1689, 1691, 1694, 1696, and 1700 nm | 92% | |
GI | PCA | 921, 926, 929, 931, 937, 939, 942, 951, 966, 977, 991, 993, 999, 1006, 1021, 1038, 1402, 1581, 1590, 1605, 1609, 1611, 1613, 1621, 1623,1625, 1629, 1633, 1635, and 1649 nm | 92% |
SPA | 926, 929, 937, 939, 977, 991, 993, 1004, 1006, 1009, 1021, 1035, 1038, 1155, 1402, 1532, 1573, 1584, 1588, 1597, 1605, 1609, 1619, 1621, 1623, 1633, 1641, 1643, 1645, and 1676 nm | 92% | |
CARS | 1414, 1645, 1647, 1651, 1653, 1655, 1657, 1659, 1660, 1662, 1664, 1666, 1668, 1670, 1672, 1674, 1676, 1678, 1680, 1682, 1683, 1685, 1687, 1689, 1691, 1693, 1694, 1696, 1698, and 1700 nm | 92% | |
RFE | 911, 929, 944, 987, 1011, 1048, 1071, 1192, 1194, 1304, 1309, 1333, 1379, 1391, 1395, 1400, 1404, 1414, 1430, 1432, 1482, 1491, 1506, 1508, 1556, 1659, 1662, 1676, 1678, and 1685 nm | 92% | |
iWOA | 931, 944, 1001, 1063, 1102, 1173, 1194, 1246, 1286, 1293, 1300, 1384, 1391, 1397, 1414, 1434, 1491, 1556, 1579, 1637, 1657, 1670, 1674, 1676, 1682, 1683, 1687, 1689, 1691, and 1696 nm | 92% |
Index | Number of Wavelengths | Model | Cross-Validation | Prediction | |||
---|---|---|---|---|---|---|---|
RCV | RMSECV | RP | RMSEP | RPD | |||
DGC | 25 | PCA-SVR | 0.7551 | 0.8124 | 0.7592 | 0.8335 | 2.1522 |
SPA-SVR | 0.8893 | 0.6316 | 0.8815 | 0.6191 | 2.6552 | ||
CARS-SVR | 0.8186 | 0.5372 | 0.8730 | 0.7443 | 2.3263 | ||
RFE-SVR | 0.9288 | 0.4495 | 0.9184 | 0.5304 | 2.9820 | ||
iWOA-SVR | 0.9403 | 0.5096 | 0.9385 | 0.5110 | 3.1159 | ||
WGC | 30 | PCA-SVR | 0.8016 | 0.7293 | 0.8011 | 0.7218 | 2.0728 |
SPA-SVR | 0.8634 | 0.5129 | 0.8353 | 0.6090 | 2.3825 | ||
CARS-SVR | 0.9027 | 0.431 | 0.8717 | 0.5196 | 2.7239 | ||
RFE-SVR | 0.9137 | 0.4084 | 0.9068 | 0.4905 | 2.8616 | ||
iWOA-SVR | 0.9399 | 0.2919 | 0.9357 | 0.3927 | 3.2509 | ||
GI | 30 | PCA-SVR | 0.8521 | 0.6986 | 0.8614 | 0.7005 | 2.6745 |
SPA-SVR | 0.8742 | 0.5881 | 0.8697 | 0.6642 | 2.7659 | ||
CARS-SVR | 0.8775 | 0.7783 | 0.8808 | 0.6585 | 2.7813 | ||
RFE-SVR | 0.8883 | 0.5573 | 0.8868 | 0.6394 | 2.8344 | ||
iWOA-SVR | 0.9219 | 0.5251 | 0.9190 | 0.5743 | 3.0424 |
Index | Model | Test | Item | Measured Value | Predicted Value |
---|---|---|---|---|---|
DGC | iWOA-SVR | F-test | Average | 8.9 | 9.0 |
Variance | 2.6 | 1.6 | |||
Observed value | 50 | 50 | |||
df | 49 | 49 | |||
F | 1.5720 | ||||
p (F ≤ f) one-tailed | 0.0584 | ||||
F ‘one-tailed critical value’ | 1.6073 | ||||
t-test | Average | 8.9 | 9.0 | ||
Variance | 2.6 | 1.6 | |||
Observed value | 50 | 50 | |||
Merger of variance | 2.1 | ||||
Assumed mean difference | 0 | ||||
df | 98 | ||||
t Stat | −0.1582 | ||||
p (T ≤ t) one-tailed | 0.4373 | ||||
t ‘one-tailed critical value’ | 1.6606 | ||||
p (T ≤ t) two-tailed | 0.8746 | ||||
t ‘two-tailed critical value’ | 1.9845 | ||||
WGC | iWOA-SVR | F-test | Average | 25.5 | 25.6 |
Variance | 23.7 | 17.3 | |||
Observed value | 50 | 50 | |||
df | 49 | 49 | |||
F | 1.3711 | ||||
p (F ≤ f) one-tailed | 0.1364 | ||||
F ‘one-tailed critical value’ | 1.6073 | ||||
t-test | Average | 25.5 | 25.6 | ||
Variance | 23.7 | 17.3 | |||
Observed value | 50 | 50 | |||
Merger of variance | 20.5 | ||||
Assumed mean difference | 0 | ||||
df | 98 | ||||
t Stat | −0.0888 | ||||
p (T ≤ t) one-tailed | 0.4647 | ||||
t ‘one-tailed critical value’ | 1.6606 | ||||
p (T ≤ t) two-tailed | 0.9294 | ||||
t ‘two-tailed critical value’ | 1.9845 | ||||
GI | iWOA-SVR | F-test | Average | 93.0 | 93.0 |
Variance | 48.6 | 26.7 | |||
Observed value | 50 | 50 | |||
df | 49 | 49 | |||
F | 1.4213 | ||||
p (F ≤ f) one-tailed | 0.0191 | ||||
F ‘one-tailed critical value’ | 1.6073 | ||||
t-test | Average | 93.0 | 93.0 | ||
Variance | 48.6 | 26.7 | |||
Observed value | 50 | 50 | |||
Merger of variance | 37.6 | ||||
Assumed mean difference | 0 | ||||
df | 98 | ||||
t Stat | 0.0336 | ||||
p (T ≤ t) one-tailed | 0.4866 | ||||
t ‘one-tailed critical value’ | 1.6606 | ||||
p (T ≤ t) two-tailed | 0.9733 | ||||
t ‘two-tailed critical value’ | 1.9845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, C.; Li, X.; Xing, L.; Lv, M.; He, H.; Pan, L.; Ou, X. Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour. Foods 2025, 14, 2393. https://doi.org/10.3390/foods14132393
Wang Y, Zhang C, Li X, Xing L, Lv M, He H, Pan L, Ou X. Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour. Foods. 2025; 14(13):2393. https://doi.org/10.3390/foods14132393
Chicago/Turabian StyleWang, Yuling, Chen Zhang, Xinhua Li, Longzhu Xing, Mengchao Lv, Hongju He, Leiqing Pan, and Xingqi Ou. 2025. "Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour" Foods 14, no. 13: 2393. https://doi.org/10.3390/foods14132393
APA StyleWang, Y., Zhang, C., Li, X., Xing, L., Lv, M., He, H., Pan, L., & Ou, X. (2025). Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour. Foods, 14(13), 2393. https://doi.org/10.3390/foods14132393